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Abstract: Numerous post-windstorm investigations have reported that windborne debris can cause
costly damage to the envelope of buildings in urban areas under strong winds (e.g., during hurricanes
or tornados). Thus, understanding the physics of debris flight is of critical importance. Previously
developed numerical models describing debris flight physics have not been validated for the
complex urban flow environment; such a validation requires experimentally measuring the debris
flight trajectory in wind tunnel tests. In this context, this paper proposes a debris measurement
algorithm using stereophotogrammetry. This algorithm aims to determine the six-degree-of-freedom
(6-DOF) trajectory and velocity of flying debris, addressing the research gap, i.e., the lack of an
algorithm/software for measuring three-rotational-DOF using stereophotogrammetry. This is a civil
engineering problem, but computer graphics is the foundation to solve it. This paper focuses on the
theoretical development of the algorithm. The developed algorithm can be readily implemented in
modern wind tunnel experiments.
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1. Introduction

Windborne debris damage to the cladding and façades of buildings has been identified as a major
contributor to damage in urban areas after windstorms (e.g., hurricanes, tornados, thunderstorms)
in numerous studies [1–11]. To physically model debris-induced damage, one needs to understand
debris flight behavior. In recent years, there have been a number of experimental and numerical
studies investigating the mechanics of debris flight. Tachikawa [12] pioneered fundamental research
on the two-dimensional (2D) trajectory of a flying plate in a uniform flow through both wind tunnel
experiments and numerical simulation. Following Tachikawa’s work, Lin et al. [13,14] conducted
wind tunnel studies to investigate the trajectories of compact-, rod-, and plate-type debris in a uniform
wind field and provided experimental support for the validation of numerical simulations using
Tachikawa’s equations. However, the numerical models developed in the literature have not been
validated for the complex 3D urban wind field. Researchers have found that a complex turbulent
flow structure in an urban environment can dramatically alter the typical flight distance/speed and
lead to unusual debris trajectory, through both experimental and full-scale investigations [15–18].
Thus, experimental validation of the numerical debris flight model for an urban built environment is
critical for understanding complex debris flight behavior and predicting the debris impact location,
energy/momentum, and ultimately the damage state of the building envelope components. Such a
validation first requires the measurement of the debris flight trajectory in a 3D field in wind tunnel tests.
In the hardware aspect, the high-speed cameras that have become more accessible in modern wind
tunnels can be used for the measurement; however, to the authors’ knowledge, there is no off-the-shelf
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algorithm/software for extracting the entire six-degree-of-freedom (6-DOF) trajectory of flying debris
from the images. The existing literature on trajectory measuring of windborne debris using high-speed
cameras either only measures the three-translational-DOF (without the three-rotational-DOF) [19] or
qualitatively analyzes the different flight modes of the debris instead of resolving the coordinates of
the full trajectory [17]. In this context, this paper proposes a debris trajectory measuring algorithm
that can reconstruct all 6-DOF displacements and the velocity of debris in a 3D field from pairs of
stereoscopic 2D images captured by two high-speed, high-resolution cameras. The concept of using
pairs of stereoscopic 2D images to track debris is similar to stereoscopic particle image velocimetry
(PIV), which is a non-intrusive laser optical technique for measurement of flow velocity. However, it is
distinct from stereoscopic PIV in the following three aspects: (i) the proposed method tracks a single
piece of debris, while PIV tracks the patterns of a group of flow particles; (ii) the proposed method
does not rely on a laser sheet to illuminate the debris, and thus can track the debris flight with larger
lateral motion, while PIV can only track particle motions within the thickness of a laser sheet; and
(iii) the proposed method is developed to track the 6-DOF trajectory of debris, while PIV can only
measure the 3-DOF motions of flow particles. In wind engineering, three types of debris are typically
concerned, i.e., compact, rod, and thin plate. In this paper, we focus on the thin plate. The theoretical
development of the three-translational-DOF of compact debris has been included in this discussion
as the foundation for the algorithm for thin plates. Furthermore, this algorithm can be extended to
consider rod-like debris in the future.

The paper is organized as follows. Section 2 includes the problem formulation and notation.
Section 3 focuses on the reconstruction of the 6-DOF coordinates of debris from stereopairs of
camera images. Section 4 derives the differential operator for velocity reconstruction. Section 5
introduces procedures for the reconstruction of time histories of debris motion trajectory, including both
displacements and velocity. Section 6 includes concluding remarks and a discussion of future directions.

2. Background

Problem Formulation and Notation

In this problem (depicted in Figure 1), first, a background grid is utilized to calibrate the
corresponding pixel locations for two high-speed cameras; it can be removed once the calibration is
completed. Then the two cameras are used to measure the 2D coordinates of the projection of flying
debris on the grid wall by lights emanating from the camera locations. Using the stereopair of 2D
coordinates (i.e., d1, h1, d2, h2 measured by the two cameras) of the debris, we try to determine both the
position (three-translational-DOF, x, y, z) and orientation (three-rotational-DOF) of the debris, given
the relative locations of the two cameras to the grid wall (i.e., d and l).
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This problem will be solved in two steps: First, for a single compact piece of debris, considered
as a point object (only three-translation-DOF is considered), then for rigid body thin plate debris.
The former lays the theoretical foundation for the latter.

The notation used in the problem is defined as follows. The notation of points and matrices are in
upper case letters, the position vectors are in bold lowercase letters, and vectors are column vectors by
default. For example, z j is the position vector of point Z j, while p j is the position vector of point P j.
The list of variables used in Figure 1 is given below.

Z1, Z2 – points at the lens positions of two cameras
P – position of a point debris

P1, P2
– projected locations of the debris on the grid wall seen from two cameras (i.e., a stereopair),

respectively
d – distance between cameras

l
– distance between camera lens and the wall along the y-direction; the wall is parallel to the z-x

plane
d1, d2 – distances of points on the wall along the x-axis from the y-axis
h1, h2 – heights of points on the wall along the z-axis from the x-y plane
β1, β2 – angles that Z1P1, Z2P2 rays make with the x-y plane
θ1, θ2 – angles between the x-axis and the projections of Z1P1, Z2P2 rays on the x-y plane

We need to determine the 3D position of the debris, i.e., x, y, and z, in terms of these parameters.

3. Debris Position and Spatial Orientation (6-DOF) in 3D Space

3.1. The 2D Stereopairs’ Positions

In Figure 1, Z1 is the origin and Z2 is the origin offset by d units along the x-axis: z2 = z1 + [d, 0, 0]T.
The position vector for point P1 on the wall is

p1 = [h1 cot(β1) cos(θ1), h1 cot(β1) sin(θ1), h1]
T, (1)

with a distance from Z1 of:
t1 = h1 cos ec(β1) = |C1P1|. (2)

Alternatively, p1 = [d1, d1 tan(θ1), h1], t1 =

√
d1

2 sec (θ1)
2 + h1

2. Similarly, for point P2 on the
wall:

p2 = [d1, 0, 0]T + [−h2 cot(β2) cos(θ2), h2 cot(β2) sin(θ2), h2]
T, (3)

with a distance from Z2 of:
t2 = h2 cos ec(β2) = |Z2P2|. (4)

Alternatively,
p2 = [d, 0, 0]T + [−(d− d2), (d− d2) tan(θ2), h2]

T

= [d2, (d− d2) tan(θ2), h2]
T (5)

t2 =

√
(d− d2)

2 cos ec(θ2)2 + h2
2. (6)

In the simplest terms, the vectors along Z1P1 and Z2P2 are normalized to unit vectors, d1 and
d2, where

d1 = [cos(β1) cos(θ1), cos(β1) sin(θ1), sin(β1)]
T (7)

d2 = [− cos(β2) cos(θ2), cos(β2) sin(θ2), sin(β2)]
T. (8)

Then the position vectors for the stereo-pair P1 and P2 are

p1 = z1 + t1d1, p2 = z2 + t2d2. (9)
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This is valid even if the cameras are not at the same distance from the wall.

3.2. The Relationship between the 3D Spatial Position of Debris and the 2D Stereopairs’ Positions

Consider compact debris or a point object. The camera beams intersect at the true location of the
debris in 3D space with position vector: z1 + s1d1 = z2 + s2d2. This leads to the following equations:

s1d1 − s2d2 = z2 − z1 (10)

[d1,−d2]

[
s1

s2

]
= z2 − z1. (11)

This is an overdetermined system of three equations involving two unknowns, s1 and s2.
Let M = [d1 − d2], which is a 3 × 2 matrix. Since a 3 × 2 matrix does not have an inverse, we exploit the

generalize inverse, denoted by M+, to determine the least squares error solution. Now MT =

[
dT

1
−dT

2

]
it is a 2 × 3 matrix, so we create a 2× 2 matrix, MTM:

MTM =

[
dT

1
−dT

2

][
dT

1 ,−dT
2

]
=

[
dT

1 d1 −dT
1 d2

−dT
2 d1 dT

2 d2

]
=

[
d1 · d1 −d1 · d2

−d1 · d2 d2 · d2

]
. (12)

Since d1 and d2 are unit vectors, let k = d1 · d2 = cos(θ), where θ is the angle between d1 and
d2. Then,

MTM =

[
1 −k
−k 1

]
, det(MTM) = 1− k2

M+ = (MTM)
−1

MT =

[
1 k
k 1

]
1− k2

[
dT

1
−dT

2

]
, M+ =

[
dT

1 − kdT
2

kdT
1 − dT

2

]
1− k2 (13)

Then,

[
s1

s2

]
= [d1,−d2]

+(z2 − z1) =

[
dT

1 − kdT
2

kdT
1 − dT

2

]
1− k2 (z2 − z1). (14)

This form is useful when the camera direction changes and the location is fixed; otherwise, it can
be further simplified to

[
s1

s2

]
=

[
(dT

1 − kdT
2 )(z2 − z1)

(kdT
1 − dT

2 )(z2 − z1)

]
1− k2 . (15)

We computed vector forms z1 + t1d1, z2 + t2d2 for input points on the wall. Now we have

computed
[

s1

s2

]
for the corresponding object in 3D space. The actual object is at z1 + s1d1 = z2 + s2d2

for these s1 and s2. This suggests that the object size at z1 + t1d1 can be scaled by s1
t1

, with s1 computed
above, along direction d1 to get the actual size at z1 + s1d1 in 3D space. Similarly, for camera 2, the
object size at z2 + t2d2 is scaled by s2

t2
, (s2 computed above), along the direction d2. The rationale for

the scaling of an object at P1 by a scale factor of s1
t1

along the line Z1P1 is as follows:

z1 +
s1

t1
(Z1P1) = z1 +

s1

t1
(p1 − z1) = z1 +

s1

t1
(z1 + t1d1 − z1) = z1 +

s1

t1
(t1d1) = z1 + s1d1. (16)

Similarly, for camera 2,

z2 +
s2

t2
(Z2P2) = z2 + s2d2. (17)
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3.3. Explicit Expressions of Debris Position in 3D Space

Once s1 is determined for 3D position, we can compute the desired parameters x, y, and z as in
Figure 1. Now s1d1 becomes

s1d1 = [z cot(β1) cos(θ1), z cot(β1) sin(θ1), z]T. (18)

Since d1 is a unit vector, this implies that

s1 = z cos ec(β1), z = s1 sin(β1), r1 = s1 cos(β1)

x = r1 cos(θ1) = s1 cos(β1) cos(θ1), y = r1 sin(θ1) = s1 cos(β1) sin(θ1). (19)

Similarly,

s2 = z cos ec(β2), z = s2 sin(β2), r2 = s2 cos(β2)

x = d1 − r2 cos(θ2) = d1 − s2 cos(β2) cos(θ2), y = r2 sin(θ2) = s2 cos(β2) sin(θ2). (20)

3.4. Cartesian Position and Orientation for Thin Plate Debris

Now we derive the position and orientation for rigid body thin plate debris, based on the 3D
positions of the point objects constructed from the stereo images in the previous section. In Figure 2,
let C be the centroid (also called the pivot) of the rigid body plate with vertices Q1, Q2, Q3, Q4, Q5,
Q6, Q7, and Q8. Assume that the vertices of the debris are identifiable in the stereo images using
marker tracking. The 3D positions of the vertices can then be determined using the expressions in the
previous section based on the stereo measurements. The problem now becomes using the 3D positions
of vertices to determine the orientation (three-rotational-DOF) of the rigid body.

Infrastructures 2019, 4, x FOR PEER REVIEW 6 of 14 

previous section based on the stereo measurements. The problem now becomes using the 3D 
positions of vertices to determine the orientation (three-rotational-DOF) of the rigid body. 

 

Figure 2. Rectangular plate representing debris. 

Firstly, a local coordinate system needs to be defined using any three non-collinear points on the 
debris. Here we use the points C , 1Q , and 2Q  to create a local coordinate system centered at C  
and axis directions with unit vectors u , v , and w , where u  is along 1CQ , v  is orthogonal to 

1CQ  and in the plane of C , 1Q , and 2Q , with a projection of 2CQ  on v  positive, and w  is 
naturally u v  so that u , v , and w  form a right-handed system of orthonormal vectors: 

1

1

CQ

CQ
u , 2 2

2 2

CQ CQ

CQ CQ

 


 
u u

v
u u

,  w u v  ( equivalently 2

2

CQ

CQ





u

w
u

,  v w u ). 

The matrix  R  u v w  of axis unit vectors is the rotation matrix and is just the 3D local 
coordinate system at C . For simplicity in the notation for time history of the plate trajectory 
determined from vertices reconstructed using stereopairs, the 3D plate is represented as a frame 

( )F t  at time t  that contains both the position and the orientation for the plate. Since at each time 
point of the trajectory, there is a frame, the frame sequence will later be denoted by kF , 1, 2, ,k N 
. This is similar to frames in a robotic system of N - links. 

The matrix 
1

R
F

 
  
 

c

0
 represents the local coordinate system centered at C . The frame can 

be written interchangeably as 

1 1 1 1

2 2 2 2

3 3 3 31 0 0 0 1

0 0 0 1

u v w c

R u v w c
F

u v w c

 
                
 
 

c u v w c

0
. (21) 

This matrix F  transforms 
0 0 0 1

 
 
 

i j k 0
 to 

0 0 0 1

 
 
 

u v w c
. The inverse of F  transforms the 

coordinate system
0 0 01

 
 
 

u v w c
, located at the centroid C  of the debris, to the universal coordinate 

system 
0 0 0 1

 
 
 

i j k 0
. The inverse of F  can be written as follows: 
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Firstly, a local coordinate system needs to be defined using any three non-collinear points on the
debris. Here we use the points C, Q1, and Q2 to create a local coordinate system centered at C and
axis directions with unit vectors u, v, and w, where u is along CQ1, v is orthogonal to CQ1 and in the
plane of C, Q1, and Q2, with a projection of CQ2 on v positive, and w is naturally u × v so that u, v,
and w form a right-handed system of orthonormal vectors: u = CQ1

|CQ1 |
, v = CQ2−u·CQ2u

|CQ2−u·CQ2u| , w = u × v

(equivalently w = u×CQ2
|u×CQ2 |

, v = w× u).

The matrix R =
[

u v w
]

of axis unit vectors is the rotation matrix and is just the 3D local
coordinate system at C. For simplicity in the notation for time history of the plate trajectory determined
from vertices reconstructed using stereopairs, the 3D plate is represented as a frame F(t) at time t that
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contains both the position and the orientation for the plate. Since at each time point of the trajectory,
there is a frame, the frame sequence will later be denoted by Fk, k = 1, 2, . . . , N. This is similar to frames
in a robotic system of N- links.

The matrix F =

[
R c
0 1

]
represents the local coordinate system centered at C. The frame can be

written interchangeably as

F =

[
R c
0 1

]
=

[
u v w c
0 0 0 1

]
=


u1 v1 w1 c1

u2 v2 w2 c2

u3 v3 w3 c3

0 0 0 1

. (21)

This matrix F transforms
[

i j k 0
0 0 0 1

]
to

[
u v w c
0 0 0 1

]
. The inverse of F transforms

the coordinate system
[

u v w c
0 0 0 1

]
, located at the centroid C of the debris, to the universal

coordinate system
[

i j k 0
0 0 0 1

]
. The inverse of F can be written as follows:

F−1 =


uT

vT

wT

0

−uTc
−vTc
−wTc

1

 =


u1 v1 w1 −uTc
u2 v2 w2 −vTc
u3 v3 w3 −wTc
0 0 0 1

 =


u1 v1 w1 −(u1c1 + u2c2 + u3c3)

u2 v2 w2 −(v1c1 + v2c2 + v3c3)

u3 v3 w3 −(w1c1 + w2c2 + w3c3)

0 0 0 1

. (22)

3.5. Three-Degree-of-Freedom (3-DOF) Frames in Universal Coordinate System

Here we describe the relationship between the local coordinate system and the axis of rotation and
the amount of rotation in a universal coordinate system. The local coordinate system at the centroid of
the plate is a frame

F =

[
R c
0 1

]
=

[
u v w c
0 0 0 1

]
, (23)

where R is the rotation matrix about an axis, which is a composite of rotations about the x, y, and z
axes. If n is the unit vector and θ is the angle amount of counter clockwise rotation about n, the axis
through the origin, then [20]

R = nnT + (I− nnT) cos(θ) + n× I sin(θ). (24)

This is directly related to the matrix representation, R =
[

u v w
]
. The angle θ and vector n

are given by

θ = cos−1(
u1 + v2 + w3 − 1

2
) (25)

n =


n1

n2

n3

 =


v3 −w2

w1 − u3

u2 − v1

/2 sin(θ). (26)

The rotation vector and amount of rotation about n is denoted by nθ, giving the 3-DOF Euler
angles, components of rotation about the x, y, and z axes in the universal coordinate system.
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3.6. Differential Operators for 6-DOF Motion

To facilitate the determination of the velocity, differential operators for 6-DOF motion with respect
to the universal coordinate system are derived in this section. Let dF = Fk+1 − Fk or explicitly 3-DOF
translational and 3-DOF rotational differentials are

dF =

[
dR dc
0 0

]
, (27)

where dR and dc are differential changes in rotation (R) and translation (c). The differential dc is a linear
differential in the x, y, and z coordinates of c; it is simple and trivial. However, differential change, dR,
in the angle of rotation is not straightforward because the differential of the rotation matrix is a matrix
operator. Recall that matrix R [21] is

R = nnT + (I− nnT) cos(θ) + n× I sin(θ). (28)

Differentiating with respect to θ, we have

dR/dθ = −(I− nnT) sin(θ) + n× I cos(θ). (29)

This derivative of the rotation matrix can be expressed as a matrix multiplication, the differential
operator [21]. This is accomplished by cross-multiplying Equation (28) by n as follows:

n×R = n× (nnT + (I− nnT) cos(θ) + n× I sin(θ)). (30)

Using vector manipulation identities, this convoluted expression is simplified as follows:

n×R = n× nnT + n× (I− nnT) cos(θ) + n× (n× I) sin(θ) = 0 + (n× I− 0) cos(θ) + (nn · I− In · n) sin(θ)
= n× I cos(θ) + (nnT

− I) sin(θ) = −(I− nnT) sin(θ) + n× I cos(θ)
(31)

which is identical to dR/dθ, as obtained in Equation (29).
Recalling that the amount of rotation in the universal coordinate system is represented by θn,

the differential becomes dθn, which yields the rotation about the x, y, and z axes. This is consistent
with the differential operator derived from the matrix:

dR/dθ = n×R = n× IR,

dR = n×Rdθ = n× IRdθ = n× IdθR = ndθ× IR = ∆R, (32)

where ∆ is the differential operator, defined below. Thus, the differential dR of R is a matrix multiplication
of R by a matrix, called the differential operator and denoted by ∆.

∆ = ndθ× I =


0 −dθn3 dθn2

dθn3 0 −dθn1

−dθn2 dθn1 0

, or simply =


0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

. (33)

Summarizing, if θ is the angle of rotation about n and θn represents the amount of rotation in
the universal coordinate system, then the differential becomes dθn, which yields the rotation about
the x, y, and z axes; it is consistent with the differential operator derived from the matrix. Here ∆ is
the differential operator that represents the differential change from Rk to Rk+1 with respect to the
universal coordinate system, where Rk is the rotational submatrix of frame Fk. The rotational part is

0 −dθz dθy

dθz 0 −dθx

−dθy dθx 0

 with the angular changes about the x, y, and z axes. In short, the rotational
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differential is
[

dθx dθy dθz
]T

and the translational differential is
[

dx dy dz
]T

. The composite

differential is 6-DOF vector
[

dx dy dz dθx dθy dθz
]T

, representing a composite vector for the
translational and rotational velocity about the x, y, and z axes, similar to the notation used in Jacobians
for the velocity of robotic link velocity applications.

4. 6-DOF Motion Consideration

4.1. Motivation

It is not necessary to know the initial velocity in this case; only the differential change matters.
At any time t, from the position of the plate, we can get the orientation from the frame F(t). Also,
during the motion, some features invisible to the camera may become visible, while some that are
visible may become invisible. We need to identify at least three vertices, which will be flagged at all
times for the sake of calculating the local coordinate system and the rotational motion, in addition to
the translational motion.

As the debris moves, frame F(t) at time t moves to the next frame F(t + h) with time step h;
the differential change in the frame, denoted by dF = F(t+ h)−F(t), can be used to derive the numerical
instantaneous translational and rotational velocities. In this case, the debris is flying behind a building;
the average velocity can be derived from visible positions (after the time lag of the hidden period)
or continuously from the flags identified earlier. In such cases, we may opt to have one continuous
trajectory, or multiple segments of trajectory.

4.2. The Relationship between Differential Transformations in Universal and Local Coordinate Systems

4.2.1. General Transformation

As a transformation is accomplished using two coordinate systems, the transformation can be
expressed between them in terms of universal and local coordinate systems. In general, if T is the
transformation of frame F with respect to the universal coordinate system, this is represented by U,
while T′ is its counterpart in the local coordinate system. They are related by the equation T = FT′F−1.
If a point or matrix X has coordinates with respect to frame F, then TF(X) = F(T′(X)). Equivalently,
if Y has coordinates with respect to the universal frame, then T(Y) = F

(
T′

(
F−1(Y)

))
. Thus, T and

T′ accomplish the same task from different coordinate systems, and are related by the equations
T = FT′F−1 and T′ = F−1TF.

4.2.2. Rotational Differential Transform with Respect to Universal Coordinate System

We have shown that for rotation matrix R, the rotation differential operator with respect to
the universal coordinate system is ∆ = ndθ × I. Let ω = ndθ be called the angular differential,
then ∆ = ω× I.

4.2.3. Differential Transform in Universal Coordinate System

The translational and rotational velocities are first computed in the universal coordinate system.

Definition 1. For F =

[
R c
0 1

]
and the universal differential transformation matrix T, the differential change

in frames is defined as follows:

dF = TF =

[
dR dc
0 0

]
=

[
∆R dc
0 0

]
, (34)
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where ∆ = ω× I, ω = ndθ, dc =


dx
dy
dz

.
Now we define T as the differential operator with respect to the universal coordinate system.

dF = TF implies T = dFF−1, then T =

[
∆ dc− ∆c
0 0

]
.

4.2.4. Differential Transform in Local Coordinate System

For studying the different flight modes of a plate, it is desirable to have the computation of
velocities also available in the local coordinate system, and is more conceptually reasonable. Before
deriving the differential transformation in the local coordinate system, we will first show a few
auxiliary results.

1. Show that the rotation differential operator ∆′ = RT∆R with respect to the local frame system,
such that

∆′ =


ω · u
ω · v
ω ·w

× I. (35)

Proof.

∆′ = RT∆R = RTω× IR = RTω×R = RT[ω× u,ω× v,ω×w] =
[
RTω× u, RTω× v, RTω×w

]

=



ω× u · u
ω× u · v
ω× u ·w

,

ω× v · u
ω× v · v
ω× v ·w

,

ω×w · u
ω×w · v
ω×w ·w


 =


0 −ω ·w ω · v

ω ·w 0 −ω · u
−ω · v ω · u 0

 =

ω · u
ω · v
ω ·w

× I.

�

2. Show that the linear differential dc′ = RTdc in the local frame simplifies to

dc′ =


dc · u
dc · v
dc ·w

. (36)

Proof.

dc′ = RTdc =


uT

vT

wT

, dc =


uTdc
vTdc
wTdc

 =


u · dc
v · dc
w · dc

 =


dc · u
dc · v
dc ·w

. (37)

�

3. Differential operator with respect to local frame coordinate system.

Theorem 1. The frame differential transformation matrix T′ in the local coordinate system is

T′ =
[

∆′ dc′

0 0

]
, (38)
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where ∆′ =


ω · u
ω · v
ω ·w

× I, dc′ =


dc · u
dc · v
dc ·w

.

Proof. From T′ = F−1TF (Section 4.2.1) and TF =

[
∆R dc
0 0

]
(Equation (34)), we get

T′ =
[

RT
−RTc

0 1

][
∆R dc
0 0

]
=

[
RT∆R RTdc

0 0

]
=

[
∆′ dc′

0 0

]
(
recall that ∆′ = RT∆R and dc′ = RTdc

)
.

(39)

Hence, the theorem is proved. �

Finally, the 6-DOF local translational and rotational velocities in the local frame are derived from
the differential transformation as follows:

dF′ = T′F =

[
∆′ dc′

0 0

][
R c
0 1

]
=

[
∆′R ∆′c + dc′

0 0

]
. (40)

5. 6-DOF Motion Trajectory with Velocity

5.1. Velocity

We have determined the 6-DOF frame for position and orientation, as well as the differentials
for translational and rotational motion of the debris. High-speed, high-resolution cameras are fast
enough to provide data on very small intervals of time. Assuming that the time history of 6-DOF
frames has been reconstructed according to Section 3, we now determine the numerical derivatives
from this sequence of 3D temporal positions and orientations (i.e., displacements) of the debris using
the differentials derived in Section 4. This gives the translational and rotational velocities from the
numerical time histories of the displacements.

5.2. Experimenting with 6DOF Position and Orientation and 6DOF Motion Methods

For the experiments, the data structure of debris is represented as a thin m×n× q plate, where m×n
is a polygonal face shape and q is the thickness of the plate. The vertices of the plate are represented by
a matrix array deb = deb(x, y, z), where x = x(1 : m), y = y(1 : n), z = z(1 : q). For example, in Figure 2,
with a 4 × 4 × 2 simple rectangular plate, we may define z(1) = 0, z(2) = 2, x(1 : 4) = [1, 50, 50, 1],
y(1 : 4) = [1, 1, 50, 50]; thus, one flat face is f ace 1 =

{
(x(k), y(k), z(1)); k = 1, 2, 3, 4

}
, and the second

face is f ace 2 =
{
(x(k), y(k), z(2)); k = 1, 2, 3, 4

}
.

5.3. Implementation Procedure for Debris Tracking with Both Displacement and Velocity Time Histories
Determined

Conceptual algorithms and implementation go hand in hand. From the stereopairs of images
captured by two cameras, we computed the 3D spatial positions of flagged points on the debris.
Then, using three non-collinear points (e.g., the centroid and two vertices), we constructed a frame matrix

F =

[
R c
0 1

]
to represent the position and orientation of the debris. Here R =

[
u v w

]
represents

the rotation matrix about unit vector n through the origin by angle θ, where θ = cos−1( u1+v2+w3−1
2 )

and n =


v3 −w2

w1 − u3

u2 − v1

/2 sin(θ). F changes its state over time as the debris moves. The motion
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trajectory is then captured by successive camera frames F(t) to frame F(t + h), where h is the time
step, depending on the camera speed. For translational and rotational velocity, we calculated the

differential of frame F as dF = F(t + h) − F(t) =
[

dR dc
0 1

]
, where dc is the differential of centroids

of frame F(t) and subsequent frame F(t + h), and dR is the differential of orientation of frame
F(t) and subsequent frame F(t + h). We have seen that dR = ∆R with ∆ = ω × I, ω = ndθ,
dθ = cos−1( u1+v2+w3−1

2 )(t) − cos−1( u1+v2+w3−1
2 )(t + h).

Now dF can be written in terms of frame differential operator T such that dF = TF, where T =[
∆ dc− ∆c
0 0

]
.

Now for the trajectory of N frames Fk, k = 1, 2, . . . , N. Let the kth stereopair debris vertices be
denoted by Qk1i =

(
1xi,

1yi,
1zi

)
, and Qk2i =

(
2xi,

2yi,
2zi

)
, i = 1, 2, . . . , 8.

The 3D spatial location corresponding to the points Qk1i and Qk2i is denoted by Pki, whose position
vector is pki.

Let pki be the position vectors of vertices Pki, and ck be the centroid of vertices Pki for i = 1, 2, . . . , 8.
Create frame Fk with uk, vk, wk, ck as follows:
ck = (

∑
i=1,8 pki)/8, uk = pk1 − ck, normalize uk =

uk
|uk|

, wk = uk × (pk2 − ck), normalize wk =
wk
|wk|

vk = wk × uk,θk = cos−1(
uk1 + vk2 + wk3 − 1

2
), nk =


vk3 −wk2
wk1 − uk3
uk2 − vk1

/2 sin(θk)

dθk = cos−1(
uk1+vk2+wk3−1

2 ) − cos−1(
uk+1,1+vk+1,2+wk+1,3−1

2 ), ∆k = ωk × I,ωk = nkdθk. (41)

This creates a sequence of consecutive frames Fk, k = 1, 2, . . . , N representing the position and
orientation of debris at any point. To derive the translational velocity of frame Fk, it is sufficient to
know the linear differential change from ck to ck+1, the centroids of the consecutive coordinate frames.
The rotational velocity is more complex, as seen earlier. In the universal coordinate system:

The differential translational change is dck = ck+1 − ck.
The differential rotational change is dRk = ∆kRk, where ∆k = ωk × I.

The frame differential change is dFk = TkFk =

[
∆kRk dck

0 0

]
,

Tk =

[
∆k dck − ∆kck
0 0

]
. (42)

With respect to the local coordinate system of frame Fk,

Tk
′ =

[
∆′k dc

′

k
0 0

]
. (43)

The differential rotational change is dR′ = ∆k
′R, where

∆′k =


ωk · uk
ωk · vk
ωk ·wk

× I. (44)

The differential translational change is dck
′, where

dc
′

k =


(ck+1 − ck) · uk
(ck+1 − ck) · vk
(ck+1 − ck) ·wk

. (45)
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The frame differential change is dF′ = T′kFk =

[
∆′kRk dc

′

k + ∆′kc
′

k
0 0

]
.

With this we complete the derivation of the formulations for determining the 6-DOF position
and orientation along with the 6-DOF translation and rotational velocity of the rigid body debris.
The full process of the proposed method for measuring the trajectory of plate-type debris is illustrated
in Figure 3.Infrastructures 2019, 4, x FOR PEER REVIEW 13 of 14 
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6. Conclusions

In this paper, we propose an algorithm to reconstruct the 6-DOF (three translational and three
rotational) trajectory of flying debris using stereopairs of images from two high-speed cameras. Both
the time histories of displacements and velocities can be determined by this algorithm. Specifically,
this algorithm addresses the research gap in terms of a lack of algorithms/software for measuring
three-rotational-DOF using stereophotogrammetry in the literature, and thus contributes to the new
measurement science enabled by high-speed cameras and computer graphics theory. It is intended to be
used for experimentally measuring the debris trajectory in a 3D wind field to support the investigation
of the debris flight physics in an urban built environment and ultimately contributes to enhancing the
reliability of building envelopes under windborne debris hazards. However, it may also be applied to
reconstructing the 3D motion of people using surveillance cameras in buildings (e.g., to see how a robber
is approaching a victim) or of vehicles in car accidents using traffic monitoring cameras. In this paper,
we focused on the wind engineering application and developed this algorithm for two common types of
debris, i.e., compact and thin-plate-like, in particular. For the former, the three-translational-DOF were
reconstructed. Then the results were used to derive the three-rotational-DOF of the thin plate. In future
studies, the algorithm can also be extended for rod-like debris, another type of debris commonly
observed during wind risk. The current paper dealt with the theoretical development of the algorithm,
while its implementation in conjunction with image processing techniques in wind tunnel experiments
will be explored in our future studies.
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