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Abstract: The historical vehicles passed through an existing bridge can be regarded as proof-loading
tests for the bridge, and, as a result, are evident of the bridge’s performance. Such service history
information has been utilized to update the estimate of bridge resistance in previous studies with the
help of a Bayesian method, where the resistance deterioration process was assumed to be independent
of the vehicle load process. This assumption is, however, untenable in many cases where the
deterioration stochastic process is statistically correlated with the load process (e.g., a greater load
intensity may affect/accelerate the deterioration of structural resistance and the accumulation of
structural fragility). With this regard, this paper investigates the effect of correlation between the
resistance deterioration and load processes on updating the resistance of aging bridges with prior
service load information. The copula function is employed to model the joint distribution of the
correlated deterioration and load processes, with which the correlation is measured by the Kendall’s
tau. A new method is developed in this paper to assess the updated bridge resistance taking into
consideration the deterioration-load dependency in an explicit form. The applicability of the proposed
method is illustrated using an existing RC beam bridge. The sensitivity analysis is conducted to
examine how the deterioration-load dependency affects the updated resistance of service-proven
aging bridges.

Keywords: resistance updating; service load history; existing bridges; deterioration-load dependency;
structural safety

1. Introduction

In-service bridges may suffer from aggressive environments and increasing traffic loads and
volumes, which may cause the degradation in their load capacity and serviceability. Evaluations
often should be made regarding the safety of these bridges, providing quantitative evidence that they
can withstand future load events with an acceptable level of reliability during future service lives.
Significant uncertainties are unavoidably associated with the estimate of load-carrying capacity of
an existing bridge, because many factors affect the degradation process, including environmental
conditions, traffic loads and volumes and quality of periodic maintenance, whose exact influences on
structural degradation are difficult to predict. To increase the accuracy in the estimate of resistance
and reliability of existing bridges, an effective way is to update the probabilistic resistance models
using in-site information that are representative of the site characteristics, e.g., service load history.
Historical survived loads are evident of the performance of existing structures as they can be regarded
as incomplete load tests. The estimate of resistance and reliability of an existing bridge can be updated
using these data as long as the load history was measured and accounted for reasonably [1–4].

The work by Hall [1] was one of the first attempts to reassess the resistance of existing structures
using the data of survived service loads. In later researches, the method was further used to update
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the reliability of existing bridges [5] and to update the piping reliability of flood defenses [6] based on
survived load information. However, Hall [1] treated the structural resistance as a random variable,
which is independent of the age of the structure; as a result, the effect of resistance deterioration cannot
be accounted for in that method. The resistance deterioration has a significant impact on the reliability of
existing structures within future service lives, as demonstrated by Stewart and Val [7], who investigated
the negative effects of structural deterioration and positive effects of service load history on the
updated resistance of aging structures through complex Monte Carlo simulation analysis, showing the
necessity to model the structural deterioration process stochastically. Li and Wang [3] proposed
close-form formulas to update the estimates of structural current resistance, initial resistance and
reliability for subsequent years in the context of time-dependent reliability. However, in to-date updating
methods, the resistance deterioration process was assumed independent of the load history process;
such assumption is unrealistic in many cases, for example, significant load events may cause shock
deterioration to the resistance of engineering structures and contribute to the accumulation of structural
fragility, indicating the association between the resistance deterioration and load processes [8–10].
The question arises then regarding the effect of deterioration-load dependency in updating the resistance
of existing aging bridges using prior service loads.

This paper investigates the role of correlation between resistance deterioration and load processes in
updating the resistance of existing aging bridges with successful load history information. A closed form
formula is proposed to update the estimate of current resistance taking into account the uncertainty associated
with the time-variant resistance and the deterioration-load dependency. Through reassessing the resistance
of an existing reinforced concrete beam bridge, the application of the proposed method is illustrated, and the
effect of deterioration-load dependency on the updated resistance is investigated parametrically.

2. Resistance Deterioration Process

For an aging bridge, the structural resistance deteriorates in time due to damage accumulation
caused by load effects and environmental attacks. The time-variant resistance changes in time according
to Equation (1), where R(t) is the resistance at time t; R0 is the initial resistance and G(t) is the
deterioration function (a stochastic process). In this paper, R0 is assumed independent of G(t).

R(t) = R0 · (1− G(t)) (1)

Without rehabilitation or other types of strengthening, the deterioration process G(t) is by nature a
non-increasing complex stochastic process [11–13]. However, some relatively rudimentary/simplified
models of resistance deterioration (e.g., fully correlated stochastic process), as in previous studies
regarding reliability analysis of aging infrastructure [14–17], may also account for the main characteristics
of structural deterioration. Moreover, Li et al. [18] reported that when performing structural time-
dependent reliability analysis, the resistance deterioration process may be approximated reasonably as
a fully correlated one. As a result, in this paper, the resistance deterioration process is modeled as fully
correlated, as described in Equation (2),

G(t) = a · tα (2)

where a is a random variable which accounts for the randomness of G(t) and α is a parameter
representing the deterioration type. For example, α = 1, 2 and 0.5 corresponds to deterioration due to
corrosion of reinforcement, sulfate attack and diffusion-controlled aging, respectively [19].

3. Deterioration-Load Dependency

A stochastic load process and a fully correlated deterioration process of a bridge are shown in
Figure 1a. For purpose of simplicity, the load process is assumed to be stationary. The service life of T
years of the structure is divided into n identical discrete time intervals [0, t1], (t1, t2], . . . (tn−1, tn = T],
and the CDF (cumulative density function) and PDF (probability density function) of the maximum
load effect, S, experienced during each time interval are FS and fS respectively. Suppose that the



Infrastructures 2020, 5, 10 3 of 10

current resistance of the bridge, R(T), is evaluated and its PDF is fR(T). According to the probability
distribution of initial resistance and keeping in mind the deterioration process is fully correlated,
the PDF of G(T) can be obtained, denoted by fG(T)(g). Taking into account the correlation between the
load process and the deterioration process, a schematic diagram for the joint probability distribution
of correlated G(T) and S, hS,G(T)(x, y), is shown in Figure 1b (after [20]). Corresponding to different
deterioration value, g, the conditional PDF of S, fS|g, changes as a result of deterioration-load
dependency. Physically G(T) and S can be treated as positively correlated.
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Time
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0
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Stochastic 
process
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Figure 1. Illustration of the processes of load and resistance deterioration.

With the marginal distributions of S and G(T) given and denoted as FS and FG(T) respectively,
according to Sklar’s Theorem [21], there exists such a copula function that can be employed to construct
the joint function of S and G(T). With this, the joint distribution function of S and G(T), HS,G(T)(x, y),
takes the form of

HS,G(T)(x, y) = C(FS(x), FG(T)(y)) (3)
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where C(·, ·) is the copula function. With Equation (3), the conditional CDF of S on G(T) = g, FS|g(x),
is obtained as follows,

FS|g(x) = lim
∆g→0

Pr(S ≤ x ∩ g− ∆g < G(T) ≤ g)
Pr(g− ∆g < G(T) ≤ g)

=
1

fG(T)(g)
·

∂HS,G(T)(x, y)
∂y

(4)

Mathematically, various measures can be used to describe the correlation between two random
variables, such as linear correlation (Pearson correlation) and rank correlation (e.g., Kendall’s tau) [22].
The Pearson correlation is commonly used to measure the bivariate linear association, and is very
sensitive to the non-normality of the variables (e.g., [23]). Note that the load intensity and damage
accumulation is usually non-normal and physically nonlinear. Thus, the rank-type Kendall’s tau is
employed in this paper to describe the correlation between the load process and the deterioration
process. For random variables X and Y, the Kendall correlation coefficient, τX,Y, is defined as the
probability of concordance minus the probability of discordance for a pair of observations (xi, yi) and
(xj, yj) chosen from the samples of (X, Y) randomly, i.e.,

τX,Y = Pr[(Xi − Xj)(Yi −Yj) > 0]− Pr[(Xi − Xj)(Yi −Yj) < 0] (5)

where Pr( ) denotes the probability of the event in the bracket. Note that for two random variables,
various copula functions may exist leading to identical bivariate Kendall’s tau. In the paper, two types
of copula functions, namely Gumbel-Hougaard copula [24] and Frank copula [25] will be utilized to
construct the joint function of S and G(T). For the Gumbel-Hougaard (G-H for abbreviation) copula,

C(u, v) = exp
[
−
(
(− ln u)θ + (− ln v)θ

)1/θ
]

, θ ∈ [1,+∞) (6)

and for the Frank copula,

C(u, v) = −1
θ

ln
[

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

]
, θ 6= 0 (7)

It is noticed that only one parameter, θ, is involved in both Equations (6) and (7), which is by nature
related to the Kendall’s tau, τS,G(T). The relationship between θ and τS,G(T) for the two copula functions
can be found in Appendix A. Substituting Equations (6) and (7) into Equation (3) and conditioning G(T)
as g, FS|g(x) can be obtained according to Equation (4). For illustration purpose, Figure 2 plots fS|0.3(s)
and fS|0.5(s) for the cases of τS,G(T) = 0, 0.3 and 0.6 respectively employing the two copula functions,
where S follows an Extreme type I distribution with a mean value of 1 and a standard deviation of 0.3,
while G(T) follows a lognormal distribution with a mean value of 0.35 and a standard deviation of
0.06. It is seen that with S and G(T) modeled positively correlated, if g is less than the mean value of
G(T), the conditional distribution of S shifts leftwards slightly and becomes narrower compared with
the prior distribution, indicating that the variance of conditional S is significantly reduced; when g is
greater than the mean value of G(T), the conditional distribution of S moves rightwards obviously,
implying that the mean value of conditional S is increased by the positive correlation between S and
G(T). In addition, the choice of copula function also affects the probabilistic behavior of conditional
S provided the same correlation coefficient, and the difference between the prior and conditional
distributions of S is more significant for the case of Frank copula.

Furthermore, in order to visualize the dependence structure of S and G(T), Figure 3 presents the
contour plots of the joint PDF of S and G(T), hS,G(T), associated with G-H and Frank copula functions
for the cases of τS,G(T) = 0, 0.3 and 0.6. It is seen that the difference between the dependence structures
of S and G(T) for different correlation coefficients or copula functions is significant, although the
marginal distributions of S and G(T) are fixed for the five cases as in Figure 2. The effect of this
difference on updating the structural resistance will be discussed later.
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Figure 2. fS|0.3(x) and fS|0.5(x) for the cases of τS,G(T) = 0, 0.3 and 0.6 respectively.
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Figure 3. Contour plots of the joint PDF of S and G(T).
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4. Resistance Updating of Service-Proven Bridges

For an existing aging bridge with a service year of T years, given the fact that the bridge survived
the n maximum load effects, S1, S2, . . . Sn, experienced during the time intervals [0, t1], (t1, t2], . . .
(tn−1, tn = T], the explicit estimate of updated current resistance for subsequent service years can be
found in the literature [3], where the correlation between structural deterioration and load intensity
has been ignored. Now this correlation is considered in the estimate of service-proven bridges. First,
one has [3,4]

lim
dr→0

f ′R(T)(r)dr =
Pr[r ≤ R(T) < r + dr ∩ A]

P(A)
(8)

where f ′R(T)(r) is the updated PDF of current resistance R(T), A represents a successful performance of
the bridge in the past T years, A =

⋂n
i=1[R(ti) > Si]. Using the law of total probability, the numerator

of Equation (8) becomes

Pr[r ≤ R(T) < r + dr ∩ A]

= dr ·
∫ ∞

0
fR0(r0) fG(T)

(
1− r

r0

)
1
r0
·

n

∏
i=1

FS|g=1−r/r0

{
r0 ·
[

1−
(

1− r
r0

)
·
(

ti
T

)α]}
dr0

(9)

while the denominator of Equation (8) is obtained as

P(A) = L(0, T) =
∫ 1

0

∫ ∞

0
fR0(r0) fG(T)(g)

n

∏
i=1

FS|g

{
r0 ·
[

1−
(

1− r
r0

)
·
(

ti
T

)α]}
dr0dg (10)

where L(0, T) denotes the bridge reliability during the time period [0, T], and fR0(r0) is the PDF of R0.
Substituting Equations (9) and (10) into Equation (8), one has

f ′R(T)(r) =

∫ ∞
0 fR0(r0) fG(T)

(
1− r

r0

)
1
r0
·∏n

i=1 FS|g=1−r/r0

{
r0 ·
[
1−

(
1− r

r0

)
·
(

ti
T

)α]}
dr0∫ 1

0

∫ ∞
0 fR0(r0) fG(T)(g)∏n

i=1 FS|g

{
r0 ·
[
1−

(
1− r

r0

)
·
(

ti
T

)α]}
dr0dg

(11)

Equation (11) presents the PDF of the updated bridge resistance considering the deterioration-load
dependency. The applicability of the proposed method in Equation (11) will be demonstrated in the
next section.

5. Case Study

The Qingfang Bridge is located in the southeast of Tianjin province, China, about 1.5 km away from
Bohai Bay. The bridge has a service life of 22 years, and the deterioration of the bridge’s resistance is
mainly triggered by the chloride-induced corrosion of reinforcing bars [3]. It is chosen to illustrate the
applicability of the proposed methods in this paper. The detailed configuration (including photo, deck
section and girder section) of this bridge can be found in [3] and are listed in Table 1. The bridge is
subjected to the combination of dead load and live (traffic) load. The estimate of the bridge’s current
resistance R(22) will be considered, taking into account its successful service history. For the purpose of
comparison, two live load intensities are considered, i.e., Case 1, mL = 559 kN·m; Case 2, mL = 850 kN·m,
where mL denotes the mean value of the live load. The coefficient of variation (COV) of the live load is
0.18 for both cases.

In order to demonstrate the impact that the correlation coefficient of S and G(T) has on updating
the estimate of current resistance, Figure 4 plots the updated estimates of R(22) obtained from
Equation (11), where the Kendall’s tau, τS,G(T), is set as 0, 0.3 and 0.6 respectively. The service life,
T = 22 years, is divided into 22 identical sections by year, and the resistance is assumed to degrade
linearly (i.e., α = 1 in Equation (2)) for all cases, due to the dominating deterioration mechanism of
chloride-induced corrosion of reinforcing bars. The service loads cause the failure of some deficient
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bridges, so the lower tail of the resistance distribution is truncated. The correlation between S
and G(22) affects the updated distribution of R(22). For instance, for the case of mL = 850 kN·m
with G-H copula employed, the mean values of updated R(22) are 2712.9 kN·m, 2716.7 kN·m and
2704.8 kN·m respectively corresponding to τS,G(T) = 0, 0.3 and 0.6, while the standard deviations
of R(22) are 352.3 kN·m, 345.2 kN·m and 347.7 kN·m accordingly. For the case of mL = 559 kN·m
with Frank copula, the mean values of updated R(22) are 2646.1 kN·m, 2659.3 kN·m and 2663.9 kN·m
when τS,G(T) = 0, 0.3 and 0.6 respectively, while the corresponding standard deviations of R(22) are
376.8 kN·m, 369.0 kN·m and 366.2 kN·m. In terms of the lower tail behaviour of R(22), ignoring the
deterioration-load dependency will shift the distribution leftwards and thus yields a conservative
estimate of the updated resistance. The difference between the probabilistic behavior of updated R(22)
associated with different τS,G(T) can be explained by the fact that τS,G(T) contributes to the variation
of L(0, 22) (see Table 2), while the truncation of the distribution of updated resistance is related to
the failure of the bridges (c.f. the denominator of Equation (8)). This explanation will also hold for
other values of T (i.e., duration of service period) according to Equation (8). From the observations in
Figure 4, it is suggested that one may update the estimate of bridge resistance with the assumption
of independent deterioration and load processes in an attempt to achieve a relatively conservative
assessment in the presence of incomplete information on the deterioration-load dependency. Finally,
it is noticed that the greater the failure probability within the past service period, the more significant
the difference between the prior and updated current resistances.

Table 1. Parameters of Qingfang Bridge and their distributions.

Items Distribution Mean Standard Deviation

Age (T, in years) Deterministic 22 /
Da (kN·m) Deterministic 1169 0
Lb (kN·m) Extreme Type I mL 0.18mL
R(T) (kN·m) Lognormal 2614 392
R0 (kN·m) Lognormal 4022 479
1− G(T) Lognormal 0.65 0.0592

a D is the dead load; b L refers to the yearly maximum live load.

Table 2. L(0, 22) associated with different τS,G(T) for the case of linear deterioration.

Copula mL (kN·m) τS,G(T) = 0 τS,G(T) = 0.3 τS,G(T) = 0.6

G-H 559 0.9434 0.9329 0.9416
850 0.8147 0.8249 0.8505

Frank 559 0.9434 0.9245 0.9189
850 0.8145 0.7970 0.8127
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Figure 4. Cont.
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Figure 4. Updated and prior PDFs of R(22) with different values of τS,G(T).

6. Conclusions

This paper investigated the sensitivity of updating the resistance of existing aging bridges
with successful service history information to the correlation between the deterioration and load
processes. The copula function was employed to help construct the joint distribution of resistance
deterioration and load intensity, where the deterioration-load dependency is measured by the rank-type
Kendall’s tau. A new method was developed to update the bridge resistance in an explicit form
(c.f. Equation (11)). Parametric study showed that the deterioration-load dependency impacts the
updated current resistance, because this correlation contributes to the variation of the reliability within
the past service period, while the truncation of the distribution of updated resistance is related to the
failure of the bridges. However, if the deterioration-load dependency is unknown in practice, one
may model the resistance deterioration and load processes as independent when updating the current
resistance of aging service-proven bridges so as to achieve a relatively conservative assessment in
terms of the lower tail behaviour.
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Appendix A. Relationship between θ and τS,G(T)

In this section, the relationship between θ and τS,G(T) will be discussed. First, by noting that both
copula functions (G-H and Frank) as discussed in this paper are Archimedean copulas, the Kendall
correlation, τS,G(T), can be determined by [26]

τS,G(T) = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt (A1)

where φ(t) is the generator function. For the G-H copula, φ(t) = (− ln t)θ . Hence, τS,G(T)(θ) =

1 + 4
∫ 1

0
t ln t

θ dt = 1− 1
θ . Since θ is defined in [1,+ inf), it is obvious to see that if θ equals 1, S and G(T)

are statistically independent; as θ approaches infinite, the limit of τS,G(T) is 1, indicating that S and
G(T) are fully positively correlated (The G-H copula can only model two non-negatively correlated
random variables since τS,G(T) ≥ 0).
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Next, the Frank copula is discussed. Its generator function is φ(t) = − ln exp(−θt)−1
exp(−θ)−1 , where θ is

defined in (−∞, 0) ∪ (0,+∞). Thus,

φ(t) =

{
− ln(1− exp(−θt)) + ln(1− exp(−θ)), θ > 0

− ln(exp(−θt)− 1) + ln(exp(−θ)− 1), θ < 0
(A2)

and

φ′(t) =
θ exp(−θt)

exp(−θt)− 1
(A3)

Substituting Equations (A2) and (A3) into Equation (A1), and solving Equation (A1) numerically,
the relationship between θ and τS,G(T) can be fitted using a polynomial. For the range of τS,G(T) ∈
[0, 0.8], one has

τS,G(T) = 103(1.9479θ8 − 5.4921θ7 + 6.4726θ6 − 4.0435θ5 + 1.4393θ4 − 0.2802θ3 + 0.0300θ2 + 0.0076θ) (A4)

Specially, θ = 3, 8 and 18.2 corresponds to the cases of τS,G(T) = 0.3, 0.6 and 0.8 respectively.
When τS,G(T) ∈ [−0.8, 0], τS,G(T)(θ) = −τS,G(T)(−θ), indicating that S and G(T) are negatively
correlated once θ is smaller than 0.
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