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Abstract: Crash severity is undoubtedly a fundamental aspect of a crash event. Although machine
learning algorithms for predicting crash severity have recently gained interest by the academic
community, there is a significant trend towards neglecting the fact that crash datasets are acutely
imbalanced. Overlooking this fact generally leads to weak classifiers for predicting the minority
class (crashes with higher severity). In this paper, in order to handle imbalanced accident datasets
and provide a better prediction for the minority class, the random undersampling the majority class
(RUMC) technique is used. By employing an imbalanced and a RUMC-based balanced training set, we
propose the calibration, validation, and evaluation of four different crash severity predictive models,
including random tree, k-nearest neighbor, logistic regression, and random forest. Accuracy, true
positive rate (recall), false positive rate, true negative rate, precision, F1-score, and the confusion matrix
have been calculated to assess the performance. Outcomes show that RUMC-based models provide
an enhancement in the reliability of the classifiers for detecting fatal crashes and those causing injury.
Indeed, in imbalanced models, the true positive rate for predicting fatal crashes and those causing
injury spans from 0% (logistic regression) to 18.3% (k-nearest neighbor), while for the RUMC-based
models, it spans from 52.5% (RUMC-based logistic regression) to 57.2% (RUMC-based k-nearest
neighbor). Organizations and decision-makers could make use of RUMC and machine learning
algorithms in predicting the severity of a crash occurrence, managing the present, and planning the
future of their works.

Keywords: crash severity; machine learning classification algorithms; random undersampling the
majority class; random classification tree; k-nearest neighbor; random forest

1. Introduction

The latest 2018 report of the World Health Organization states that more than 1.35 million people
die each year from causes related to road accidents [1]. Moreover, it declared that road accidents are the
leading cause of death for children and young people aged between 5 and 29 years. These statements
push us to research and improve processes aimed at enhancing the road safety level of infrastructures,
moderating the number of accidents, and evaluating the key factors that are the cause or contributing
factors to an accident. Only through a global awareness of the phenomenon, is it possible to define
valuable tools for those who base their duties on the safety and health of people.

Crash severity is one of the road safety-related aspects that requires thorough investigation.
In recent years, there has been extensive investigation of the relationship linking crash severity and its
associated risk factors, as well as several studies that have involved the study of crash severity modeling
for prediction purposes. Machine learning algorithms (MLAs) appear as one of the prominent and
most exciting tools for modeling crash severity due to their outstanding outcomes. Nonetheless,
there is a significant number of studies that omit the fact that, typically, crash datasets are acutely
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imbalanced. Indeed, the number of events that correspond to fatality or severe injury are generally far
fewer than the number of events relating to property damage only or minor injury. Learning from
datasets that include occasional events usually provides biased classifiers: they have higher predictive
accuracy over the majority class, but weaker predictive capacities over the minority class [2–4].

The purposes of this paper are manifold. Mostly, it considers the imbalance issue in crash
datasets. First of all, recent studies on accident severity modeling are reviewed, showing that most
of them employ imbalanced datasets to train MLAs. Next, a procedure for balancing them using
the RUMC technique is provided. Furthermore, in order to show that RUMC is useful in defining
non-weak classifiers in predicting the minority class, a direct comparison of two types of MLAs is
proposed. They are trained in two ways: the first type, i.e., Random Tree (RT), K-Nearest Neighbor
(KNN), Logistic Regression (LR), and Random Forest (RF), involves the use of an imbalanced training
set, while the second type, i.e., RUMC-based Random Tree (RUMC-RT), RUMC-based K-Nearest
Neighbor (RUMC-KNN), RUMC-based Logistic Regression (RUMC-LR), and RUMC-based Random
Forest (RUMC-RF), involves the use of a RUMC-based balanced training set. Outcomes show that
RUMC-based models are significantly more effective in recognizing the minority class by using the
same test set for testing both types of algorithms. The paper also proposes the discussion of which
are the best metrics for judging the performance of these classifiers and whether overall metrics,
weighted averaged metrics, or specific metrics for each class are representative of the real performance
of a classifier. Finally, the factors that are associated significantly with crash severity are computed
and examined.

The study is organized as follows. Section 2 describes the related works. The workflow, the dataset
employed, the techniques, and the leading mathematical relations are introduced in Section 3. Section 4
reports the principal outcomes and discussions. Conclusion and References complete the paper.

2. Related Works

This part is focused on the review of significant and recent studies on road safety modeling with
MLAs. It covers different aspects: (a) what tasks are generally solved with machine learning modeling
in road safety analyses, (b) what MLAs are commonly used, (c) what performance metrics are usually
computed to judge an MLA, (d) what imbalance ratio exists in road accident datasets, and (e) what
techniques could be used to alleviate this issue.

2.1. Machine Learning Algorithms in Road Safety Analyses

Commonly, two different tasks are solved using MLAs: regression or classification. The former
involves the prediction of a continuous value, while the latter is conceived for predicting a discrete
(or class) output. Both types of prediction algorithms have a set of factors (or independent variables)
as input. Although MLAs provide a black-box tool for predicting continuous or discrete outputs, they
can identify the most significant features, i.e., the features that most affect the output response of the
model; considering this, we can assess how a specific factor is related to the phenomenon analyzed.

In the last decade, different studies have provided machine learning regression algorithms
for road safety analyses. Such algorithms have as input a set of roadway-, users-, vehicles-,
and environment-related features of the network analyzed. Commonly, they aimed at predicting the
crash frequency for stretches of road or intersections using different types of algorithms: k-nearest
neighbor [5], support vector machine [6], and tree-based models, such as classification and regression
tree, M5-tree, RF, extremely randomized trees, and gradient tree boosting [7–9]. Moreover, there are
studies [10,11] in which the authors suggested the use of neural networks. They showed that neural
networks have better performance if compared with traditional negative binomial regression.

In addition to crash frequency prediction, some authors [12] proposed the use of Multivariate
Adaptive Regression Splines (MARS) for predicting the crash angle at unsignalized intersections.

Commonly, the performance of the referred to regression models has been evaluated using root
mean square error, mean absolute error, or correlation coefficient.
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As regards for machine learning classification algorithms, the analyzed topics related to road
safety are manifold. Harb et al. [13], for example, proposed the use of decision tree and RF for
understanding pre-crash maneuvers. Some authors [14,15] aimed at the prediction of crash risk:
the machine learning models calibrated provide low/high risk of a crash as output, relying on roadway-,
vehicles-, and users-related input factors. Another widely studied application is road black spot
detection [16–20], in which the authors attempt to identify potential dangerous road sites. Therefore, the
output labels of these MLAs can be an accident case or a non-accident case.

Several studies were related to crash severity prediction with MLAs. In these applications, the
output classes can be two, such as Property Damage Only (PDO) accidents and Fatal+Injury (F + I)
accidents [21–23], three [24–26], four [27–29], or five [30–32]. The authors suggested different MLAs
to achieve the purpose: decision tree [23,24,29,30], KNN [30], LR [21,22], and RF [21,28,30,32].
Other standard MLAs used for the same purpose are support vector machines [22,28,30–32],
neural networks [14,27–29], and naïve Bayes classifiers [21,33]. There is no rule of thumb in
determining the most appropriate algorithm. Therefore, authors generally compare different types
of algorithms to discover the most representative one for their framework. In order to evaluate
the performance of such classification MLAs, usually, authors compute the overall accuracy of the
classifier [17,32], precision [22,29], True Positive Rate (TPR) [16,18], False Positive Rate (FPR) [14],
True Negative Rate (TNR) [15,20], F1-score [29], and the confusion matrix [26,28]. Using and comparing
different metrics allows a better classifier to be represented; therefore, using a broad set of metrics can
be useful to present the performance of a classification algorithm.

The aforementioned modeling strategies can be applied to a very broad set of road facilities.
Indeed, it is possible to find research related to the study of road junctions, specifically signalized
intersections [25,34,35], stop and right-of-way intersections [12,36,37], roundabouts [38], freeway
exit ramps [32], road segments, such as highways [5,6,10,30], expressways [14,18,39], arterials [40],
freeways [16,17,21], and work zones [22].

2.2. Resampling Techniques

Many practical classification problems are imbalanced. The class imbalance problem happens
if there are several more samples of some classes than others. In such cases, standard machine
learning classifiers tend to be overwhelmed by the majority classes and overlook the minority one [41].
The performance of such classifiers in predicting the minority class decreases significantly. In order to
overcome these issues, resampling approaches can be employed.

Mostly, there are two resampling approaches affirmed to handle imbalanced datasets:
oversampling techniques and undersampling techniques. Oversampling concerns techniques that
increase the number of minority class samples until the dataset is balanced. A relatively recent and
well-known oversampling technique is the Synthetic Minority Oversampling Technique (SMOTE)
defined in the study by Chawla et al. [42]. SMOTE takes each minority class sample and creates new
instances of the same class using k-nearest neighbors within a bootstrapping procedure. Moreover,
SMOTE can be used for handling both continuous and categorical features. In the case of presence of
categorical input factors, the technique is called SMOTE-NC, and it is introduced in [42]. Conversely,
undersampling techniques concern the methodologies to balance datasets by reducing the number
of samples of the majority class. The RUMC approach is described in the study of Japkowicz [43]
and Batista et al. [44] and consists of a random undersampling of the majority class until the dataset
is balanced. Resampling techniques have the obvious advantage of being able to effectively handle
imbalanced datasets by balancing them, thus defining training sets suitable for a satisfactory calibration
of MLAs. There are also known drawbacks associated with the use of resampling techniques.
The disadvantage with undersampling (e.g., with RUMC) is that it drops out potentially valuable
data. Therefore, there is a possible information loss. The main disadvantage with oversampling
(e.g., with SMOTE) is that by creating very similar observations of existing samples, it makes overfitting
likely. Indeed, with oversampling the minority class, the MLAs tend to learn too much from the
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specifics of the few examples, and they cannot generalize well. A second disadvantage of oversampling
is that it increases the number of training observations, thus increasing the learning time. Moreover,
factors appear to have a lower variance than they have. In the present paper, due to the low size of the
minority class compared to the majority one (ratio of about 1:6), the implementation of the RUMC
process was preferred. Indeed, by using the SMOTE process, we would have introduced a heavy
distortion in the patterns of the dataset by creating a particularly large sample of new synthetic data.
Moreover, the training time would have been longer. On the contrary, by using RUMC, we dealt with
real observations only, reduced the training time, and preserved also the variance of the features.

Although these techniques have a relatively simple implementation, it seems that many studies
related to crash severity modeling employ imbalanced datasets without resampling in the calibration
of MLAs. Table 1 below shows recent studies identified in the literature with the datasets used.
In addition to the authors who conducted the studies (“Reference”), Table 1 shows the purpose of the
studies (“Type of classification”), the number and type of severity classes of the datasets (“Severity
classes”), the number of instances for each class (“Instances”), its percentage of the total (“Perc.”),
and whether the authors balanced the dataset before using it (“Balanced”).

Table 1. Dataset used for predicting crash severity or detecting black spots by MLAs.

Reference Type of
Classification Severity Classes Instances Perc. Balanced

[25]
Crash severity

prediction

No-injury accidents 1088 46.60

noPossible/evident injury accidents 1108 47.40
Disabling injury accidents 140 6.00

Total 2336 100

[23]
Crash severity

prediction

Slightly injured accidents 929 51.58 not
requiredKilled or seriously injured accidents 872 48.42

Total 1801 100

[21]
Crash severity

prediction

Other accidents 2628 0.97
yes, with
SMOTE

Fatal and serious accidents 268,935 99.03
Total 271,563 100

[27]
Crash severity

prediction

Minor accidents 3524 59.00

no
Moderate accidents 1852 31.00

Severe accidents 418 7.00
Death accidents 179 3.00

Total 5973 100

[24]
Crash severity

prediction

No-injury accidents 10,661 39.73

noInjury accidents 16,071 59.90
Fatality accidents 99 0.37

Total 26,831 100

[26]
Crash severity

prediction

No-injury accidents 1478 46.80

noNon-incapacitating injury accidents 1286 40.72
Fatal accidents 394 12.48

Total 3158 100

[20] Black spot
detection

Accident case 2608 0.55
noNon-accident case 1671 0.35

Total 4729 100.00

[28]
Crash severity

prediction

Property damage only accidents 43,923 64.17

no
Possible injury accidents 16,782 24.52
Visible injury accidents 5731 8.37

Disabling and fatal accidents 2012 2.94
Total 68,448 100
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Table 1. Cont.

Reference Type of
Classification Severity Classes Instances Perc. Balanced

[31]
Crash severity

prediction

No-injury accidents 2902 52.50

no

Possible injury accidents 1463 26.40
Non-incapacitating injury accidents 837 15.10

Incapacitating injury accidents 285 5.10
Fatal accidents 51 0.90

Total 5538 100

[22]
Crash severity

prediction

Property damage only accidents 5384 78.40
noFatal and serious accidents 1481 21.60

Total 100

[17] Black spot
detection

Accident case 4438 0.00001 yes, with
SMOTE +

RUMC
Non-accident case 353,882,042 99.999

Total 353,886,480 100

[32]
Crash severity

prediction

No injury 2902 52.50

no

Possible injury accidents 1463 26.40
Non-incapacitating injury accidents 837 15.10

Incapacitating injury accidents 285 5.10
Fatal accidents 51 0.90

Total 5538 100

[18] Black spot
detection

Accident case 284 32.42
noNon-accident case 592 67.58

Total 876 100

[29]
Crash severity

prediction

Property Damage Only accidents 483 5.60

no
Injured not hospitalized accidents 2500 29.40

Hospitalized injury accidents 3581 42.10
Fatal accidents 1952 22.90

Total 8516 100

[16] Black spot
detection

Accident case 1640 18.55
noNon-accident case 7200 81.45

Total 8840 100

[30]
Crash severity

prediction

No injury 2902 52.50

no

Possible injury accidents 1463 26.40
Non-incapacitating injury accidents 837 15.10

Incapacitating injury accidents 285 5.10
Fatal accidents 51 0.90

Total 5538 100

The outputs of several of these studies showed a reduced accuracy in the prediction of the minority
class if compared to the performance of the majority one [24,26–30,32]. The other referred to studies
included in Table 1 showed overall metrics of the classifiers only. Therefore, we are not able to evaluate
how the MLAs perform on the prediction of the minority class.

3. Methodology

3.1. Workflow

The dataset was randomly split into training and test set; the percentages of 70% for the training
set and 30% for the test set were used. The four different MLAs (RT, KNN, LR, and RF) were then
trained with the training set. Subsequently, MLAs were employed to predict the crash severity of
unknown samples belonging to the test set. A set of performance metrics was computed, and the
performance of MLAs compared. Figure 1 below describes the first phase of the methodology.
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The second phase involves the use of RUMC on the training set before training the MLAs.
This operation provides a balanced training set. Once the RUMC is employed, the second phase
follows the operations performed in the first one. Finally, we analyzed the outcomes from both phases
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3.2. Input Features

The dataset contains 6515 crash records that occurred on stretches of road and road junctions
in York, Great Britain, from 2005 to 2018. For each accident that occurred, a set of 17 different
features related to the roadway, user, and vehicle are reported. These features are the input factors
(or independent variables) of the MLAs we calibrated. They are reported in Table 2.
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Table 2. Input factors.

Factors Type of Factor Categories Label

Day of Week Nominal 7

Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

1st Road Class Nominal 6

Motorway
A (M)

A
B
C

Unclassified

Road Type Nominal 8

Roundabout
One-way street

Dual carriageway
Single carriageway

Slip road
Unknown

One-way street/Slip road
Data missing or out of range

Junction Detail Nominal 10

Not at junction or within 20 m
Roundabout

Mini-roundabout
T or staggered junction

Slip road
Crossroads

More than four arms (not roundabout)
Private drive or entrance

Other junction
Data missing or out of range

Junction Control Nominal 6

Not at junction or within 20 m
Authorized person
Auto traffic signal

Stop sign
Give way or uncontrolled

Data missing or out of range

2nd Road Class Nominal 6

Not at junction or within 20 m
Motorway

A(M)
A
B
C

Unclassified

Pedestrian
Crossing—Human

Control
Nominal 4

None within 50 m
Control by school crossing patrol

Control by other authorized person
Data missing or out of range



Infrastructures 2020, 5, 61 8 of 24

Table 2. Cont.

Factors Type of Factor Categories Label

Pedestrian
Crossing—Physical

Facilities
Nominal 7

No physical crossing facilities within 50 m
Zebra

Pelican, puffin, toucan or similar non-junction
pedestrian light crossing

Pedestrian phase at traffic signal junction
Footbridge or subway

Central refuge
Data missing or out of range

Light Conditions Nominal 6

Daylight
Darkness—lights lit

Darkness—lights unlit
Darkness—no lighting

Darkness—lighting unknown
Data missing or out of range

Weather Conditions Nominal 10

Fine no high winds
Raining no high winds
Snowing no high winds

Fine + high winds
Raining + high winds
Snowing + high winds

Fog or mist
Other

Unknown
Data missing or out of range

Road Surface Conditions Nominal 8

Dry
Wet or damp

Snow
Frost or ice

Flood over 3 cm deep
Oil or diesel

Mud
Data missing or out of range

Special Conditions at Site Nominal 9

None
Auto traffic signal—out

Auto signal part defective
Road sign or marking defective or obscured

Roadworks
Road surface defective

Oil or diesel
Mud

Data missing or out of range

Carriageway Hazards Nominal 9

None
Vehicle load on road
Other object on road

Previous accident
Dog on road

Other animal on road
Pedestrian in carriageway—not injured

Any animal in carriageway (except ridden horse)
Data missing or out of range

Urban or Rural Area Nominal 3
Urban
Rural

Unallocated

Number of Vehicles Numeric [-] Vehicles involved

Number of Casualties Numeric [-] Casualties involved

Speed limit Numeric [-] Speed limit in [mph]
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3.3. Output Classes

The output (or dependent variable) of the MLAs are crash severity classes. The dataset provides
three different crash severity classes: fatal crash, injury crash, and PDO crash. These three classes are
significantly imbalanced; indeed, there are 5594 PDO crashes (85.86% of the total amount of crashes),
856 injury crashes (13.14%), and 65 fatal crashes (1%). The initial dataset was defined by aggregating
fatal crashes and injury crashes. Other studies [26,28,31,32] merged two or more classes in order to
obtain better results. Figure 3 below shows the three crash severity classes (Figure 3a) and the initial
dataset containing the new merged class (F + I class) and PDO class (Figure 3b).Infrastructures 2020, 5, x FOR PEER REVIEW 10 of 25 

(a) (b) 

Figure 3. Severity classes: (a) observed crash severity and (b) initial dataset. 

Figure 3b confirms that there is still a substantial imbalance between the two classes (ratio of 
about 1:6). 

3.4. Random Undersampling the Majority Class 

The RUMC technique involves randomly selecting examples from the majority class and 
removing them for the training dataset. The majority class instances are discarded at random until a 
balanced class distribution in the training set is reached (Figure 4). 

 

Figure 4. Random undersampling of the majority class. 

Before implementing RUMC, the dataset contains a minority and majority class. After RUMC, 
we can deal with a balanced dataset. 

3.5. Machine Learning Algorithms 

Since we aimed at predicting a crash severity class, MLAs for classification (or classifiers) are the 
most suitable for achieving our purpose. Classifiers are supervised MLAs employed for assigning a 
label (or a class) to new unknown observations. In order to predict a class, supervised classifiers are 
trained using a dataset of already-known observations, i.e., samples in which the input features and 
output class are provided. Usually, the input feature can be nominal, ordinal, or numerical. 

It is worth mentioning that Waikato Environment for Knowledge Analysis (WEKA) software 
was used [45,46], version 3.8.4, to carry out the modeling. 

The classifiers used in this study are now introduced briefly. 

3.5.1. Random Tree 

Figure 3. Severity classes: (a) observed crash severity and (b) initial dataset.
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about 1:6).

3.4. Random Undersampling the Majority Class

The RUMC technique involves randomly selecting examples from the majority class and removing
them for the training dataset. The majority class instances are discarded at random until a balanced
class distribution in the training set is reached (Figure 4).
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3.5. Machine Learning Algorithms

Since we aimed at predicting a crash severity class, MLAs for classification (or classifiers) are the
most suitable for achieving our purpose. Classifiers are supervised MLAs employed for assigning a
label (or a class) to new unknown observations. In order to predict a class, supervised classifiers are
trained using a dataset of already-known observations, i.e., samples in which the input features and
output class are provided. Usually, the input feature can be nominal, ordinal, or numerical.

It is worth mentioning that Waikato Environment for Knowledge Analysis (WEKA) software was
used [45,46], version 3.8.4, to carry out the modeling.

The classifiers used in this study are now introduced briefly.

3.5.1. Random Tree

In order to introduce the RT, the Classification and Regression Tree (CART) developed by Breiman
is described [47]. CART is a hierarchical non-parametric approach that grows a tree-based model by
repeatedly splitting the dataset into homogeneous zones. The decision rules for splitting each node are
learned by inferring directly from the available data. The recursive partitioning algorithm [47,48] is
used to define the decision rules. Once the CART model is trained, the decision rules can be used for
predicting the class of new unknown observations.

CART models have been widely used in machine learning modeling due to their advantages:

• They provide an interpretable solution of the predictions using tree graph visualization;
• They provide an automatic variable selection making them insensitive to irrelevant variables,

outliers, and the scales of predictors;
• They are computationally efficient even in large problems (generally, low time for training is

required), also allowing missing values of the input factors and both numerical and categorical
predictors to be handled;

• CART outcomes are unaffected by monotone transformations of the input factors.

However, CART models are prone to overfitting the data by creating over-complex deep trees,
and they are sensitive to small changes in the training set: slightly different training sets can lead to
significantly different CART models. In order to overcome these issues, the RT provides more robust
outcomes than CART models by exploiting the feature randomness approach, i.e., each node of the trees
is split into branch nodes using a fixed number of input features, selected at random [49]. In this study,
the number of input factors randomly sampled (Nrs) as candidates at each split is equal to the default
value of the WEKA software. The default value was chosen after a “trial & error” approach: indeed, Nrs

has been fixed to 1, 2, . . . , 17, identifying the best accuracy by means of a 10-fold Cross-Validation (CV)
process for Nrs equal to the default value of the WEKA software, as computed in Equation (1) below:

Nrs = int[log2

(
Np + 1

)
] (1)

where Np is the number of input factors. In this study, Np = 17, and the resulting Nrs = 5.

3.5.2. K-Nearest Neighbor

KNN was first defined by Cover and Hart [50]. KNN is an algorithm that aims at classifying
an observation by looking at the closest k observations contained in the feature space. The class
that belongs to the majority of the k closest observations is taken as the class of the new observation.
Therefore, KNN assigns to an unclassified sample point the class of the k nearest set of previously
classified points. In the implementation of KNN, two hyperparameters are requested to the modeler:
the number of the k nearest neighbors and the distance function to employ to define a distance metric
between observations into the feature space:
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• The number of neighbors should be determined by trying different values of k and finding the
best accuracy of the classifier after a 10-fold CV process. Considering this, we tried k = 1, 2, 5, 10,
15, 20, and 25. We chose k = 1 considering the highest accuracy;

• The Euclidean distance was employed as a distance function to compute the distance between
observations. The Euclidean distance di j between two points, i and j, is defined as:

di j =
2

√√ m∑
k=1

(
xik − x jk

)2
(2)

where:

m is the dimension of the points (i.e., the number of independent variables);
xik and x jk are the values of the k-th independent variable for observations i and j, respectively.

3.5.3. Logistic Regression

LR classifier was introduced by Berkson [51] and quickly became one of the most employed
algorithms for classification purposes. LR firstly involves a linear multivariate regression between the
output (or dependent variable) and input factors (or independent variables). Subsequently, the output
of the multivariate regression is passed by a logit function, leading to a numerical output within the
range [0, 1]. Indeed, the logit function is a sigmoid function (i.e., S-shaped) that outputs a number
between 0 and 1. Equation (3) below defines the logit function.

P(z) =
1

1 + e−z (3)

where:
P(z) is the probability of an occurrence (crash severity) that varies from 0 to 1; Equation (4) below

defines z, which is the dependent variable of the linear multivariate regression.

z = b0 + b1x1 + b2x2 + . . .+ bmxm (4)

where:

b0 is a constant term;
m is the number of independent variables;
xi (i = 1, 2, 3, . . . , n) represents the value of the i-th input factor;
bi (i = 1, 2, 3, . . . , n) is the regression coefficient assigned to the i-th input factor.

Once the probability P(z) has been computed, the LR classifier makes its prediction ẑ as follows
(Equation (5)):

ẑ =

{
Class 0 i f P(z) < 0.5
Class 1 i f P(z) ≥ 0.5

(5)

Moreover, the regression coefficients determined in the logistic regression can be interpreted as a
measure of the relative importance of the independent variables.

3.5.4. Random Forest

Breiman [52] introduced the RF classifier. RF consists of a large number of individual and
uncorrelated decision trees that operate as an ensemble classifier to formulate a prediction. In order to
obtain uncorrelated trees, they are assembled using a bootstrap aggregation (Bagging) approach, i.e.,
creating a subset of training samples through replacement. The algorithm exploits two-thirds of the
samples (called in-bag samples) to train the trees, while it employs the remaining one third (called
out-of-bag samples) in an internal CV procedure. The CV is used by the algorithm to minimize the error
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estimation, called the out-of-bag error, and to grow the most reliable RF. There is no pruning procedure
in the definition of the decision trees. Moreover, RF exploits the feature randomness approach. By
growing the RF with a large number of trees, the algorithm creates trees that have high variance and
low bias.

Once the RF has grown, it can predict the class of a new observation by averaging the class
assignment by all the decision trees: each decision tree votes for a class and the class with the maximum
votes is the selected one for the new observation.

In the implementation of RF, two hyperparameters are requested to the modeler:

• The number of decision trees, Nt , to grow: since RF does not overfit the data, the number of
decision trees can be as large as possible. However, the higher the number of trees, the higher is
the time required for growing the RF. We fixed different values of Nt , specifically, 10, 25, 50, 100,
200, 400, 800, and 1000, evaluated using a 10-fold CV the goodness-of-fit of the models. We chose
Nt = 100 trees since a higher number did not produce a significant increase in RF performance,
requiring a massive amount of time for training instead.

• The number of input factors randomly sampled, Nrs, as candidates at each split: in this study,
as for the RT algorithm, Nrs was chosen after a “trial & error” approach; indeed, Nrs has been
fixed to 1, 2, . . . , 17, identifying the best accuracy by means of a 10-fold CV process for Nrs equal
to the default value of the WEKA software. Therefore, we also chose for RT, Nrs = 5.

3.6. Predictor Importance

The RF algorithms allowed the importance of each input factor in predicting crash severity
to be evaluated. The leading relations for computing the predictor importance are reported below.
Readers can find a comprehensive explanation of the procedure in Breiman [52] and Louppe et al. [53].
We remind the reader that a tree, T, is trained by exploiting a sample of N observations, using the
recursive partitioning algorithm [47,48]. This algorithm identifies at each node, t, the best split, st,
(i.e., the feature chosen for splitting the node and the best cut point) for partitioning the Nt node
samples into tL and tR branch node samples, maximizing the decrease, ∆i(st, t), of an impurity measure,
i(t). Trees end at leaf nodes when nodes become pure (all the observations belong to the same class) or
when an error threshold is reached. The impurity decrease is computed using Equation (6).

∆i(st, t) = i(t) − pLi(tL) − pRi(tR) (6)

where:

pL = NtL /Nt

pR = NtR /Nt

In this study, the impurity, i(t), at the node, t, is represented by the Gini index as follows
(Equation (7)):

i(t) = 1−
∑

j

p2
(

j
∣∣∣t) (7)

where:

j represents the output class;

p
(

j
∣∣∣t) is the posterior probability that a sample belongs to class j given that it lies in t.

In RF modeling, Breiman [52] suggested evaluating the importance of an independent input
variable, Xm, to predict the output class by adding up the weighted impurity decreases, p(t)∆i(st, t),
for all nodes, t, when Xm is used for splitting the nodes, averaged over all NT trees in the forest
(Equation (8)).

Imp(Xm) =
1

NT

∑
T

∑
t∈T:v(st)=Xm

p(t)∆i(st, t) (8)
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where:

Imp(Xm) is the importance of the variable Xm;
p(t) is the proportion NT/N of samples reaching the node t;
v(st) is the independent variable used in split st.

3.7. K-Fold Cross Validation Procedure

The concept of CV was introduced first in the study of Larson [54]. The author split the dataset
into two parts: the first one was used for building the regressor and the second one for testing
the algorithm. The current k-fold CV procedure appeared subsequently in the book of Mosteller
and Turkey [55]. CV is a method for training, evaluating, or comparing MLAs by distributing data
into two sets: one employed for training the model and the other for validating the model [56].
Frequently, CV assumes the structure of k-fold CV, where the training set is cut into k folds of the same
dimension. Therefore, there are k iterations of training and validation. At each iteration, k-1 folds are
used for learning, while the remaining fold is used to validate the model. Accordingly, after the CV
process, each sample has been used both for training and for testing.

Furthermore, to guarantee that each fold is representative of the complete dataset, data is stratified
before being split into folds. A stratification technique prepares the data such that, in every fold,
each class is represented by its real percentage in respect to the other classes. Kohavi [57] recommended
stratified 10-fold CV as the best model selection procedure. Several other studies [5,15,21,22,32]
used k-fold CV. Therefore, we followed a 10-fold CV procedure to train all the mentioned MLAs,
by employing all the possible combination of hyperparameters aforementioned. Once the models had
been trained with the best set of hyperparameters, we assessed them by computing their performance
on the test set.

3.8. Performance Metrics

As said, a large set of performance metrics allows MLAs to be comprehensively evaluated and
compared to each other. Equations (9)–(14) define the overall accuracy of the classifier and the precision,
TPR, FPR, TNR, and F1-score.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision =
TP

TP + FP
(10)

TPR =
TP

TP + FN
(11)

FPR =
FP

TN + FP
(12)

TNR =
TN

TN + FP
(13)

F1 =
TP

TP + FN+FP
2

(14)

where:

TP is the number of True Positive instances, i.e., the instances belonging to class 1 correctly
classified into the same class;
TN is the number of True Negative instances, i.e., the instances belonging to the class 0 correctly
classified into the same class;
FP is the number of False Positive instances, i.e., the instances belonging to the class 0 erroneously
classified into class 1;
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FN is the number of False Negative instances, i.e., the instances belonging to the class 1 erroneously
classified into class 0;

It is worth noting here that class 1 represents the F + I class, while class 0 represents the PDO
class. The overall accuracy of the classifier aims to represent the global performance of the classifier.
The precision shows the goodness of positive predictions. The TPR, or recall, is the ratio of positive
instances that are correctly detected by the classifier. Analogously, the TNR is the ratio of negative
instances correctly detected by the classifier. The FPR is the ratio of FP among all negative instances,
i.e., the percentage of “false alarms”. The F1-score is the harmonic mean of precision and recall, and it
can be used to compare classifiers since it combines two metrics into a more concise one. Precision,
TPR, FPR, TNR, and F1-score can be computed as specific metrics for each class or as the overall metrics
of the classifier. Finally, we computed the confusion matrix. It reports the TP, TN, FP, and FN as a
matrix, in which the rows correspond to the observed (or actual) classes, while the columns correspond
to the predicted classes. A satisfactory confusion matrix should have most of the instances on its
main diagonal.

In other studies [15,17,18,20,22] readers can find TPR and TNR as sensitivity and
specificity, respectively.

4. Results and Discussion

4.1. Imbalanced and RUMC-Based Training Sets

Figure 5 below reports the training sets and test set. Figure 5a shows the random split into training
(70%) and test set (30%), while Figure 5b shows the RUMC-based training set.
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We observed an imbalance ratio of 1:6 in the training set of Figure 6a. The RUMC-based training
set is balanced correctly instead.
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4.2. Performance of the Algorithms

Below, we report the performance of the models on the test set in terms of:

• TPR, FPR, and TNR: Table 3 shows the performance of the models trained by the imbalanced
training set (namely RT, KNN, LR, and RF), while Table 6 shows the performance of the
RUMC-based model (namely RUMC-RT, RUMC-KNN, RUMC-LR, and RUMC-RF). Both tables
report the performance for F + I class, PDO class, and the weighted average performance of the
classifier, which is the average of both values weighted by the number of instances in each class of
the test set.

• Precision, recall, and F1 score: Table 4 shows the performance of the models trained by the
imbalanced training set, while Table 7 shows the performance of the RUMC-based model;
both tables report the performance for F + I class, PDO class, and the weighted average performance
of the classifier;

• Confusion matrix and overall accuracy: Table 5 shows the confusion matrices of the models
trained by the imbalanced training set, while Table 8 shows the confusion matrices of the
RUMC-based model. The overall accuracy is presented in terms of the number of correctly
classified instances. We also report the number and percentage of incorrectly classified instances.

Table 3. TPR, FPR, and TNR of the classifiers with the imbalanced training set.

Model RT KNN LR RF

Metric TPR FPR TNR TPR FPR TNR TPR FPR TNR TPR FPR TNR

F + I 0.155 0.107 0.893 0.183 0.115 0.885 0.000 0.001 0.999 0.058 0.038 0.962
PDO 0.893 0.845 0.155 0.885 0.817 0.183 0.999 1.000 0.000 0.962 0.942 0.058

Weighted
Average 0.788 0.740 0.260 0.785 0.717 0.283 0.857 0.858 0.142 0.834 0.814 0.186
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Table 4. Precision, recall, and F1 score of the classifiers with the imbalanced training set.

Model RT KNN LR RF

Metric Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

F + I 0.193 0.155 0.172 0.209 0.183 0.195 0.000 0.000 0.000 0.203 0.058 0.090
PDO 0.864 0.893 0.878 0.867 0.885 0.876 0.858 0.999 0.923 0.860 0.962 0.909

Weighted
Average 0.769 0.788 0.778 0.774 0.785 0.779 0.736 0.857 0.792 0.767 0.834 0.792

Table 5. Confusion matrices of the classifiers: RT, KNN, LR, and RF.

Predicted
RT

F + I PDO

43 235 F + I
Observed

180 1498 PDO

Correctly Classified Instances: 1541 (78.78%)

Incorrectly Classified Instances: 415 (21.22%)

Predicted
KNN

F + I PDO

51 227 F + I
Observed

193 1485 PDO

Correctly Classified Instances: 1536 (78.53%)

Incorrectly Classified Instances: 420 (21.47%)

Predicted
LR

F + I PDO

0 278 F + I
Observed

1 1677 PDO

Correctly Classified Instances: 1677 (85.74%)

Incorrectly Classified Instances: 279 (14.26%)

Predicted
RF

F + I PDO

16 262 F + I
Observed

63 1615 PDO

Correctly Classified Instances: 1631 (83.38%)

Incorrectly Classified Instances: 325 (16.62%)

Although TPR and recall have the same meaning, we report both since TPR is usually presented
along with FPR, while precision is commonly accompanied by recall.

4.2.1. Algorithms Trained by the Imbalanced Training Set

Table 3 below reports the TPR, FPR, and the TNR of RT, KNN, LR, and RF algorithms.
As expected, Table 3 shows that the algorithms present a satisfactory weighted average performance

both for TPR and FPR. Indeed, the TPR ranges from 78.5% (KNN) to 85.7% (LR), while FPR varies from
78.5% (KNN) to 85.8% (LR). However, by observing the specific performance for each class, we can
confirm that the classifiers are weak in predicting the F + I class. Indeed, TPR ranges from 0% (LR) to
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18.3% (KNN), while FPR varies from 0.1% (LR) to 11.5% (KNN). Judging a classifier by assessing the
performance for each class seems to be the most suitable and reliable method.

Furthermore, the TNR values denote that the classifier can accurately identify the TN instances
when the class examined is the F + I class (i.e., the TN instances belong to the PDO class). In contrast,
the classifier is weak at correctly recognizing TN instances when the PDO class is under consideration.
TNR represents an additional confirmation that the high percentage of the majority class strongly
affects the prediction capabilities of the minority class by the classifiers.

Table 4 below reports the precision, recall, and F1 score of the models trained by the imbalanced
training set.

Table 4 introduces another set of performance metrics that seem to confirm the outcomes of
Table 3. Indeed, by observing the weighted average precision, recall, and F1 score, we may expect
good classifiers. On the contrary, by examining the metrics specified for each class, the weakness
in predicting the minority class of the classifier is manifest. Accordingly, when the metrics chosen
for introducing a classifier are precision, recall, and F1 score, we still should consider the specific
performance for each class.

Table 5 below reports the confusion matrices and the overall accuracy for RT, KNN, LR, and RF.
The main diagonal of each confusion matrix appears in bold.

Since the confusion matrix reports the comparison between the number of observed instances
correctly and incorrectly classified for each class, it seems an appropriate performance metric for
introducing a classifier. Moreover, using Equations (9)–(14), all the other performance metrics can be
computed. By observing Table 5, we can judge KNN as the best classifier for predicting F + I class
(51 out of 278 instances correctly detected), followed by RT (43 out of 278), RF (16 out of 278), and LR
(0 out of 278). As for the PDO class, the best classifier is the LR (1677 out of 1678), followed by RF
(1631 out of 1678), RT (1498 out of 1678), and KNN (1485 out of 1678).

Considering the overall accuracy, LR seems the best classifier (85.74%), followed by RF (83.38%),
RT (78.78%), and KNN (78.53%). Confusion matrices clearly demonstrate that the accuracy is an
untrustworthy metric for evaluating the MLA calibrated using an acutely imbalanced dataset. Indeed,
the accuracy simply follows the prior percentages of the classes. For instance, the LR (which resulted
in the best MLA with an accuracy of 85.74%) simply provides the same prediction for practically all the
instances (1955 out of 1956), i.e., it classifies each instance as PDO crash. Considering the percentage of
the classes, LR provides the right prediction in 1677 cases, thus the resulting high, but unreal, accuracy.
The same considerations can be addressed for all the other MLAs.

4.2.2. Performance of RUMC-Based Algorithms

Table 6 shows the TPR, FPR, and TNR of the RUMC-based algorithms.

Table 6. TPR, FPR, and TNR of the classifiers with a RUMC-based training set.

Model RUMC-RT RUMC-KNN RUMC-LR RUMC-RF

Severity TPR FPR TNR TPR FPR TNR TPR FPR TNR TPR FPR TNR

F + I 0.572 0.501 0.499 0.572 0.530 0.470 0.525 0.358 0.642 0.568 0.440 0.560
PDO 0.499 0.428 0.572 0.470 0.428 0.572 0.642 0.475 0.525 0.560 0.432 0.568

Weighted
Average 0.510 0.438 0.562 0.485 0.443 0.558 0.625 0.458 0.542 0.561 0.433 0.567

Table 6 introduces the trade-off that exists between TPR and FPR. Indeed, using a balanced
training set, we note a decrease in performance for predicting PDO class and a significant increase in
performance related to the F + I class. In the case of RUMC-based models, the ratio of positive instances
correctly detected by the classifier (TPR) increases, while the ratio of negative instances correctly
detected by the classifier (TNR) decreases. For the real application of such models by companies,
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this is reflected in a more accurate prediction about fatal accidents or those causing injury and a certain
number of false alarms (the FP instances) that are mistakenly classified as severe. Anyhow, for these
companies, it is certainly more important that TPR and FPR take on this type of trade-off than that
shown in Table 3. The average weighted performances are lower than those of Table 3, reflecting a
more balanced trade-off between the performance of each class. Again, these evaluation metrics are
not able to consistently represent a classifier.

Table 7 reports the precision, recall, and F1 score of the RUMC-based model.

Table 7. Precision, recall, and F1 score of the classifiers with a RUMC-based training set.

Model RUMC-RT RUMC-KNN RUMC-LR RUMC-RF

Severity Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

F + I 0.159 0.572 0.249 0.152 0.572 0.240 0.195 0.525 0.285 0.176 0.568 0.269
PDO 0.876 0.499 0.636 0.869 0.470 0.610 0.891 0.642 0.746 0.887 0.560 0.687

Weighted
Average 0.774 0.510 0.581 0.767 0.485 0.558 0.792 0.625 0.681 0.786 0.561 0.627

Table 7 shows that the precision for the PDO class is still high. Compared with Table 4, the precision
for the F + I Class is slightly lower for RUMC-RT, RUMC-KNN, and RUMC-RF, while it is significantly
increased for RUMC-LR. The recall for the PDO class is decreased, and consequently, we note a
significant improvement in recall for the F + I class. As observed for TPR and FPR, there is a trade-off

between precision and recall. The F1 score is improved in the F + I class and is decreased in the PDO
class. Again, the weighted average metrics do not seem appropriate in describing such classifiers.

Table 8 reports the confusion matrices and the overall accuracy for RUMC-based algorithms.

Table 8. Confusion matrices of the classifiers: RUMC-RT, RUMC-KNN, RUMC-LR, and RUMC-RF.

Predicted
RUMC-RT

F + I PDO

159 119 F + I
Observed

840 838 PDO

Correctly Classified Instances: 997 (50.97%)

Incorrectly Classified Instances: 959 (49.03%)

Predicted
RUMC-KNN

F + I PDO

159 119 F + I
Observed

889 789 PDO

Correctly Classified Instances: 948 (48.47%)

Incorrectly Classified Instances: 1008 (51.53%)

Predicted
RUMC-LR

F + I PDO

146 132 F + I
Observed

601 1077 PDO

Correctly Classified Instances: 1223 (62.53%)

Incorrectly Classified Instances: 733 (37.47%)
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Table 8. Cont.

Predicted
RUMC-RF

F + I PDO

158 120 F + I
Observed

738 940 PDO

Correctly Classified Instances: 1098 (56.14%)

Incorrectly Classified Instances: 858 (43.86%)

By observing Table 8 above, we can confirm the significant increase in classifier performance
brought by the RUMC technique. Indeed, the classifiers are now able to predict satisfying both the
F + I and PDO class. The best classifiers in predicting F + I crashes are RUMC-RT and RUMC-KNN
(159 out of 278), followed by RUMC-RF (158 out of 278), and RUMC-LR (146 out of 278). As regards
the PDO class, the classifier with the best performance is the RUMC-LR (1077 out of 1678), followed
by RUMC-RF (940 out of 1678), RUMC-RT (838 out of 1678), and RUMC-KNN (789 out of 1678).
The higher overall accuracy is reached by RUMC-LR (62.53%), followed by RUMC-RF (56.14%),
RUMC-RT (50.97%), and RUMC-KNN (48.47%). Since the dataset is now balanced, the accuracy should
adequately represent the overall performance of the classifiers. Considering this, it seems that the best
one is the LR; however, that is not to say that the best overall performance always corresponds to
the best model to be employed. Indeed, it depends on the scope for which the MLAs will be used.
Probably, in the present case, managing bodies and road authorities are more interested in the best
prediction of severe accidents (therefore, they may prefer KNN or RT). Thus, specific performance
metrics for each class, such as the number of F + I or the number of PDO crashes correctly predicted,
are more interesting and useful for choosing the MLAs to be used rather than relying on overall
performance metrics.

For application purposes for which these MLAs are designed, the RUMC-based models were
the most suitable, considering that they identify the minority class (F + I class) with greater accuracy.
Surely, considering the needs of the companies that could use these models, this class is the most
relevant of the two severity classes. Having some false alarms (as evidenced by Table 6–8) should not
lead to significant issues in the planning duties of these companies. Indeed, it is more appropriate to
examine a false alarm more carefully than to predict a fatal accident such as a PDO accident. Only by
consistently recognizing severe accidents (and therefore, the factors that caused them) is it possible to
provide adequate planning aimed at reducing and correctly handling the crash severity.

4.3. Predictor Importance

Relying on the Gini index impurity decrease, the importance of each input factor has been
computed. For the sake of clarity, Figure 6 shows the standardized predictor importance, which is the
predictor importance calculation rearranged in the range [0, 1].

Figure 6 demonstrates that each input factor has significant importance in determining crash
severity since they are all greater than zero. Qualitatively, we can distinguish three leading
families among the inputs: high-importance input features, medium-importance input features,
and low-importance input features. The term “importance” refers to how much an input factor affects
or is associated with the crash severity.

In the high-importance set of input features lie the day of the week, the number of casualties,
the first road class, and the number of vehicles. While it was intuitive that the first road class, the number
of casualties, and the number of vehicles could have been significant in modeling crash severity,
the same cannot be said for the “Day of the Week” factor. This parameter is entirely independent of
the factors associated with the infrastructure, circulation, and type of vehicles but is mainly related to
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user behavior during the week. Table 9 below shows some data obtained by analyzing the change in
crashes as a function of the day of the week.

Table 9. Instances and percentages of the input factor “Day of the Week”.

Day Accidents Percentage F + I F + I
Percentage PDO PDO

Percentage
F + I Daily
Percentage

PDO
Daily

Percentage

Sunday 628 9.64% 113 12.27% 515 9.21% 17.99% 82.01%

Monday 941 14.44% 129 14.01% 812 14.52% 13.71% 86.29%

Tuesday 997 15.30% 124 13.46% 873 15.61% 12.44% 87.56%

Wednesday 1023 15.70% 136 14.77% 887 15.86% 13.29% 86.71%

Thursday 958 14.70% 121 13.14% 837 14.96% 12.63% 87.37%

Friday 1123 17.24% 159 17.26% 964 17.23% 14.16% 85.84%

Saturday 845 12.97% 139 15.09% 706 12.62% 16.45% 83.55%

Average 931 / 132 / 800 / 14.38% 85.62%

Total 6515 100% 921 100% 5594 100% / /

Table 9 demonstrates that there are significant changes in the number of accidents and the
crash severity during the week. Friday seems to be the day in which most of the accidents occur
(1123 accidents, corresponding to 17.24% of the total), while Sunday is the day when least accidents
happen, with 628 accidents (9.64% of the total). As regards the severity, Friday is the most severe
day, with 159 out of 921 F + I crashes (17.26% of the total) and 964 out of 5594 PDO crashes (17.23%
of the total). Contrary to overall percentages, Sunday appears to be the most dangerous day, with a
probability of 17.99% to be involved in a fatal crash or one causing injury. Tuesday is the day when
an accident is more likely to be of the PDO type (probability of 87.56%). These day-to-day changes
confirm that the “Day of the week” parameter is essential in assessing the crash severity.

The medium-importance set of input features contains the speed limit, the light conditions,
the second road class, and the junction detail. The speed limit may be significant since it is correlated
to the road class, while the second road class and junction detail are significant since 3853 out of 6515
crashes occurred at a junction. Therefore, the evaluation of the second road class and the type of
junction should be essential in predicting crash severity.

The low-importance set of input features contains all the other input factors.
With a view to road traffic planning by a national road authority, it should, therefore, be appropriate

to provide more checks by law enforcement and surveillance over the weekend, or the installation of
speed control systems in critical situations should be envisaged. Furthermore, the proper regulation
of junctions between roads could alleviate the number of fatal accidents in favor of PDO accidents,
as well as mitigate their number.

4.4. Future Works

In order to further improve the present research, additional future works could implement the latest
available machine and deep learning models on the same dataset analyzed. For instance, we want to
mention some road safety analyses using different types of neural networks that could be implemented:
multilayer perceptron neural networks [14,27,29], convolutional neural networks [28,40,58], radial basis
function neural networks [25], recurrent neural networks [59], and deep Neural networks [10,18,58].
Moreover, other ensemble of learners (in addition to the RF algorithm calibrated in the present
study) [9,16] and the staking [32] strategy could also be considered. Having a broad set of calibrated
algorithms available, it would be possible to accurately identify the best one for predicting crash
severity in the case of highly imbalanced observations.
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A further enhancement that could be made is the verification of the algorithms calibrated in this
paper on supplementary datasets, in order to confirm whether the test phase carried out provides the
real reliability of the models.

5. Conclusions

The paper aimed to predict road crash severity by employing MLAs. We suggested a procedure for
handling imbalanced accident datasets in order to predict the minority crash severity class appropriately.
Below, the main findings and the methodology are briefly recapped.

Firstly, a comprehensive literature review related to crash severity prediction using MLAs was
carried out: a noticeable number of recent papers in which the authors used MLAs relying on an acutely
imbalanced dataset was found. These algorithms have satisfactory performance in predicting the
majority class (e.g., PDO crashes,) and poor performance in predicting the minority class (e.g., fatal or
injury crashes). For the purposes for which such MLAs should be used, the minority class assumes
generally greater importance than the majority one. Therefore, oversampling and undersampling
techniques have been introduced in order to handle imbalanced datasets, along with the reasons why
the RUMC has been followed in the present paper.

The available dataset was split randomly into a training and test set; an RUMC approach was
applied to the training set to provide a new balanced one. Therefore, two types of MLAs were trained
onto these two different sets using a 10-Fold CV. Four algorithms trained on the imbalanced training
set (RT, KNN, LR, and RF) and four algorithms trained on RUMC-based training set (RUMC-RT,
RUMC-KNN, RUMC-LR, and RUMC-RF) are provided. Both types of algorithms were tested on
the same test set, allowing us to compare the outcomes and evaluating our suggested procedure.
A broad set of performance metrics, including TPR, FPR, TNR, precision, recall, overall accuracy,
and the confusion matrix, was computed for each algorithm. We showed that metrics related to
specific classes are more representative of the real performance of the classifier than overall metrics.
Moreover, it seems that the confusion matrix is the most appropriate and suitable representation for
describing the predictive capacities of a classifier. We also showed that accuracy is untrustworthy
metric if it is computed for MLAs trained on imbalanced datasets.

As regards the performance of the algorithms, the RUMC-based models showed better predictive
capabilities in detecting the minority class than the algorithms trained by the imbalanced dataset.
The best classifiers in predicting fatal crashes and those causing injury are RUMC-RT and RUMC-KNN
(159 samples out of 278 correctly identified), followed by RUMC-RF (158 out of 278), and RUMC-LR
(146 out of 278). As regards the PDO class, the classifier with the best performance is the RUMC-LR
(1077 samples out of 1678 correctly identified), followed by RUMC-RF (940 out of 1678), RUMC-RT
(838 out of 1678), and RUMC-KNN (789 out of 1678). The higher overall accuracy is reached by the
RUMC-LR (62.53%), followed by RUMC-RF (56.14%), RUMC-RT (50.97%), and RUMC-KNN (48.47%).

Finally, the importance of each input factor was computed using the average Gini index impurity
decrease. All the input factors have significant importance in predicting crash severity. The most
relevant input factors are day of the week, number of vehicles, casualties involved, and the first
road class.

Relying on all these findings, we can conclude by asserting that the use of balanced MLAs is
recommended as a promising tool for crash severity modeling and prediction. The use of balanced
datasets appears to be essential for correctly predicting accidents with higher severity. National road
authorities, insurance companies, hospitals, and all the other companies interested in crash severity
can make use of MLAs and the RUMC technique for managing their duties properly.
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