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Abstract: This study proposes an efficient Bayesian, frequency-based damage identification approach
to identify damages in cantilever structures with an acceptable error rate, even at high noise levels.
The catenary poles of electric high-speed train systems were selected as a realistic case study to
cover the objectives of this study. Compared to other frequency-based damage detection approaches
described in the literature, the proposed approach is efficiently able to detect damages in cantilever
structures to higher levels of damage detection, namely identifying both the damage location and
severity using a low-cost structural health monitoring (SHM) system with a limited number of sensors;
for example, accelerometers. The integration of Bayesian inference, as a stochastic framework, in the
proposed approach, makes it possible to utilize the benefit of data fusion in merging the informative
data from multiple damage features, which increases the quality and accuracy of the results. The
findings provide the decision-maker with the information required to manage the maintenance,
repair, or replacement procedures.

Keywords: catenary poles; vibration-based damage identification; damage localization; damage
severity; Bayesian inference

1. Introduction

Infrastructure is the backbone of a healthy economy. Many areas of life rely on civil
infrastructure, and therefore it is an essential need nowadays to guarantee the adequate
safety of the civil infrastructure. The integrity of civil structures is usually maintained by
periodic inspection procedures that aim to detect any deterioration that might occur. By de-
tecting deterioration at an early stage, repair procedures can be performed on structures
instead of demolition or replacement [1,2]. Inspection practices lead to an increase in the
operational life span of structures, which has a significant economic impact, especially in
the case of infrastructure systems [3]. Non-destructive, vibration-based inspection practices
work well for identifying global deterioration in structures, which makes it one of the
promising methods in civil engineering, principally in the field of damage diagnosis [4–7].

Catenary poles are one of the key elements of civil infrastructure worldwide. They sup-
port power transmission systems, telephone and telegraph lines, street lighting, and over-
head power lines for electric trains. The performance and integrity of catenary poles have
an extensive influence on the systems supported by them and consequently, the related
human services [8–10].

Due to their height and slenderness, prestressed concrete poles are considered to be
cantilevered structures. Their capacity is generally governed by their flexural capacity,
whereas shear and torsion capacity play a minor role [10–12]. It is recommended by
different design standards that poles are designed to withstand equal bending moments in
opposite directions by applying a uniform prestressing force, and adapting the prestressing
forces to ensure they remain uncracked under service working conditions [13,14].

Concrete poles are robust structures. Throughout their history, few cases of fail-
ure for the power transmission and lighting poles have been reported in the literature.

Infrastructures 2021, 6, 57. https://doi.org/10.3390/infrastructures6040057 https://www.mdpi.com/journal/infrastructures

https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com
https://orcid.org/0000-0002-7136-6996
https://orcid.org/0000-0002-1251-7301
https://doi.org/10.3390/infrastructures6040057
https://doi.org/10.3390/infrastructures6040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/infrastructures6040057
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com/article/10.3390/infrastructures6040057?type=check_update&version=1


Infrastructures 2021, 6, 57 2 of 19

This includes flexural failure in windstorms [15], and the shear failure under collision [16].
One further registered failure type of spun-cast poles is that of longitudinal cracks, caused
by differential shrinkage between the fine layer along the inside of the pole and the coarser
layer on the outside [17]. These phenomena are discussed by some studies, for example,
Refs. [18,19]. Moreover, the dynamic behavior of this type of pole is also verified in many
research studies [20–22]. Most research (and literature) focuses on power transmission
and lighting. However, scant attention has been paid to the behavior of the catenary poles
in the literature. Currently, catenary poles in electrified traffic systems have not received
adequate attention, given their importance to the entire train system.

Structural health monitoring (SHM) is widely used to determine and track structural
integrity and detect damages in civil structures [23,24]. System identification (SI), as a
vibration-based inspection practice, is used in the field of SHM to verify the integrity of a
structure, from changes in its dynamic response to either service actions or an artificially
introduced excitation, and hence provide an efficient approach in the field of damage
detection [25,26]. Techniques for damage detection (DD) have been widely developed
and implemented to assure the integrity of structural and mechanical systems such as
aircraft, rotating machinery, offshore platforms, and bridges. In structural systems, damage
is generally defined as changes to properties of a given system that adversely affect its
performance (such as changes to properties of materials, geometry, and boundary condi-
tions) [1]. Damage inspection is hierarchically classified into four levels: damage detection
(Level 1), damage localization (Level 2), the quantification of damage severity (Level 3),
and the prediction of the remaining life of the structure (Level 4) [27,28].

Modal parameters have been intensively used in global vibration-based approaches
for solving DD problems. The basic idea is to track changes in the dynamic characteristics
of a structure of interest and use these changes to detect possible damage. A significant
amount of existing literature presents different DD methods based on modal damage
features [5,6,29]; for example, methods are built based on changes in eigenfrequencies,
modal damping, mode shapes and their derivatives, modal strains, modal flexibility, and
modal strain energy [30–32]. Each of the presented methods has some limitations based on
certain factors; for example, the sensitivity of the given system to the damage feature, the
location and severity of the damage to be detected, the noise level, and the number and
type of sensors used in the attached monitoring system.

The DD based on changes in the eigenfrequencies of systems is one of the first methods
used in the vibration-based DD domain. The identification of eigenfrequencies and other
modal parameters of structures are widely discussed in the literature and can be efficiently
identified using, for example, different methods of signal processing in the frequency, time,
and time-frequency domains [33]. Compared to other modal features, eigenfrequencies are
easily measured with higher precision using fewer sensors.

However, this method mostly only identifies Level 1 damages, and sensitive to environ-
mental actions on the given system [6,31]. Recently, this method has regained the interest of
some researchers. For example, environmental and operational influences on eigenfrequen-
cies can be eliminated using kernel principal component analysis [34]. Furthermore, using
multiple eigenfrequencies leads to damage detection at Level 1, with slightly less efficiency
compared to Level 2 DD [35]. However, shifts in multiple eigenfrequencies provide spatial
information about structural damage because changes in the structure at different locations
cause different combinations of changes in modal frequencies [36]. Consequently, the
frequency-based methods can be efficiently used with additional improvements, which is
the focus of this study.

Each step involved in solving the DD problem has a level of uncertainty, such as
the noise of SHM measurements, and the discrepancy of models used in the SI process.
Therefore, uncertainty quantification (UQ) plays a significant role in the DD process and
the subsequent decision-making phase. Bayesian inference, as a probabilistic framework of
UQ, is an efficient approach for solving the ill-posed inverse problems using noisy data
and various sources of uncertainties for pure parameter identification problems [37], which
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makes it a powerful approach to DD, SHM, and SI as well [38]. For instance, Bayesian
parameter estimation is used in the domain of structural vibration-based parameter estima-
tion [39,40], in the fields of SI and SHM as a probabilistic uncertainty approach [41–44], for
the model selection of linear and nonlinear dynamical systems [45], and in the domain of
DD and model updating [46–48].

Bayesian inference is a vital tool in the probabilistic data fusion field of study [49,50].
Bayesian data fusion combines information from multiple sources (such as multiple sen-
sors or damage features) to enhance the efficiency of the damage detection process [1,51].
For instance, the Bayesian data fusion is used for integrating different kinds of sensors and
multiple damage features in DD problems [52–54]. However, using Bayesian approaches in
inverse problems is sometimes computationally intensive compared to deterministic meth-
ods, especially for complex models. In addition, to ensure the inferred parameters’ quality,
the sensitivity of likelihood models should be well considered. Moreover, selecting weak
or wrong prior distributions might have a significant impact on the final results [55–58].

The long-distance dispersal and spread of the catenary poles pose additional chal-
lenges to develop a damage identification algorithm that combines feasibility, resilience,
robustness, and ease in application. To reach this aim, this study develops a new algorithm
to identify the local damages in cantilever structures, with a focus on catenary poles by
using eigenvalues from SHM for damage identification and the assessment of cantilever
structures. The proposed algorithm mainly uses the changes in eigenfrequencies of the
given structure, which can be collected using low-cost SHM with fewer sensors than avail-
able DD methods in the literature. The integration of the Bayesian inference in the proposed
algorithm extends the efficiency of the classical frequency-based method to new levels of
DD (Levels 2 and 3), namely, to efficiently identify both the location and the severity of
the damage in a stochastic framework by fusing multiple damage features of the structure
of interest.

The paper is organized as follows. Section 2 describes the case study used in this
study and followed by the numerical simulation and the extraction of damage features
in Sections 2.1 and 2.2, respectively. Section 3 is devoted to the methodology applied in
this paper. It starts with an introduction about Bayesian inference for inverse problems.
The proposed algorithms for identifying damage in structures are presented in Section 3.2.
In Section 4, the results are presented with the relevant discussion.

2. Case Study

In this study, the catenary poles for high-speed rail routes, reaching a speed of
330 km h−1, are chosen as a realistic case study, as shown in Figure 1. The poles are
10 m in height with tapered hollow circular sections and are produced by a spinning
method. The outer diameter at the bottom end is 400 mm and reduces linearly to 250 mm
at the top of the pole. The poles are embedded in typical pile foundations for a depth
of 500 mm. Each pile foundation is constructed in a diameter of 500 mm and 5500 mm
in depth. The foundations have a relatively high rigidity to minimize the soil–structure
interaction and ensure the minimal structural and dynamic deformations of the poles. This
minimizes the oscillation of the poles and the attached catenary system during and after
the train passing.

The poles are made of a high-strength concrete with grade C80/95. Furthermore,
the cross-section incorporates ten strands (7/16′′, St 1680/1880), pre-stressed initially with
a total force of approximately 680 kN. The strands are distributed equally throughout the
perimeter. There is no additional longitudinal reinforcement, except two bars (Ø10 mm)
used for grounding. Spiral reinforcement, with a diameter of 5 mm and pitch of 50 mm,
is added along the pole. Further details about the geometry and materials of the poles can
be found in [59].

Three of the catenary poles along a train track were provided with a monitoring
system that consists of different types of sensors, mainly strains gauges and accelerometers.
The behavior of the poles on site was investigated over a period of five years. It is shown
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that the poles on-site are still intact, and at least the first four modes are excited due to the
ambient vibrations, namely, the wind and train passage [60]. However, these verifications
are not within the scope of this study.

Figure 1. The catenary pole system for high-speed rail routes.

2.1. Simulation of Damaged Pole

To maintain the operation and the integrity of the monitored train system, introducing
artificial damage to the poles in-service was impossible. Therefore, the behavior of the
damaged poles was studied using FEM simulations by generating different expected
damage scenarios. The poles of interest are numerically simulated using a 3D fully-detailed
FEM model. The concrete material is simulated using solid elements with eight nodes,
each with three degrees of freedom.

A convergence analysis shown inFigure 2 (left) was conducted to choose the sizes of
finite elements and to balance between the precision of the results and analysis time, and to
assure that the mesh size has no significant effect on the FEM results [61]. Consequently,
the concrete material was simulated using solid elements with eight nodes, each with three
degrees of freedom. The sizes of solid elements are approximately 50 × 50 × 25 mm in the
longitudinal, circumferential, and radial directions, respectively.

Furthermore, the prestressing strands are simulated using 3D truss elements with two
nodes and three degrees of freedom at each node. The prestressing forces are guaranteed
by introducing initial strains to the truss elements of the model at the first step of analysis.
In addition, linear material constitutive models are used to describe the behavior of concrete
and prestressing strands for the conducted modal analysis of simulated poles. The contact
between concrete and prestressing strands in the FEM model are considered monolithic.
The boundary conditions are selected in accordance with the poles on-site, i.e., to represent
the cantilever behavior of the pole.

Cracks (local damages) at specific locations along the pole are introduced by re-
ducing the concrete modulus of elasticity at the crack location ϑa, as shown in Figure 2
(right). To ensure that the considered approach simulates relatively the real behavior of
cracked poles, the numerical model is validated using experiments conducted on cracked
poles. The validation process includes, but is not limited to, validating mode shapes,
eigenfrequencies, and modal curvatures. However, this might add some uncertainty to
the damage identification process, but it does not significantly impact the final results.
More details about the conducted tests are available in [58]. The severity ratio of damage
αi is defined, such as

αi =
Di

dpole(i)
· 100%, (1)

where Di is the depth of the crack, and dpole(i) is the diameter of the cross-section at the
damage location ϑi.
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Local damages are repeated at absolute heights, measured from the bottom of the
pole, as follows: ϑa = [0.5–5.0] with intervals of 0.5 m, and ϑa = [6.0–8.0] with intervals of
1.0 m. At each local damage point ϑa, five damage severity ratios α = {0, 25, 50, 75, 95}T [%]
are used. For a better interpretation of the results, the damage locations ϑa are normalized
in the range of [0–1]. The normalized dimensionless damage locations are denoted as ϑ in
the rest of this work.
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Figure 2. FEM mesh convergence analysis (left), and a description of the local damage (right).

2.2. Damage Features

The eigenfrequencies of studied poles are derived based on modal analysis of the FEM
model, described in Section 2.1. The relative changes in eigenfrequencies ∆f of different
modes are defined, as follows:

∆fi =
|fd

i − fu
i |

fu
i

, (2)

where fd
i and fu

i represent the eigenfrequencies of the ith mode of the damaged and un-
damaged pole, respectively. Figure 3 represents the derived relation between normalized
damage location ϑ, damage severity αi, and relative changes in eigenfrequencies ∆fi of
the first four modes. The surfaces in Figure 3 form vital damage features when used in
conjunction with the Bayesian data fusion concept to identify the given structure’s damage.
As known, the mode shape is not sensitive to damage when the damage is located near the
nodes of the mode shape. Similarly, this means that some surfaces are more pertinent to
detecting damage at a specific location than others.

Unlike the available literature, this study solved the problem of damage identification
by providing a new application of the concept of data fusion (implicitly provided in
Bayesian inference) through merging informative data from multiple surfaces of different
mode shapes. The derived damage features provide an excellent candidate for building
a damage detection algorithm that can detect the location and severity of damage along
the pole based on the spatial characteristic of the derived changes in eigenfrequencies ∆f,
shown in Figure 3.
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Figure 3. Relative changes of eigenfrequencies ∆f for the [1st–4th] modes, calculated for different
values of damage severity α, and normalized damage location ϑ.

3. Methodology

The proposed approach of damage identification is shown in Figure 4. Both damage
location ϑ and damage severity α are identified using the damage features derived in
Section 2.2. In this sense, two vibration-based algorithms are proposed.

The main algorithm is the frequency-based damage identification (FDI) algorithm that
detects the location and severity of the damage to Level 3 using the Bayesian inference
and realizations of multiple damage features, namely, changes of the eigenfrequencies ∆f.
One advantage of the Bayesian inference is that the UQ of the parameters of interest was
integrated in this process [62]. Besides, the Bayesian inference is an efficient tool for data
fusion, namely, using the joint occurrence of multiple phenomena [63].

In addition, this study considers the use of a complementary curvature-based damage
identification (CDI) algorithm. The CDI algorithm localizes the damage along the structure
using the modal curvatures ν as a damage feature. The implementation of the CDI algo-
rithm required an excessive number of accelerometers (four at least) compared with the
FDI algorithm. When available, the CDI algorithm can be integrated into the FDI algorithm
as an informative prior.
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Figure 4. The flow chart of the proposed approach.

3.1. Bayesian Inverse Problems

Given a forward modelM, the input parameters are mapped to the measured outputs
ỹ through an operator G, such that:

M :X ×D → Ỹ
(x, d) 7→ ỹ = G(x, d) + η .

(3)

Defining the total prediction error η as the discrepancy between the ‘real’ observations
y of the given system and both the model prediction and measurands [47,64], the measured
observation ỹ ∈ Ỹ ⊆ Rn is written, such as ỹ = y + η. The input parameters are divided,
based on their uncertainty, into: input parameters subjected to uncertainty x ∈ X ⊆ Rm;
and well-known deterministic input parameters, d ∈ D [58].

The Bayesian approach uses the stochastic model of Equation (3) such that
Ỹ = G(X, d) + E for solving inverse problems [38]. In inverse problems, the unknown
input parameter X = {X1, · · · , Xm}T ∈ Rm is a random variable with a prior density
πX(x) = π0(x). The prior density π0(x) represents the belief about x prior to measure-
ments [65]. In addition, the observations are considered as a random variable
Ỹ = {Ỹ1, · · · , Ỹn}T ∈ Rn that follows the probability distribution PỸ that has a PDF
π(ỹ) and realizations ỹ = {ỹ1, · · · , ỹn}T observed directly from measurements.

The total error E ∈ Rn is considered as a random variable with an appropriate density
πE(η) [66]. Considering E as mutually independent of X, the Bayes’ theorem is written
such that [67]:

π(x|ỹ) = π(ỹ|x) · π0(x)
π(ỹ)

. (4)
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Using the concept of frequency-based damage identification (FDI), the likelihood
π(ỹ|x) is written, such that, π(ỹ|x) := π(ỹ− G(x, d)); in other words L(x, d|ỹ), where L
is the likelihood function [68].

The evidence π(ỹ) is independent of x and is considered as a normalization constant
z [69].

As a result, the posterior in Equation (4) is written as a statement of proportionality,
such as π(x|ỹ) ∝ π(ỹ|x) · π0(x). The posterior density π(x|ỹ) represents the solution of
the inverse problem in the Bayesian inference. Different algorithms have been developed
to evaluate the posterior and avoid the complexity of the analytical solution, such as using
stochastic sampling Monte Carlo integration, and importance sampling [70]. Practically,
the Markov chain Monte Carlo (MCMC) algorithms are used for drawing the parameter
distributions from the posterior [71]. In the cases where the interest is only in estimating the
statistical moments, the maximum a posteriori (MAP) estimator x̂MAP is utilized. The MAP
represents the values of inferred parameters with the highest probabilities of occurrence,
without the need to calculate the normalization factor z [72], such that:

x̂MAP = argmax
x∈Rm

π(x|ỹ) . (5)

3.2. Bayesian Damage Identification Algorithms
3.2.1. Frequency-Based Damage Identification Algorithm

A newly proposed FDI algorithm extends solving the DD problem in Levels 2 and 3
using a UQ framework. The FDI algorithm is a vibration-based Bayesian algorithm that
fuses the informative data of multiple eigenfrequencies to localize and quantify the damage
along the given structure.

The Bayesian approach illustrated in Section 3.1 is used to infer the unknowns of
DD. Using the changes of the eigenfrequency ∆f as a damage feature, the realizations ỹ of
observations Ỹ are built, as follows, ỹ ≡ {∆f1, · · · , ∆fi, · · · , ∆fn}T , where ∆fi is the relative
changes in the eigenfrequency of the ith mode, and n is the number of considered modes,
as defined in Equation (2). The characteristics of the damage, that is, the damage location ϑ
and damage severity α, are considered as unknown parameters x, such as x ≡ {ϑ, α}T .

The likelihood π(∆f|ϑ, α) ≡ L(ϑ, α|∆f) utilizes the concept of Bayesian data fusion
to combine the damage information (shown in Figure 3) of multiple mode shapes. For
mutually independent observations Ỹ , the likelihood is written as (∆f|ϑ, α) ∼ πE

(
∆f−

G(ϑ, α); Σ
)
, where Σ represents the symmetric and positive-semidefinite covariance matrix.

Consequently, the likelihood π(∆f|ϑ, α) can be calculated such as

π(∆f|ϑ, α) ≡ L(ϑ, α|∆f) =
n

∏
i=1

πE
(
∆fi − Gi(ϑ, α); Σi

)
, (6)

with Σi being the ith component of the main diagonal of the matrix Σ. For uncorrelated
errors, the covariance matrix is rephrased to be Σ = σ2

E diag{∆f1, · · · , ∆fn}2 ∈ Rn×n,
where σ2

E is the variance of the errors. Considering the total errors E to have a likely
multivariate Gaussian distribution E ∼ N (0, Σ) with zero-means E(η) = 0. In this case,
it is more convenient to use matrix notation in presenting the Gaussian multivariate
likelihood, as follows:

L(ϑ, α|∆f) =
1

(2π)
n
2
√
|Σ|
· e−

1
2 ηTΣ−1η . (7)

The posterior in Equation (4) is updated as follows:

π(ϑ, α|∆f) =
L(ϑ, α|∆f) · π0(ϑ, α)

π(∆f)
. (8)

Accordingly, the unknown parameters {ϑ, α}T can be inferred by sampling from the
posterior π(ϑ, α|∆f) using, for example, an MCMC algorithm.
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The implementation of the FDI algorithm can be found in Section 4.2. The FDI al-
gorithm works well using un-informative priors of the damage location and severity, for
example, uniform probability distributions π0(α) ∼ U (0.0, 1.0). However, an informa-
tive prior of damage location π0(ϑ) can be derived using the complementary curvature
algorithm CDI (see Section 3.2.2).

3.2.2. Curvature-Based Damage Identification Algorithm

The CDI algorithm uses relative changes of modal curvatures ∆ν to localize damages
along the given structure by applying Bayesian inference techniques, as discussed in
Section 3.1. Realizations ỹ of observations Ỹ are considered such that ỹ ≡ {ν1, · · · , νi, · · · , νn}T,
where νi is the modal curvature of the mode φi, and n is the number of considered mode
shapes [73].

Unknown parameters vector x is formed from the coordinates ϑ of the attached sensors
m along the structure, such as x ≡ {ϑ1, · · · , ϑj, · · · , ϑm}T . Optimal sensor location and
number can be verified intensively using, for example, methodologies based on Fisher
information matrix and information entropy [64]. However, this is out of the scope of the
current study.

The concept of data fusion is implemented using Bayes theorem by structuring the
likelihoods of various values of the unknowns ϑ given information obtained from multiple
measurements ν. For mutually independent observations Ỹ , the likelihood Lj at location
ϑj is written, such that:

Lj(ϑj|ν1, · · · νn) = π(ν1|ϑj) · · ·π(νn|ϑj) =
n

∏
i=1

π(νi|ϑj) , (9)

with j = 1, · · · , m. The probability function π(νi|ϑj) is defined, as follows:

π(νi|ϑj) =
∆νij

∑n
i=1 ∆νij

. (10)

The absolute relative changes in the modal curvature ∆νij are defined, such that
∆νij = |νd

ij − νu
ij|/νu

ij, where νu
ij and νd

ij denote the un-damaged (νu) and damaged (νd)

modal curvature of the mode φi at coordinate ϑj along the structure.
The prior π0(x) ≡ π0(ϑ) = ∏m

j=1 π0(ϑj) is selected to decrease the probability gradu-
ally with an increase in the coordinate of the sensor ϑj. The selected prior fulfills the high
probability of expected damage at the lower part of the cantilever structure, that is, at the
points of high stress under applied actions.

Consequently, the posterior in Equation (4) is updated as follows:

π(ϑj|ν) =
Lj(ϑj|ν) · π0(ϑ)

∑m
j=1
(
Lj(ϑj|ν) · π0(ϑ)

) , (11)

using the concept of data fusion and the likelihood definition from Equation (9), the proba-
bility of damage at ϑj given the modal curvatures ν is written as

π(ϑj|ν1, · · · νn) =
∏n

i=1 π(νi|ϑj) · π0(ϑ)

∑m
j=1
(
∏n

i=1 π(νi|ϑj) · π0(ϑ)
) . (12)

The identified damage locations using the CDI algorithm were discretized according to
locations of available accelerometers. Therefore, the histograms derived from Equation (11)
can be fitted and normalized to build continuous PDFs of informative priors for the
implementation of the FDI algorithm.

While it is possible to obtain the eigenfrequencies using a simple signal processing
method, it is necessary to use more complicated methods to derive the modal curvatures. In
this study, the modal displacements of the given structure are derived using an output-only
operational modal analysis, namely, the stochastic subspace identification (SSI) method
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(refer to [74] for more details). Then, having an array of sensors attached to the struc-
ture of interest at equally-distributed spaces ∆ϑ, the modal curvature νij at coordinate j
is numerically estimated using the second-order central difference approximation [75],
as follows:

νij =
(φi)j−1 − 2(φi)j + (φi)j+1

∆ϑ
, (13)

where (φi)j−1, (φi)j, and (φi)j+1 are the measured modal displacements at three
subsequent sensors.

4. Results
4.1. Implementation of Damage Identification Algorithms

In the absence of any data on the damaged poles in service, artificial measurements
are generated using the FEM simulation mentioned in Section 2.1. To implement the com-
plementary CDI algorithm, the locations of the sensors are chosen to be equally distributed
along the pole using distances of da

sn = {500, 1000, 1500, 2000, 2500}T mm, corresponding
to the normalized dimensionless distances of dsn = {0.05, 0.11, 0.16, 0.21, 0.26}T .

The artificial measurements are created using combinations of damage location ϑ,
damage severity α (see, Section 2.1), and distances between sensors. The artificial modal
curvatures and eigenfrequencies are perturbed using Gaussian noise with coefficients of
variation of 0, 1, 3, 5, and 8% in addition to a bias of 1% of the no-noise values. In total,
1500 records of artificial measurements were generated and utilized for implementing
the proposed damage identification algorithms. Both the CDI and FDI algorithms are
applied using the first four mode shapes and corresponding eigenfrequencies. For the easy
interpretation of results, normalized dimensionless damage location in the range [0–1]
is used.

4.2. Implementation of the Frequency-Based Damage Identification Algorithm

The FDI algorithm was implemented using the artificial measurements and the find-
ings of the CDI algorithm as informative priors to damage locations π0(ϑ). Uninformative
priors of damage severity α were used, such that π0(α) ∼ U (0.0, 1.0). The posteriors were
derived by implementing the MCMC algorithm [76] for 1000 samples.

Some selected results of the FDI algorithm are depicted in Figures 5 and 6, for noise
levels of 1 and 5%, respectively. The posteriors of the identified location ϑ̂ and the identified
severity α̂ are shown for selected damages at different locations and severities.

To evaluate the efficiency of the FDI, the re-constructed errors (ReErr) are calculated us-
ing 1500 records of artificial measurements. The ReErr is defined as the absolute difference
between the artificial damage and MAP values of the identified damage characteristics;
that is, (α̂MAP, ϑ̂MAP). The precision of the results is measured by the standard deviations
of the posteriors; that is, (σα̂, σϑ̂).

The ReErr and their σ are shown in Figure 7 for ReErr of ϑ̂MAP. For a better inter-
pretation of the results, standard box-plots are used to evaluate the statistical properties
of the ReErr at each pair of noise levels and damage severity α. For greater clarity, the
box-plots are classified based on noise level, α, and ds, as shown in Figures 8–10 for the
ReErr of ϑ̂MAP. The ReErr and their σ of the α̂MAP are shown in Figure 11. In addition, the
box-plots in Figures 12–14 represent the ReErr of α̂MAP.
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Figure 5. Identified damage severity α̂, and damage location ϑ̂, using the frequency-based algorithm for (noise = 1%):
ϑ = 0.05, and α = 25% (left); ϑ = 0.37, and α = 50% (right).
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Figure 6. Identified damage severity α̂, and damage location ϑ̂, using the frequency-based algorithm for (noise = 5%):
ϑ = 0.05, and α = 25% (left); ϑ = 0.37, and α = 50% (right).

Figure 7. Reconstructed error (ReErr) of the identified damage location ϑ̂ using the frequency-based
algorithm: the maximum a posteriori (MAP) values ϑ̂MAP (left); and the standard deviation σϑ̂ (right).
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Figure 8. Box-plot of the reconstructed error (ReErr) of the identified damage location ϑ̂, classified
based on noise level: the MAP values ϑ̂MAP (left); and the standard deviation σϑ̂ (right).
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Figure 9. Box-plot of the reconstructed error (ReErr) of the identified damage location ϑ̂, classified
based on damage severity: the MAP values ϑ̂MAP (left); and the standard deviation σϑ̂ (right).
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Figure 10. Box-plot of the reconstructed error (ReErr) of the identified damage location ϑ̂, classified
based on the distances between sensors dsn: the MAP values ϑ̂MAP (left); and the standard deviation
σϑ̂ (right).

Figure 11. Reconstructed error (ReErr) of the identified damage severity α̂ using the frequency-based
algorithm: the MAP values α̂MAP (left); and the standard deviation σα̂ (right).
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Figure 12. Box-plot of the reconstructed error (ReErr) of the identified damage location α̂, clas-
sified based on noise level: the MAP values α̂MAP (left); and the standard deviation σα̂ (right).
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Figure 13. Box-plot of the reconstructed error (ReErr) of the identified damage location α̂, classi-
fied based on damage severity: the MAP values α̂MAP (left); and the standard deviation σα̂ (right).
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Figure 14. Box-plot of the reconstructed error (ReErr) of the identified damage location α̂, classi-
fied based on the distances between sensors dsn: the MAP values α̂MAP (left); and the standard
deviation σα̂ (right).

4.3. Implementation of the Curvature-Based Damage Identification Algorithm

By implementing the CDI algorithm, it is noted that its accuracy is sensitive to the
damage severity α, noise level, and distance between the damage location and adjacent
sensor. Several sensor arrangements are used in the following to study the efficiency of
CDI. Examples of implementing this algorithm using artificial measurements and selected
arrangements of sensors are shown in Figures 15 and 16. The histograms and fitted lines
present the probability of the damage location along the pole.
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Figure 15. Localizing the damage ϑ̂ using the curvature algorithm: for ϑ = 0.05, α = 25%, noise = 1%,
and dsn = 0.05 (left); for ϑ = 0.05, α = 75%, noise = 3%, and dsn = 0.05 (right).
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Figure 16. Localizing the damage ϑ̂ using the curvature algorithm: for ϑ = 0.32, α = 50%, noise = 1%,
and dsn = 0.26 (left); for ϑ = 0.11, α = 50%, noise = 5%, and dsn = 0.26 (right).

5. Discussion
5.1. Discussion of the Frequency-Based Damage Identification Algorithm

The results, depicted in Figure 5 and 6, show the efficiency of the FDI algorithm in
identifying the damage characteristics. It is evident that the exact damage location ϑ and
damage severity α coincide with the MAP values calculated using the FDI algorithm, even
when using different noise levels up to 5%. However, the noise level significantly affects
the variances of the identified damage parameters, for example, for the identified damage
location the variance, which changed from 0.03% for the noise level of 1% to 1.2% for the
noise level of 5%, which is expected.

Furthermore, as shown in Figure 7 (left), the ReErr of identified damage location ϑ̂MAP

increases by increasing the noise level, and decreases by increasing damage severity α,
which is reasonable. It is evident that the efficiency of the FDI algorithm increases starting
from damage severity α = 25%, for example, at a noise level of 5% the ReErr is 20% for
damage severity α = 25%, and decreases to 7% for damage severity α = 27%. The standard
deviations of the identified damage location σϑ̂, shown in Figure 7 (right), follows the
same trend; however, these are more affected by the noise levels even for the cases of high
damage severity, for example, α = 75%.

The box-plots in Figure 8 provide a more accurate representation of the effect of
the noise level on the ReErr of ϑ̂MAP. The maximum values of ReErr reach 10% for the
noise level of 8% with a maximum standard deviation of 24%. In contrast, the ReErr in
Figure 9 reaches a maximum value of 17% at low damage severity α = 25%, and decreases
dramatically for damage severity from 75% to 1.8%. The same was concluded for the
corresponding standard deviations, which touch the maximum value of 23% at damage
severity α = 25%. The results in Figure 10 fluctuate around the converged values with a
simple preference for the cases of ds = 0.26, considering the values of the ReErr of ϑ̂MAP

and their σϑ̂. However, outliers can be seen in the box-plots that count less than 0.35% of
the verified data, according to the definition of standard box-plots. Then, they have no
significant effects on the efficiency of the current results.

The ReErr of identified damage severity α̂MAP shown in Figure 11 follows the same
trend, as in the case of ϑ̂MAP. It is noted from Figure 11 (right) that the standard deviations
σα̂ are less scattered compared with similar cases of σϑ̂. Unlike the ϑ̂MAP, the ReErr of iden-
tified damage severity α̂MAP is more sensitive to the level of noise than the damage severity.
It reaches a maximum value of 21% at a noise level of 8% (see Figure 12), in comparison
with 12% at a damage severity of 25%, as shown in Figure 13. The effects of ds on the ReErr
of identified damage severity α̂MAP are similar to those of the ReErr of identified damage
severity ϑ̂MAP described previously, as shown in Figure 14.

In conclusion, the FDI algorithm is able to identify the location ϑ̂ and the severity
α̂ of the damage to an acceptable maximum error ReErr of 12% at a noise level of 5%.
It should be kept in mind that the maximum values of the standard box-plots correspond
to a probability of 0.35% at the tails of the probability distribution of data. This means that
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ϑ̂ is localized within a maximum error of 1150 mm, and α̂ is quantified with a maximum
offset of 12% from real damage severity.

5.2. Discussion of the Curvature-Based Damage Identification Algorithm

The algorithm provides a higher probability to the points around the damage location,
which makes it a good prior for localizing the damage. However, it is evident that for
distances between sensors of dsn = [2000–2500] mm, more informative priors are achieved
(even with high noise level) compared with the cases of smaller distances between sensors.

The efficiency of the CDI algorithm is based on the number of sensors, distances
between sensors, and the accuracy of calculated modal curvatures. Therefore, it is noted
that the damage was localized accurately when the damage was close to one of the sensors
(see, for example, Figure 15). However, the CDI algorithm provides an informative prior
that could be used in conjunction with other damage detection algorithms to localize the
damage precisely; for example, using the normalized fitted lines in Figures 15 and 16 as an
informative prior.

6. Conclusions

In this study, a stochastic damage identification approach based on changes of eigen-
frequencies of cantilever structures was proposed. The proposed algorithm was verified
using catenary poles of electrified railways track. The characteristics of damaged structures
due to local damage were artificially introduced by reducing the modulus of elasticity
at the damage location. Different damage severities and damage locations were used to
extract damage features of the structure of interest. Based on the findings of this study,
several conclusions can be drawn as follows:

• The proposed damage features overcome the limitation of frequency-based damage
identification methods available in the literature, which are valid to detect damage in
structures to Level 1 only. It is enough to use the changes of the eigenfrequencies of
cantilever structures to identify possible local damage at Level 3, i.e., to cover processes
of damage detection, localization, and quantification. The FDI algorithm identified
the damage with relatively small errors, even at a high noise level. Furthermore,
the measurements needed to apply the proposed algorithm in practice which can
be retrieved using fewer accelerometers compared with other available approaches
described in the literature.

• Using the modal curvatures as a damage feature is very efficient for damage local-
ization. This is shown from the results of the proposed CDI algorithm, as it offered
a higher probability to the points around the damage location. Implementing this
algorithm in practical cases needs more sensors (for example, at least four sensors)
compared to the FDI algorithm, which might make it an unfeasible choice for the
vast number of structures, as in catenary poles. However, the algorithm presented
a significant accuracy, which made it a suitable prior to localizing the damage, even
with a high noise level when a sufficient number of sensors are available.

• Bayesian inference is the suitable approach in this instance, despite its heavy com-
putations. Different data can be utilized, and at the same time, the uncertainty of
different parameters can be considered. Furthermore, the Bayesian inference simpli-
fies the implementation data fusion concept in merging the informative data from
multiple sources and methods. This approach increases the quality and accuracy of
the expected results, for example, when used in the proposed FDI and CDI algorithms,
to fuse the damage features from several measurements. Another benefit of using
the Bayesian inference is quantifying the uncertainty of results caused by different
sources of data and methods without additional efforts.

• Applying the proposed approach looks very promising when applied to other types
of cantilever structures, such as the poles supported the power transmission lines,
antenna masts, chimneys, and wind turbines. In addition, the proposed approach
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needs to be applied in practice for damage identification on real structures. Efforts
should be made in this direction.
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