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Abstract: Climate change is modifying scientific attitudes toward pre- and post-event assessments
of natural hazards. Unprecedented levels of destruction need renewed focus on addressing and
protecting communities forcing the decision makers to change their attention to vulnerability and
risk assessment. In particular, society and economy rely heavily on infrastructures, as fundamental
links for movement of goods and people, and are extremely vulnerable to multiple hazards (such
as droughts, floods, storms, and coastal hazards). In this regard, resilience quantifies the recovery
time and procedures to facilitate and enhance pre-hazard and post-hazard event mitigation and
emergency response strategies of systems and entire communities. Resilience calculation depends on
two important contributions: loss and recovery models that need to consider the effects of climate
change. This paper aims to propose a methodology that implements the most recent approaches to
assess climate change inside the traditional framework of resilience. The proposed framework is then
applied to a case study of a bridge.
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1. Introduction

System vulnerability to natural hazards is an interesting topic in scientific literature,
with many recent contributions (e.g., [1–4]). In particular, many risk-based frameworks
were developed to assess long-term effects (such as deterioration and life-cycle loads)
considering the opportunity to include the effects of climate change which impacts multi-
sectors, such as the environment, civil structures and infrastructures, biology and economy.
In this regard, [5] summarized the state of the art on cost assessment methods for natural
hazards (NHs), by proposing the EU project “Costs of Natural Hazards” (CONHAZ) (from
February 2010 to January 2012) that considered several NHs and different sectors. Extensive
literature (summarized in [6]) proposed adaptation plans (i.e., [7–9]), some focused on
multiple social, environmental, organisational, and conceptual with integrated [10,11] and
holistic approaches [12,13], including uncertainties [14].

The main contributions that studied the impacts of climate change concentrated
on hurricanes. For example, [15] studied the impact of climate change with scenario-
based analyses to explore the cost effectiveness of various adaptation strategies. Ref. [16]
investigated repair cost evaluations for several future climate scenarios and examined a
statistical model to study hurricanes in the Atlantic Ocean. Recently, the authors of [17]
applied artificial neural networks to estimate the economic losses in the Southeastern US
coastal regions (encompassing eight states from Texas to North Carolina). They proposed
predictions to forecast future hurricanes to assess different climate change scenarios: current
climate conditions, near-term projection, and long-term projection.

In the past, climate damage functions (CDF) have been adopted in global-scale climate
impact analyses (e.g., [18,19]) to estimate the relationship between environmental variables
(i.e., temperature change) and the magnitude of sectoral damages [20]. In particular, Ref. [21]
showed significant relationships between the global mean temperature increase above the
1961–1990 levels and the predictions of global-scale impacts in 2050 by considering selected
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indicators. CDF were also used for the estimations (e.g., [22–24]) of the social cost of carbon and
damages due to climate change [25–28]. Moreover, estimations of climate damage generally
focus on temperature-denominated CDF (by estimating damages per unit of temperature
change) since temperature is closely correlated with other climate stressors (e.g., changes in
precipitation and extreme events). For example, [29] proposed specific temperature thresholds
to perform damage estimates within a climate policy framework. In additions, some recent
studies focused on the assessment of seismic fragility and vulnerability of structures following
mechanical (i.e., [30]) and empirical (i.e., [31]) approaches.

The present paper aims to move from these previous contributions by proposing a
novel approach based on resilience that has been applied in civil engineering to assess
the seismic vulnerability of structures and infrastructures. In particular, the paper aims to
extend the well-credited definition proposed by [32] to include the long-term effects due
to climate change. The ultimate objective is to predict how the change of specific environ-
mental variables will impact on the resilience, as a parameter to define the vulnerability
to natural hazards. In this regard, the paper shows a formulation that may be applied in
long-term assessments that can be useful by several stakeholders, such as public adminis-
trators, infrastructure owners, or other decision makers. This paper proposes to include
climate change effects inside the resilience framework in order to calculate the increase of
losses as an evolutionary process that depends on one selected environmental variable. The
multi-dimensional nature of resilience and the easy-to-read results will allow to perform
the proposed methodology for applications in many disciplines, such as environmental
sciences, civil engineering, and economy.

2. Methodology

Resilience is a well-credited concept currently applied to perform multi-dimensional
risk assessment. Multiple definitions of resilience have been proposed since [33] defined
resilience as “the capacity to cope with unanticipated dangers after they have become
manifest, learning to bounce back.” During the following decade the concept became
more specific and [34] considered that resilience is “the buffer capacity or the ability to a
system to absorb perturbation, or magnitude of disturbance that can be absorbed before a
system changes its structure by changing the variables.” A similar definition that extended
the application of resilience to “individuals, group and organisations, and systems” was
also proposed by [35]. The definition of resilience started to include the issue of recovery
and [36] defined resilience as “the ability of an individual or organisation to expeditiously
design and implement positive adaptive behaviours matched to the immediate situation,
while enduring minimal stress.” Another definition was given by [37] who considered the
possibility of an “amount of assistance from outside the community.” The authors of [38]
extended the concept of resilience to “the capacity to adapt existing resources and skills to
new systems and operating conditions.” The authors of [39] described resilience as “an
active process of self-righting, learned resourcefulness and growth the ability to function
psychologically at a level far greater than expected given the individual’s capabilities and
previous experiences” and thus extending considerably the original definition of resilience
by referring to individuals. In the early 2000s, other definitions were proposed (i.e., [40–42])
and a more inclusive definition was developed in [43] that considered resilience as “the
capacity of a system, community or society potentially exposed to hazards to adapt, by
resisting or changing in order to reach and maintain an acceptable level of functioning
and structure. This is determined by the degree to which the social system is capable of
organising itself to increase this capacity for learning from past disasters for better future
protection and to improve risk reduction measures.” It is worth noting the importance
given to the social dimension and the role of learning from the past and future protection
actions. Ref. [44] proposed an inter-related concept of resilience that considers technical,
organizational, social and economic dimensions and it may assess the performance of
critical systems (i.e., electric power, water, road infrastructures, and critical structures) and
the social and economic dimensions of communities. Later, [32,45] developed a mathe-
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matical formulation that assesses the level of functionality or performance by including
recovery time [32,45–47], as the period necessary to restore the functionality of the system
to a desired level. This paper follows the theoretical formulation of resilience proposed
by [32] that allows to calculate quantitatively resilience of a system subjected to an event at
a specific time (t0e):

R =
∫ t0E+RT

t0E

Q(t)
RT

dt (1)

where

• t0E is the time of occurrence of the event E,
• RT is the repair time (or recovery time) necessary to restore the functionality,
• Q(t) is the recovery function that quantifies the recovery process to return to the

pre-event level of functionality.

Resilience is graphically designed as the normalized shaded area underneath the
recovery function Q(t) and thus its quantification is based on the definition of Q(t) functions
and depends on two important contributions [48,49]: (1) A loss model is necessary to assess
the reduction of functionality due to the impact of natural hazards in correspondence with
the time of occurrence. Risk assessments require probabilistic-based approaches to consider
all the possible damage and failure scenarios. (2) A recovery model describes a series of
events, actions, or changes to enhance the capacity of an affected system or a community,
when faced with singular, multiple, or unique shocks and stresses. Recovery functions
are essential for evaluating resilience but influenced by many variables, time and spatial
dimension with disparities among different geographic areas, in the same community or
state and showing different rates and quality of recovery.

When climate change is considered, it affects both previous models. (1) Loss model
needs to consider the role of climate change in modifying the damage of the systems. In
particular, models of damage may be described by the existing CDF [25,26] and defined
in terms of a specific environmental variable (i.e., temperature) and consequently losses
need to be assessed from these models. (2) Recovery model describes at every step of the
considered environmental variable, the repair time TR and the final functionality (QE)
that the system will recover at the repair time. These quantities depend on the way the
community preparedness and available resources are affected by climate change.

Therefore, the proposed methodology aims to introduce a dependency on the environ-
mental variable inside the definition of recovery functions. In this regard, resilience may
be extended to climate change as:

R(t, Θ) =
∫ Θ1

Θ0

1
∆Θ

∫ t0E+RT(Θ)

t0E

Q(t, Θ)

RT(Θ)
dtdΘ (2)

where
Θ is the environmental variable (EV) for describing the climate change,
Θ0 and Θ1 are the EVs at the beginning and at the end of the considered period of

time (intended as an evolutionary process).
The paper considers the temperature as the reference environmental variable for

assessing the role of climate change on resilience.

3. Recovery Model (RM)

Recovery model presents disparities among different geographic areas in the same
community or state, showing different rates and quality of recovery. Different types of
recovery functions (shown in Figure 1) can be selected depending on the system and society
preparedness response and this paper investigates the three possible recovery functions
proposed in the literature: linear, exponential [50], and trigonometric [51]. Therefore:
Linear:

Q(t, Θ) =
t·(QE − QI + L)

TR
+ QI − L (3a)
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Exponential:

Q(t, Θ) = (QI − L )·e
t

TR ln QE
QI−L (3b)

Trigonometric:

Q(t, Θ) = (QE − QI + L )·sen
(

t·π
2TR

)
+ QI − L (3c)

that satisfy two conditions: (1) Q = QI − L (for t = 0) and (2) Q = QE (for t = TR)
and where

• QI is the initial functionality at t0;
• QE is the final functionality at the end of the recovery process and that the system will

recover at the repair time;
• L is total loss that determinates the level of functionality due to the NH and the first

point of the recovery function (at the occurrence time t0E).

Figure 1. (a) Recovery model (linear); (b) recovery model (exponential); (c) recovery model (trigonometric).
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It is worth noting that QI, QE, and L are described as functions of the EV but constant
during the recovery process, following the original assumptions made by [32].

Introducing (3) into (2) and developing the calculations, it is possible to define re-
silience in the (t, Θ) domain (Figure 2) and referring to three recovery models:
Linear:

R(t, Θ) =
∫ Θ2

Θ1

1
∆Θ

(
QE + QI

2
− L

)
dΘ (4a)

Exponential:

R(t, Θ) =
∫ Θ2

Θ1

1
∆Θ

(
QE − QI + L

ln QE
QI−L

)
dΘ (4b)

Trigonometric:

R(t, Θ) =
∫ Θ2

Θ1

1
∆Θ

((
2
π

− 1
)
·(QI − L) +

2
π
·QE

)
dΘ (4c)

It is worth noticing that the terms QI, QE, and L define the variability of R along the
EV associated to the climate change.

Figure 2. Resilience in the domain (t, Θ), linear recovery model.

4. Loss Model (LM)

This paper proposes to model the evolutionary process due to climate change by
including the environmental variable inside the loss model. The evolutionary process
is based on CDF that uses regression analyses to derive relationships among damage
parameters derived from the various sectoral models [20]. However, CDF presents some
important limitations that need to be considered. First of all, they generally consider
only one region of the world and they cannot comprehensively address all sectors that
are impacted by climate change. In addition, they cannot integrate completely cross-
sectorial results into the system of economic impacts and thus CDF may underestimate the
economic and social context in which the biophysical and economic damages from climate
changes are expected to occur. Finally, natural events associated with climate change are
characterized by very high uncertainty, which greatly complicates the modelling of their
economic impact. For example, for the infrastructure arena, it is fundamental to considering
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indirect losses [50–52] and their interactions (i.e., impacts of transportation and energy
failing at once). In addition, CDF may only allow incomplete coverage and valuation of
ecosystem effects and incomplete treatments of the impacts of extreme events in general
(i.e., the modification of the Atlantic Meridional Overturning Circulation). Therefore,
the loss model is calculated as a function of the environmental variable (particularly the
temperature) to define the increase of the losses due to climate change (and graphically
shown in Figure 2 with a red line). In the way the framework is built, CDF curves may
be included inside the framework (4) to have semi-empirical assessments to describe the
increase of losses derived by climate change. In order to show a case study and discuss
the results, two analytical formulations were herein considered to model the evolutionary
process: (a) a linear and (b) an exponential function that describe the increase of losses over
the EV. Therefore, the role of climate change on resilience quantification was considered.
Linear:

L(Θ) =
QI

Θ2 − Θ1
(Θ − Θ1) (5a)

Exponential:

L(Θ) = QI

(
e

Θ−Θ2
Θ2−Θ1 +

1
e

Θ − Θ2

Θ2 − Θ1

)
(5b)

that satisfy two conditions: (1) L = 0 (for Θ = Θ1) and (2) L = QI (for Θ = Θ2).
Figure 3 shows Equation (5).

Figure 3. (a) Loss model L (Θ), linear; (b) loss model L (Θ), exponential.
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5. Resilience Assessment

The assessment of resilience consists of implementing (5) inside (4) and assuming that
QF and QI are not functions of Θ. Table 1 shows the results of the calculation of resilience
for all the proposed cases: linear, exponential, and trigonometric RM and linear and
exponential LM. It is possible to define a coefficient γ called recovery efficiency that allows
to estimate the effect on resilience of the recovery model. In particular, the trigonometric
loss model is generally used when the recovery process is driven by less resources than
those available for the linear process and here it is demonstrated that the recovery efficiency
(γ = 1 − 2

π ) is around 36.33%. On the contrary, the exponential model represents a system
with a big amount of resources in the beginning of the recovery process and they rapidly
decrease at the end. If compared with the linear case, recovery efficiency (γ = e − 1)
increases by +71.82%.

Table 1. Resilience calculation for linear, exponential, and trigonometric Recovery Model and linear
and exponential Loss Model.

Resilience Linear LM Exponential LM

Linear RM QE
2 + QI

QE
2 + QI

3−e
2e

Exponential RM
(

QE
2 + QI

)
(e − 1)

(
QE
2 + QI

3−e
2e

)
(e − 1)

Trigonometric (RM)
(

QE
2 + QI

)(
1 − 2

π

) (
QE
2 + QI

3−e
2e

)(
1 − 2

π

)

Comparing the results for linear and exponential loss models, it is worth noting that
when losses increase rapidly, the system may not be fast enough to react and thus its
resilience decreases. In particular, resilience depends on QE and QI. The contribution of
QE is insensitive to the loss model and contributes for 50%. QI significantly depends on
the rate of increase of the loss model and for the exponential model it contributes only with
a rate of 3−e

2e (0.52%).
Overall, resilience is a commonly used parameter for a wide range of stakeholders and

multi-sectorial actors, such as infrastructure owners, transportation authorities, and public
administrators that may be interested in considering the long-term effects due to climate
change. Therefore, considering the effects of climate change in terms of resilience allows to
improve the readability of the outputs. When climate change is included, the results show
an increase of losses due to the evolutionary process of the temperature, selected as the
environmental variable. The dependency of such evolutionary process allows to estimate
the effects of climate change on the resilience of the system.

6. Case Study

This section applies the previous formulations to a case study that was proposed
in [52–54], where the assessment of Soil Structure Interaction (SSI) effects was carried
out. The present paper does not consider SSI since the effects of soil deformability were
neglected. The structure (Figure 4) consists of a typical Californian Ordinary Standard
Bridge (OSB) designed according to the Caltrans Seismic Design Criteria, [55]. The bridge
was modeled with a 3D finite element model (Figures 5 and 6) with Opensees [56,57] and
some assumptions to reduce the computational cost (see [54]). The soil was considered
stiff, by as assuming a 200 m × 200 m × 20 m 3D soil mesh (6360 modes and 5330 non-
linear “Bbar brick” elements). The element dimensions and absorbent boundary conditions
were assumed the same as those performed in [54]. The bridge was founded of a stiff
layer (named STIFF in [54]) in order to reduce the effects of the soil, modelled with the
PressureIndependMultiYield (PIMY, [57]), whose representative parameters are shown
in Table 2.
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Figure 4. Case study.

Figure 5. Finite element model.

Figure 6. Benchmark bridge.

Table 2. PressureIndependMultiYield model: soil parameters.

Soil Properties

Mass density (kN/m3) 18
Shear Modulus (MPa) 150
Bulk Modulus (MPa) 750

Cohesion (kPa) 75
Shear wave velocity (cm/s) 430

The abutment foundations consisted of 0.5 m concrete slabs, modelled with rigid-link
elements for both abutments. The foundation of the column was modelled as a single Type
I Caltrans 20 m-pile shaft. The 25 m-embankments were founded on 0.5 m foundations
with a total weight of 30,000 kN. The 90 m-deck was modelled with elastic beam elements
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(cross section: 5.72 m2, moment of inertia about transversal axis: 2.81 m4 and vertical
axis: 53.9 m4, distributed loads: 130.3 kN/m), with elastic material (Young modulus:
2.8 × 107 kPa, shear modulus: 1.15 × 107 kPa, density: 24 kN/m3). The column was
connected with the deck with a fixed connection by restraining all the components of
deformations in the 6 directions. Non-linear forced-based beam elements and fiber-section
(cross section: 0.95 m2, moment of inertia about longitudinal and transversal axis: 0.108 m4)
were applied to model the 6.71 m-column that was connected with the deck with Equaldof
(fixed connection). Deck and abutments were connected with zero-length elements (with
high stiffness) in the transversal and vertical directions and with bearing pads along
the longitudinal connections, realized with Soft Damping Rubber Bearings (modulus of
elasticity: G = 0.4 MPa and equivalent viscous damping: n = 10%), more details in [54].

One-hundred input motions were selected from the PEER NGA database (http:
//peer.berkeley.edu/nga/ (accessed on 10 February 2021)) and are composed of three
perpendicular acceleration time history components (two lateral and one vertical), as
in [52]. The ground motion hazard was selected in order to reproduce infrequent events of
large magnitude by following [58,59] that considered 2%, 10%, and 50% probabilities of
exceedance in 50 years for bridge configurations. Figure 7 shows the cumulative density
function (CDF) for the 100 motions and PGA, chosen as the reference intensity measure.

Figure 7. Benchmark bridge.

Figures 8 and 9 show the response in correspondence of CNP, chosen as the most severe
seismic scenarios for shear forces at the top and at the base of the column, respectively. It
is worth noting the importance of non-linearity in the performance of the bridge for both
considered positions. In addition, the displacements at the base are not zero because soil
deformability (even if small) was considered in the model. However, the displacements at
the top of the column are mainly due to the effects of the structural flexibility because the
effects of soil-structure interaction are not significant.

http://peer.berkeley.edu/nga/
http://peer.berkeley.edu/nga/
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Figure 8. Displacement vs. shear force at the top of the column for the most severe earthquake.

Figure 9. Displacement vs. shear force at the base of the column for the most severe earthquake.

The aim of the case study is to investigate the role of climate change in the assessment
of resilience. In this regard, the two selected evolutionary processes were used to model
the dependency of losses on the temperature, selected as the environmental variable. In
particular, the assumptions at the base of the two loss models have important consequences
in the increase of losses and therefore on the final calculation of resilience.

Assuming the formulation of losses proposed in [54]:

L = RCR + i·RT (6)

where

• RCR is the total repair cost ratio defined as the ratio between the cost of repair and the
cost of replacement (without including demotion and expressed in percentage).

• RT is the total repair time expressed in crew working days (CWD) and
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• i is the coefficient that defines indirect costs.

Some assumptions were considered: (1) the final functionality equal to 100% (QE = 1)
and (2) the indirect losses equal to 10% RT (i = 0.1). Then, it was possible to calculate the
resilience from Table 3, by considering three specific probabilities of exceedance in 50 years
(2%, 5%, and 10%), more details in [54].

Table 3. Repair Time and total Repair Cost Ratio values for several probability of exceedance.

Probability of Exceedance RT (CWD) RCR (%)

50% 4.0 2.5
10% 20.0 8.8
2% 52.2 33.3

Tables 4 and 5 represent the values of resilience when linear and exponential evolu-
tionary processes are accounted for in the loss model, respectively. It is worth noting the
reduction of resilience due to the exponential evolutionary process in comparison with the
linear process: for a linear LS, the values are all more than 1, while for the exponential case,
the system is much less resilient (with values smaller than 1 and for trigonometric RM, the
value reaches 0.2). Such a reduction depends on the rate of losses that is too rapid for the
system to react when the evolutionary process is modeled with an exponential formulation.

Table 4. Resilience linear LM (for the selected probability of exceedance).

Probability of
Exceedance Linear RM Exponential RM Trigonometric RM

50% 1.471 2.528 0.535
10% 1.392 2.392 0.506
2% 1.115 1.916 0.405

Table 5. Resilience exponential LM (for the selected probability of exceedance).

Probability of
Exceedance Linear RM Exponential RM Trigonometric RM

50% 0.550 0.946 0.200
10% 0.546 0.939 0.198
2% 0.532 0.914 0.193

7. Conclusions

Quantification of resilience should consider the effects of climate change to be used
as an indicator for future plans in infrastructure engineering. This paper contributes
to this issue by proposing a resilience-based framework that models the uncertainties
connected with climate change. Three recovery models and two loss models were proposed
based on different analytical formulations in order to realistically assess resilience under
different conditions. The effects of climate change were introduced inside the loss model
by accounting two evolutionary processes (linear and exponential) and thus to consider
the increase of damage due to the selected environmental variable (the temperature). The
proposed framework was applied to a two-span Californian highway bridge in order to
estimate recovered functionality. The paper demonstrates the importance of considering
climate change by presenting readable findings for a wide range of different stakeholders,
particularly for infrastructural decision-makers.

Overall, the paper may be the base for many interdisciplinary applications in order to
include future perspectives in the assessment of designs and recovery solutions.



Infrastructures 2021, 6, 76 12 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks Claudio Muccioli for his assistance in developing the analyti-
cal formulation proposed in the paper.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Dehgani, M.; Flintsch, G.; Mcneil, S. Impact of road conditions and disruption uncertainties on network vulnerability. J. Infrastruct.

Syst. 2014, 20, 04014015. [CrossRef]
2. Moini, N. Modeling of Risks Threatening Critical Infrastructures: System Approach. J. Infrastruct. Syst. 2015, 22, 04015010.

[CrossRef]
3. Nourzad, S.H.H.; Pradhan, A. Vulnerability of Infrastructure Systems: Macroscopic Analysis of Critical Disruptions on Road

Networks. J. Infrastruct. Syst. 2015, 22. [CrossRef]
4. Eidsvig, U.M.K.; Kristensen, K.; Vangelsten, B.V. Assessing the risk posed by natural hazards to infrastructures. Nat. Hazards

Earth Syst. Sci. 2017, 17, 481–504. [CrossRef]
5. Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J.C.J.M.; Bouwer, L.M.; Bubeck, P.; Ciavola, P.; Genovese, E.;

Green, C.; et al. Assessing the costs of natural hazards—State of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 2013,
13, 1351–1373. [CrossRef]

6. Hafezi, M.; Sahin, O.; Stewart, A.R.; Mackey, B. Creating a Novel Multi-Layered Integrative Climate Change Adaptation planning
Approach Using a Systematic Literature Review. Sustainability 2018, 10, 4100. [CrossRef]

7. Schmitt, K.; Albers, T.; Pham, T.T.; Dinh, S.C. Site-specific and integrated adaptation to climate change in the coastal mangrove
zone of Soc Trang Province, Viet Nam. J. Coast. Conserv. 2013, 17, 545–558. [CrossRef]

8. Turner, R.K.; Palmieri, M.G.; Luisetti, T. Lessons from the Construction of a Climate Change Adaptation Plan: A Broads Wetland
Case Study. Integr. Environ. Assess. Manag. 2016, 12, 719–725. [CrossRef]

9. Nay, J.J.; Abkowitz, M.; Chu, E.; Gallagher, D.; Wright, H. A review of decision-support models for adaptation to climate change
in the context of development. Clim. Dev. 2014, 6, 357–367. [CrossRef]

10. Voinov, A.; Shugart, H.H. “Integronsters”, integral and integrated modeling. Environ. Model. Softw. 2013, 39, 149–158. [CrossRef]
11. Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; Elsawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli,

A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and management.
Environ. Model. Softw. 2013, 47, 159–181. [CrossRef]

12. UNDESA. Report of the Capacity Building Workshop and Expert Group Meeting on Integrated Approaches to Sustainable Development
Planning and Implementation; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015.

13. Boyd, E. Climate adaptation: Holistic thinking beyond technology. Nat. Clim. Chang. 2017, 7, 97–98. [CrossRef]
14. Mach, K.J.; Field, C.B. Toward the next generation of assessment. Annu. Rev. Environ. Resour. 2017, 42, 569–597. [CrossRef]
15. Bjarnadottir, S.; Li, Y.; Stewart, M.G. A probabilistic-based framework for impact and adaptation assessment of climate change on

hurricane damage risks and costs. Struct. Saf. 2011, 33, 173–185. [CrossRef]
16. Cui, W.; Caracoglia, L. Exploring hurricane wind speed along US Atlantic coast in warming climate and effects on predictions of

structural damage and intervention costs. Eng. Struct. 2016, 122, 209–225. [CrossRef]
17. Lin, C.Y.; Cha, E.J. Hurricane Risk Assessment for Residential Buildings in the Southeastern US Coastal Region in Changing

Climate Conditions Using Artificial Neural Networks. Nat. Hazards Rev. 2020, 21, 04020024. [CrossRef]
18. Nordhaus, W.; Boyer, J. Warming the World: Economic Models of Global Warming; MIT Press: Cambridge, MA, USA, 2000.
19. Füssel, H.M.; Toth, F.L.; van Minnen, J.G.; Kaspar, F.R.A.N.K. Climate impact response functions as impact tools in the tolerable

windows approach. Clim. Chang. 2003, 56, 91–117. [CrossRef]
20. Neumann, J.E.; Willwerth, J.; Martinich, J.; McFarland, J.; Sarofim, M.C.; Yohe, G. Climate Damage Functions for Estimating the

Economic Impacts of Climate Change in the United States. Rev. Environ. Econ. Policy 2020, 14, 25–43. [CrossRef]
21. Arnell, N.W.; Brown, S.; Gosling, S.N.; Hinkel, J.; Huntingford, C.; Lloyd-Hughes, B.; Lowe, J.A.; Osborn, T.; Nicholls, R.J.;

Zelazowski, P. Global-scale climate impact functions: The relationship between climate forcing and impact. Clim. Chang. 2016,
134, 475–487. [CrossRef]

22. Nordhaus, W. Economic aspects of global warming in a post-Copenhagen environment. Proc. Natl. Acad. Sci. USA 2010, 107,
11721–11726. [CrossRef] [PubMed]

23. Anthoff, D.; Tol, R.S.J. The uncertainty about the social cost of carbon: A decomposition analysis using FUND. Clim. Chang. 2013,
117, 515–530. [CrossRef]

24. Hope, C. Critical issues for the calculation of the social cost of CO2: Why the estimates from PAGE09 are higher than those from
PAGE2002. Clim. Chang. 2013, 117, 531–543. [CrossRef]

http://doi.org/10.1061/(ASCE)IS.1943-555X.0000205
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000263
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000266
http://doi.org/10.5194/nhess-17-481-2017
http://doi.org/10.5194/nhess-13-1351-2013
http://doi.org/10.3390/su10114100
http://doi.org/10.1007/s11852-013-0253-4
http://doi.org/10.1002/ieam.1774
http://doi.org/10.1080/17565529.2014.912196
http://doi.org/10.1016/j.envsoft.2012.05.014
http://doi.org/10.1016/j.envsoft.2013.05.005
http://doi.org/10.1038/nclimate3211
http://doi.org/10.1146/annurev-environ-102016-061007
http://doi.org/10.1016/j.strusafe.2011.02.003
http://doi.org/10.1016/j.engstruct.2016.05.003
http://doi.org/10.1061/(ASCE)NH.1527-6996.0000390
http://doi.org/10.1023/A:1021340513936
http://doi.org/10.1093/reep/rez021
http://doi.org/10.1007/s10584-013-1034-7
http://doi.org/10.1073/pnas.1005985107
http://www.ncbi.nlm.nih.gov/pubmed/20547856
http://doi.org/10.1007/s10584-013-0706-7
http://doi.org/10.1007/s10584-012-0633-z


Infrastructures 2021, 6, 76 13 of 14

25. Marten, A.L.; Kopp, R.E.; Shouse, K.C.; Griffiths, C.W.; Hodson, E.L.; Kopits, E.; Mignone, B.K.; Moore, C.; Newbold, S.C.;
Waldhoff, S.; et al. Improving the assessment and valuation of climate change impacts for policy and regulatory analysis. Clim.
Chang. 2013, 17, 433–438. [CrossRef]

26. Pizer, W.; Adler, M.; Aldy, J.; Anthoff, D.; Cropper, M.; Gillingham, K.; Greenstone, M.; Murray, B.; Newell, R.; Richels, R.; et al.
Using and improving the social cost of carbon: Regular, institutionalized updating and review are essential. Science 2014, 346,
1189–1190. [CrossRef] [PubMed]

27. Newbold, S.; Marten, A. The value of information for integrated assessment models of climate change. J. Environ. Econ. Manag.
2014, 68, 11–123. [CrossRef]

28. Stoerk, T.; Wagner, G.; Ward, R.E.T. Recommendations for improving the treatment of risk and uncertainty in economic estimates
of climate impacts in the Sixth Intergovernmental Panel on Climate Change Assessment Report. Rev. Environ. Econ. Policy 2018,
12, 371–376. [CrossRef]

29. Yohe, G.W. Characterizing transient temperature trajectories for assessing the value of achieving alternative temperature targets.
Clim. Chang. 2017, 145, 469–479. [CrossRef]

30. Ruggieri, R.; Porco, F.; Uva, G.; Vamvatsikos, D. Two frugal options to assess class fragility and seismic safety for low-rise
reinforced concrete school buildings in Southern Italy. Bull. Earthq. Eng. 2021, 19, 1415–1439. [CrossRef]

31. Amari, K.; Foufa, A.A.; Zouaoui, M.C.; Uva, G. Seismic Vulnerability of Masonry Lighthouses: A Study of the Bengut Lighthouse,
Dellys, Boumerdès, Algeria. Buildings 2020, 10, 247. [CrossRef]

32. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32,
3639–3649. [CrossRef]

33. Wildavsky, A. Searching for Safety; Technical report; Transaction Publishers: London, UK, 1988; Volume 10.
34. Hoiling, C.; Schindler, D.; Walker, B.W.; Roughgarden, J. Biodiversity in the Functioning of Ecosystems: An Ecological Synthesis.

In Biodiversity Loss: Economic and Ecological Issues; Cambridge University Press: Cambridge, UK, 1997; p. 44.
35. Horne, J.F.; Orr, J.E. Assessing behaviors that create resilient organizations. Employ. Relat. Today 1997, 24, 29–39. [CrossRef]
36. Mallak, L. Measuring resilience in health care provider organizations. Health Manpow. Manag. 1998, 24, 148–152. [CrossRef]

[PubMed]
37. Mileti, D.S. Disasters by Design: A Reassessment of Natural Hazards in the United States; National Academies Press: Wahington, DC,

USA, 1999.
38. Comfort, L. Shared Risk: Complex Systems in Seismic Response; Pergamom Press, 1999. Available online: http://books.google.it/

books?id=BqmDQgAACAAJ (accessed on 23 February 2021).
39. Paton, D.; Smith, L.; Violanti, J. Disaster response: Risk, vulnerability and resilience. Disaster Prev. Manag. 2000, 9, 173–180.

[CrossRef]
40. Kendra, J.M.; Wachtendorf, T. Elements of resilience after the world trade center disaster: Reconstituting New York city’s

emergency operations centre. Disasters 2003, 27, 37–53. [CrossRef] [PubMed]
41. Cardona, D.O. The Notions of Disaster Risk: Conceptual Framework for Integrated Management; Technical report; Inter-American

Development Bank, Universidad Nacional de Colombia, Istituto de Estudios Ambientales: Manizales, Colombia, 2003.
42. Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience; Earthscan LLC: 2003. Available online: http:

//books.google.it/books?id=cjjBdCzB-C0C (accessed on 23 February 2021).
43. UNISDR. Hyogo Framework for 2005–2015: Building the Resilience of Nations and Communities to Disasters. Technical Report.

In Proceedings of the World Conference on Disaster Reduction, Kobe, Japan, 18–22 January 2005.
44. Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von

Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19,
733–752. [CrossRef]

45. Bruneau, M.; Reinhorn, A. Exploring the concept of seismic resilience for acute care facilities. Earthq. Spectra 2007, 23, 41–62.
[CrossRef]

46. Porter, K.A.; Kiremidjian, A.S.; LeGrue, J.S. Assembly-based vulnerability of buildings and its use in performance valuation.
Earthq. Spectra 2001, 17, 291–312. [CrossRef]

47. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Seismic resilience of a hospital system. Struct. Infrastruct. Eng. 2009, 6, 127–144.
[CrossRef]

48. Forcellini, D. Seismic resilience of isolated bridge configurations with soil-structure interaction. Innov. Infrastruct. Solut. 2017, 2, 2.
[CrossRef]

49. Ranjbar, P.R.; Naderpour, H. Probabilistic evaluation of seismic resilience for typical vital buildings in terms of vulnerability
curves. Structures 2020, 23, 314–323. [CrossRef]

50. Kafali, C.; Grigoriu, M. Rehabilitation Decision Analysis. In Proceedings of the 9th International Conference on Structural Safety
and Reliability (ICOSSAR’05), Rome, Italy, 19–23 June 2005.

51. Chang, S.E.; Shinozuka, M. Measuring improvements in the disaster resilience of communities. Earthq. Spectra 2004, 20, 739–755.
[CrossRef]

52. Forcellini, D. Cost assessment of isolation technique applied to a benchmark bridge with soil structure interaction. Bull. Earthq.
Eng. 2017, 15, 51–69. [CrossRef]

http://doi.org/10.1007/s10584-012-0608-0
http://doi.org/10.1126/science.1259774
http://www.ncbi.nlm.nih.gov/pubmed/25477446
http://doi.org/10.1016/j.jeem.2014.01.002
http://doi.org/10.1093/reep/rey005
http://doi.org/10.1007/s10584-017-2100-3
http://doi.org/10.1007/s10518-020-01033-5
http://doi.org/10.3390/buildings10120247
http://doi.org/10.1016/j.engstruct.2010.08.008
http://doi.org/10.1002/ert.3910240405
http://doi.org/10.1108/09552069810215755
http://www.ncbi.nlm.nih.gov/pubmed/10346317
http://books.google.it/books?id=BqmDQgAACAAJ
http://books.google.it/books?id=BqmDQgAACAAJ
http://doi.org/10.1108/09653560010335068
http://doi.org/10.1111/1467-7717.00218
http://www.ncbi.nlm.nih.gov/pubmed/12703151
http://books.google.it/books?id=cjjBdCzB-C0C
http://books.google.it/books?id=cjjBdCzB-C0C
http://doi.org/10.1193/1.1623497
http://doi.org/10.1193/1.2431396
http://doi.org/10.1193/1.1586176
http://doi.org/10.1080/15732470802663847
http://doi.org/10.1007/s41062-016-0050-7
http://doi.org/10.1016/j.istruc.2019.10.017
http://doi.org/10.1193/1.1775796
http://doi.org/10.1007/s10518-016-9953-0


Infrastructures 2021, 6, 76 14 of 14

53. Forcellini, D. A new methodology to assess Indirect Losses in Bridges subjected to multiple hazards. Innov. Infrastruct. Solut.
2019, 4, 1–9. [CrossRef]

54. Forcellini, D. Resilience-Based Methodology to Assess Soil Structure Interaction on a Benchmark Bridge. Infrastructures 2020, 5,
90. [CrossRef]

55. Caltrans Seismic Design Criteria; Version 1.3; California Department of Transportation: Sacramento, CA, USA, 2003.
56. Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. Open System for Earthquake Engineering Simulation, User Command-Language

Manual; OpenSees Version 2.0; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA,
2009. Available online: http://opensees.berkeley.edu/OpenSees/manuals/usermanual (accessed on 23 February 2021).

57. Lu, J.; Elgamal, A.; Yang, Z. OpenSeesPL: 3D Lateral Pile-Ground Interaction. User Manual, Beta 1.0. Available online:
http://soilquake.net/openseespl/ (accessed on 23 February 2021).

58. Mackie, K.R.; Lu, J.; Elgamal, A. Performance-based earthquake assessment of bridge systems including ground-foundation
interaction. Soil Dyn. Earthq. Eng. 2012, 42, 184–196. [CrossRef]

59. Banerjee, S.; Prasad, G.G. Seismic risk assessment of reinforced concrete bridges in flood-prone regions. Struct. Infrastruct. Eng.
2013, 9, 952–968. [CrossRef]

http://doi.org/10.1007/s41062-018-0195-7
http://doi.org/10.3390/infrastructures5110090
http://opensees.berkeley.edu/OpenSees/manuals/usermanual
http://soilquake.net/openseespl/
http://doi.org/10.1016/j.soildyn.2012.05.023
http://doi.org/10.1080/15732479.2011.649292

	Introduction 
	Methodology 
	Recovery Model (RM) 
	Loss Model (LM) 
	Resilience Assessment 
	Case Study 
	Conclusions 
	References

