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Abstract: The majority of natural ground vibrations are caused by the release of strain energy
accumulated in the rock strata. The strain reacts to the formation of crack patterns and rock stratum
failure. Rock strain prediction is one of the significant works for the assessment of the failure of rock
material. The purpose of this paper is to investigate the development of a new strain prediction
approach in rock samples utilizing deep neural network (DNN) and hybrid ANFIS (adaptive neuro-
fuzzy inference system) models. Four optimization algorithms, namely particle swarm optimization
(PSO), Fireflies algorithm (FF), genetic algorithm (GA), and grey wolf optimizer (GWO), were
used to optimize the learning parameters of ANFIS and ANFIS-PSO, ANFIS-FF, ANFIS-GA, and
ANFIS-GWO were constructed. For this purpose, the necessary datasets were obtained from an
experimental setup of an unconfined compression test of rocks in lateral and longitudinal directions.
Various statistical parameters were used to investigate the accuracy of the proposed prediction
models. In addition, rank analysis was performed to select the most robust model for accurate
rock sample prediction. Based on the experimental results, the constructed DNN is very potential
to be a new alternative to assist engineers to estimate the rock strain in the design phase of many
engineering projects.

Keywords: rock strain; deep neural network; particle swarm optimization; ANFIS; rank analysis

1. Introduction

The earth’s crust is constantly pushed, pulled, and twisted by the tectonic movement
which leads to deformations. The deformations cause strains which results in accumulation
of stresses inside the earth’s rocky formation. Elastic strain, ductile strain, and fracture
are the three forms of strain that rock can suffer as a result of stress. The study of rock
strain is significant for predicting failure patterns in rock masses as well as gravel materials.
Permanent strain in gravel is one of the most essential concerns for pavement design,
construction, and maintenance over the long run. Plastic strain plays a significant effect
in the collapse of rock material [1]. Researchers made comparisons between the large
and small strain theories at different deformation levels [2]. The strain on a rock mass is
caused mostly by its weight and mechanical interaction with surrounding materials [3,4].
Golosov et al. [5] implemented a data processing approach for experimental assessments
of deformation in a rock sample exposed to uniaxial compression. Using a uniaxial com-
pression test, Yang et al. [6] investigated the effect of fracture combination on the strength
and deformation failure behavior of brittle marble samples. Finally, his research provides
a deeper understanding of the fundamental nature of rock failure under uniaxial stress.
Uniaxial compression tests on coarse crystal marble were done at nine pre-specified static-
to-quasi-static strain rates, and the strain rate dependency of rock strength, deformation,
and strain energy conversion were explored in depth by Li et al. [7]. The results of the
experimental work conducted to obtain the physical properties and stress–strain curves, as
well as to correlate the various parameters and develop an analytical model that predicts
the stress–strain curve of the sandstones, were presented by Marques and Chastre [8].
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From this researcher observed good agreement between the analytical model and the
experimental tests. According to Zhao et al. [9] the fracture growth and coalescence process
under uniaxial compression are highly related to the stress–strain curves of the rock-like
material with two flaws. In order to analyze strain in tectonic rock, the direct investigation
is not possible. To resolve these concerns, more investigators are focusing on numerical
and artificial intelligence (AI) based methods for determining rock characteristics [2,10–16].
Recently, soft computing techniques have been employed in a number of research works to
solve science and engineering problems [17–24].

Machine learning has had a huge impact on our daily lives in recent decades, with
its application expanding to efficient web search, self-driving vehicles, computer vision,
and optical character recognition. Fuzzy logic, in its original form lacks the learning ability
to adapt to new settings, making it impossible to utilize for predictive modeling on its
own [25]. Fuzzy logic’s ability can be improved by combining several AI techniques. The
adaptive neuro-fuzzy inference system (ANFIS) blends neural networks’ learning ability
and interpretation capability of human reasoning to handle uncertainty [26]. Recently,
meta-heuristic algorithms such as Firefly algorithm (FF), genetic algorithm (GA), grey
wolf optimizer (GWO) and particle swarm optimization (PSO) have been hybridized with
ANFIS for reducing errors in prediction of hazard risks [27–29]. The firefly algorithm is
endowed with a good balance of exploitation and exploration [30], [31]. On the other
hand, GA can easily search within a population, support multi objective optimization,
use probabilistic transition rule that makes it particularly suitable for mixed discrete or
continuous problems [32]. The GWO method was found to have a better exploitation of
unimodal functions. The GWO’s composite function finding capabilities revealed a high
level of local optima avoidance [33]. PSO is a form of meta-heuristic technique that can be
used to address problems that are nonlinear and non-continuous. Similar to other hybrid
ML-based meta-heuristic optimization techniques, it is a population-based search method
that searches parallelly using a set of particles [34].

The research on artificial neural networks (ANNs) gave rise to the concept of deep
learning [35]. Deep learning has recently made breakthroughs in a variety of fields, in-
cluding forest cover projection, flood and typhoon forecasting, image recognition, traffic
and other aspects, speech recognition, low-flow hydrological time series forecasting, fore-
casts in weather, recommendation systems and natural language processing [36–42]. Deep
learning promising results have prompted the authors to investigate and utilize it as an
AI methodology [43]. Significant numbers of technology giants are steadily gearing up
to adopt deep learning expertise. To understand why, consider the advantages of using
a deep learning technique. Maximum exploitation of unstructured data, capacity to give
high-quality results, elimination of superfluous costs, and elimination of the necessity for
data labeling are few significant advantages of this technology [35].

The aim of this study is to develop and use deep learning and meta-heuristic-based
hybrid ANFIS soft computing techniques to estimate the strain in a rock sample. A
comprehensive experimental dataset obtained from uniaxial compression tests on rocks is
used for this purpose. The description strain measurements for uniaxial compression tests
on rocks can be found in the works of Isah et al. [44]. A laboratory uniaxial compression test
was performed on the rock sample. The testing procedure was well-equipped to measure
the deformation of the rock sample at various points. On the longitudinal axis of the rock
sample, a gradual load was applied. Simultaneously, the deformation of the rock sample
was recorded in both longitudinal and lateral directions. On the lateral surface of the rock
sample, the electronic stain gauge was placed along the height in various directions. The
data from the acquisition system were acquired after the experiment on the rock sample. In
order to predict the model data, input and output are required for the proposed techniques.
As input parameters, the angle of the stain gauge, the height of the strain gauge, and the
stress in the rock sample were used. The strain in the rock sample’s longitudinal and lateral
dimensions was used as output parameters. The current study estimates and compares the
results obtained from deep neural network (DNN), hybrid ANFIS with FF, GA, GWO, and
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PSO for predicting lateral and longitudinal rock strains. The optimizer techniques have
been used to improve the ANFIS performance in this case.

2. Data Collection

For the prediction of strain in the rock sample, data are received from the laboratory
during an experimental test. The studies were carried out by Zavacky and Stefanak [45] on
two types of rock in order to study the variability of rock strain behavior. The deformation
of a cylindrical rock sample of 108 mm height and 40 mm in diameter was measured
through axial compression tests. A constant rate of force is applied to the sample’s lon-
gitudinal axis and monitored using a load cell. Deformation is measured using a series
of electronic strain gauges placed around the perimeter of the rock sample (as shown in
Figure 1a) at various heights and directions. The sample is equipped with a total of 24 strain
gauges (sensors). The deformation of the rock sample is measured in both the lateral (x)
and longitudinal (y) dimensions in each set. The details of rock sample and experimental
setup are shown in Figure 1. In the data acquisition system, all of these deformation and
load values are accumulated. Strain and stress are estimated based on the dimension of
the rock sample using the gathered data. As input parameters, the height of the strain
gauge, the direction (angle) of the strain gauge, and the stress in the rock sample are used.
The strain in the rock sample’s lateral and longitudinal dimensions is used as an output
parameter. Soft computing techniques are used to forecast the strain in a rock sample using
these input and output data. Finally, 2040 data from the rock sample have been collected
for the present work.
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Setup.

3. Design and Details of Soft Computing Techniques
3.1. Deep Neural Network

Artificial neural connections with a multi-layered architecture are known as DNN [46].
With several layers of abstraction, the layers between input and output may learn non-
linear patterns of data automatically. Back-propagation (BP) learning techniques are used
by DNNs to learn difficult patterns in datasets. To compute the representation of each layer
from the representations of the previous layer, BP methods adjust the learning parameters
of DNNs. It fine-tunes the network weights by back propagating the output errors. An
input layer, a number of hidden layers, and an output layer are all included in DNNs.
Wider vs. deeper networks, neuron count in hidden layers, activation function selection
at each layer, optimizer, batch size, loss function, and epochs are all hyper-parameters
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that affect the DNNs’ architecture. Under-fitting and over-fitting are two problems that
DNNs are prone to. Increased network capacity could remedy the problem of under-fitting.
Regularization strategies such as weight decay, early termination with dropout, and a
weight constraint, on the other hand, may be able to deal with over-fitting issues. DNN’s
two-layered design for runoff prediction is shown in Figure 2.
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3.2. Adaptive Neuro-Fuzzy Inference System

Soft computing approaches such as neural networks and fuzzy set theory are used to
create intelligent systems. The fuzzy inference system under study is considered to have
two inputs and one output for the simplicity. Fuzzy rules are always included in the fuzzy
inference system, which incorporates fuzzy analysis and the most popular fuzzy structure.
The rules themselves are made up of linguistic variables and fuzzy propositions, and can
be summarized as follows:

I f x is A and y is B then z is f (x, y)

In a fuzzy system, if a rule is invalid, it should be excluded; otherwise, it should
be included in the calculation. In the antecedents, A and B are fuzzy sets, and in the
following, z = f (x, y) is a crisp function. For the input variables x and y, f (x, y) is
usually a polynomial function. However, it might be any other function that can roughly
characterize the system’s output inside the fuzzy region defined by the antecedent. When
f (x, y) is constant, a zero order Sugeno fuzzy model emerges, which can be thought of as a
specific example of the Mamdani fuzzy inference system, in which each rule consequence
is described by a fuzzy singleton. A first order Sugeno fuzzy model is generated if f (x, y)
is a first order polynomial. The two rules of a Sugeno fuzzy inference system of first order
are as follows:

Rule 1: I f x is A1 and y is B1 then f1 = p1x + q1y + r1
Rule 2: I f x is A2 and y is B2 then f2 = p2x + q2y + r2
Takagi and Sugeno [47] proposed a type-3 fuzzy inference system, which is applied

here. Each rule’s output in this inference system is a linear combination of the input
variables plus a constant term. The weighted average of each rule’s output is the ultimate
result. Figure 3 shows the corresponding equivalent ANFIS structure.
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3.3. Fireflies Algorithm

The algorithm is proposed based on the social activity of fireflies in a tropical summer
sky and was developed by Yang [48]. There are around 2000 species of fireflies on the
planet, and the majority of them produce brief, harmonious light flashes that they can use
to attract potential prey or mating partners. These flashes may also be used as a warning
system. Because of two factors, most fireflies’ visibility may be limited within a short
distance. The law of Inverse Square, which refers to the strength of light from a source
over a certain distance r, is one of the factors. The I ∝ 1

r2 factor suggests that light intensity
decreases as distance increases (inverse relation). The properties of air are the second factor.
As the distance between the firefly and the viewer increases, the light produced by the
firefly is absorbed by the air, reducing the firefly’s visibility. To obtain an effective S-box,
the FF, a well-known meta-heuristic approach, is used.

Although the benefits of this swarm intelligence-based algorithm are close to those
of other swarm intelligence algorithms, FF is an artificial algorithm that can handle mul-
timodality, which other algorithms cannot. With increasing distance, attraction and at-
tractiveness decrease. As a result, a population can be divided into subgroups, each of
which is capable of swarming around each mode. These divisions aid fireflies in simulta-
neously establishing optimization conditions, particularly when the swarm size is larger
than the modes. In term 1√

γ limits the average distance of firefly groups that can be ob-
served by proximal groups mathematically. This algorithm mimics firefly mating and
information-exchange processes dependent on light flashes. This section covers the most
important characteristics of fireflies. The action of artificial fireflies is defined using three
idealized rules.

Since fireflies are unisex, they may attract each other regardless of gender.
The attractiveness of a firefly is directly proportional to the amount of light it produces.

Low-intensity fireflies are drawn to high-intensity fireflies. If there are no fireflies with a
brighter intensity in their vicinity, the degree of attractiveness decreases as the distance
between them grows, and fireflies move randomly.

The landscape fitness function determines the intensity of light emitted by fireflies,
which can be equal to the fitness value in the maximization problem. In the maximization
problem, the brightness is proportional to the value of the firefly function. When a firefly i
is attracted to the light of another firefly j, its movement can be calculated as

xi = xi + β0e−γr2(xi − xj
)
+ α(rand− 0.5) (1)

where, xi is the firefly’s current location i, rand is a random number between 0 and 1, α
represents the randomization parameter and β0 is always 1 and α is always [0, 1].
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3.4. Genetic Algorithm

GA is a general-purpose fusion method that finds the most optimal value of the
objective function based on Darwin’s theory of evolution. Simulating natural evolution
is one way to do this. Many problems in a wide variety of fields have been solved using
the genetic algorithm. In a nutshell, the genetic algorithm involves three steps: selection,
crossing, and mutations. A set of solutions is used to start the algorithm. The solution
group for the problem under investigation is referred to as the population. Crossover
is a technique for generating better offspring or new generations by merging different
chromosomes to create a new solution. This mutation mechanism is the process of obtaining
a new solution by modifying the organ in the population.

3.4.1. Initialization

A parameter (variable) in the solution is represented by each gene. The chromosome
is the collection of parameters that make up the solution. The population is a collection
of chromosomes. The order in which genes appear on a chromosome is significant. The
majority of the time, chromosomes are represented as binary 0s and 1s, however different
encodings are also available.

3.4.2. Selection

A portion of the current population is chosen to breed a new generation during each
successive generation. Individual solutions are chosen based on their fitness, with the
fitter solutions being more likely to be chosen. Certain methods of selection score the
fitness of each solution and choose the best solutions first. Since the former process may
be time-consuming, other approaches only score a random sample of the population. The
fitness function is a measure of the quality of the represented solution that is defined over
the genetic representation. The fitness function is always dependent on a problem.

3.4.3. Crossover

Crossover, also known as recombination, is a genetic operator used to merge the
genetic material of two parents to produce new offspring in evolutionary computation of
genetic algorithms. It is one way to produce new solutions from an existing population
stochastically, and it is similar to the crossover that occurs during biological reproduction.
Cloning an existing solution, which is similar to asexual replication, may also be used to
create new solutions. Before being applied to the population, newly created solutions are
usually mutated.

3.4.4. Mutation

Another genetic operator called mutation is used to maintain genetic variation in
a population of genetic algorithm chromosomes from one generation to the next. It is
comparable to biological mutation. A mutation changes the value of one or more genes
in a chromosome from its original state. The solution in mutation may differ significantly
from the previous solution. As a result, using mutation, GA will find a better solution.
During evolution, mutation occurs according to a user-defined mutation probability. This
probability should be set to a low value. The search will devolve into a primitive random
search if it is set too large.

3.5. Grey Wolf Optimizer

In the last two decades, meta-heuristic optimization algorithms have been commonly
used in a variety of engineering problems. Mirjalili et al. [33] suggested the Grey Wolf
Optimizer (GWO) algorithm, which was inspired by the social life of a grey wolf pack.
The key feature of the GWO in this algorithm is the hierarchy structure of grey wolf
leadership and hunting mechanism. Each wolf pack has four different types of grey wolves
to represent the leadership hierarchy: alpha (α), beta (β), delta (δ), and omega (ω). Wolves
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are the most responsible, while ω wolves are the least responsible. Furthermore, the second
and third orders in the pack are occupied by β and δ wolves.

A wolf leads the hunt, with β and δ wolves joining in on occasion, while ω wolves
encircle the prey based on the positions of the more experienced wolves. Each possible
solution to the optimization problem in the GWO algorithm is represented by a grey wolf’s
location. A grey wolf pack is a series of possible solutions in the GWO mathematical model,
where the best possible solutions in each iteration, graded from highest to lowest, are the

positions of α(
→
Pα), β(

→
P β), and δ(

→
Pδ) grey wolves. With the best estimate of a grey wolf’s

location, α, β, and δ grey wolves use the following equations to change the position of an ω

wolf (
→
Pω

N
) in the pack:

→
Pω

N
=

1
3
(
→
EPα +

→
EPβ +

→
EPδ) (2)

where
→
EPα,

→
EPβ, and

→
EPδ are the estimated positions of ω grey wolf by α, β, and δ grey

wolves, respectively, and can be determined as follows:

→
EPα =

→
Pα −

→
Aα·
→
Dα

→
Aα =

→
a ·(2→r 1,α − 1)

→
Dα =

∣∣∣∣2→r 2,α.
→
Pα −

→
Pω

∣∣∣∣ (3)

→
EPβ =

→
P β −

→
Aβ·
→
Dβ

→
Aβ =

→
a ·(2→r 1,β − 1)

→
Dβ =

∣∣∣∣2→r 2,β.
→
P β −

→
Pω

∣∣∣∣ (4)

→
EPδ =

→
Pδ −

→
Aδ·
→
Dδ

→
Aδ =

→
a ·(2→r 1,δ − 1)

→
Dδ =

∣∣∣∣2→r 2,δ.
→
Pδ −

→
Pω

∣∣∣∣ (5)

where
→
Pω denotes the ω grey wolf’s previous location,

→
r 1,i and

→
r 2,i are two random

vectors with values ranging from 0 to 1 and
→
a is a vector whose value decreases linearly

from 2 to 0 as the number of iterations increases. The GWO’s exploration capability is
guaranteed by a higher value of this parameter at the start of the estimation process, while
its exploitation sufficiency is assured by a lower value.

3.6. Particle Swarm Optimization

PSO is a meta-heuristic since it makes few to no assumptions about the problem
that needs to be solved and can search a large number of candidate solutions. Eberhart
and Kennedy [49] introduced PSO in 1995 as a heuristic and evolutionary algorithm. Its
basic principle is to mimic predatory behavior in birds, with the idea that with experience
and interaction with the flock, birds may change their search path. Each solution in
the optimization is the way that particles change their flying distance and directions by
changing their speed when searching for a location in space. In the iteration process, each
particle remembers its optimal location piD in the searching past. The global optimal
position pgD is the sum of all the optimal positions of all particles. The following is the
equation and parameter for particle movement.

V j+1
iD = ωV j

iD + c1r1

(
Pj

iD − xj
iD

)
+ c2r2

(
pj

gD − xj
iD

)
(6)

xj+1
iD = xj

iD + vj+1
iD (7)

where the particle is represented by i; j is the number of iterations that have been completed
so far; D is the dimension of the particle; The velocity and location in the j iteration are xj

iD

and vj
iD; The learning factors, c1 and c2, decide how piD and pgD affect the new velocity;

The pseudo random amounts r1 and r2 are uniformly distributed in the interval [0, 1]; The
inertia weight, x, adjusts the solution domain’s searching capacity.
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4. Statistical Parameter

The performance of the developed models was assessed using eight statistical param-
eters, namely, determination coefficient (R2), root mean square error (RMSE), variance ac-
count for (VAF), performance index (PI) Willmott’s index of agreement (WI), mean absolute
error (MAE), mean bias error (MBE) and mean absolute percentage error (MAPE) [50–58].
The mathematical expressions of the aforementioned indices can be given by:

R2 =
∑N

i=1(di − dmean)
2 −∑N

i=1(di − yi)
2

∑N
i=1(di − dmean)

2 (8)

RMSE =

√√√√ 1
N

N

∑
i=1

(di − yi)
2 (9)

VAF =

(
1− var(di − yi)

var(di)

)
× 100 (10)

PI = adj·R2 + (0.01×VAF)− RMSE (11)

MAE =
1
N

N

∑
i=1
|(yi − di)| (12)

MBE =
1
N

N

∑
i=1

(yi − di) (13)

MAPE =
1
N

N

∑
i=1

∣∣∣∣di − yi
di

∣∣∣∣× 100 (14)

WI = 1−
[

∑N
i=1(di − yi)

2

∑N
i=1{|yi − dmean|+ |di − dmean|}2

]
(15)

where di is the observed ith value, yi is the predicted ith value, dmean is the average of
observed value, N is the number of data sample and SD is the standard deviation.

5. Computational Processing and Data Analysis

Four optimizations (FF, GA, GWO, and PSO) are separately combined with ANFIS
which are four hybrid models called ANFIS-FF, ANFIS-GA, ANFIS-GWO, and ANFIS-PSO.
A DNN was also used in the study. To determine strain in the rock sample, an accurate
evaluation is done over a collection of 2040 datasets. These data values are normalized
between −1 and 1 in order to normalize the numeric column values in the dataset using a
common scale.

Normalized variable =
(

2(Actual variable−Minimum variable)
(Maximum variable−Minimum variable)

)
− 1 (16)

Following the normalization process, the datasets are divided into two parts, with
the training dataset accounting for 70% of the total dataset (1428 datasets) and the testing
dataset accounting for 30% (612 datasets). The models are trained using a training dataset.
The testing dataset is used to assess the effectiveness of the developed models’ fit.

6. Result and Discussion
6.1. Comparison of Stress Strain Curve

Strain is computed by using a strain gauge to measure the deformation of a rock
sample at various points. Rock is mostly a brittle substance that is strong in compression
but weak in tension. As a result of the tensile stresses in the rock sample, there was
increased tensile strain in the lateral (x) dimension. Initiation of a failure pattern in the rock
sample is indicated by the maximum strain. This maximum strain is studied by using strain
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values in variation of height, angle and dimensions of the rock sample. In this data, we
studied the strain values and concluded that the maximum values are obtained at sample
height of 81 mm and angle of 90 degrees in both lateral and longitudinal dimensions, i.e.,
0.06347 and 0.23227, respectively. Figures 4 and 5 depict the strain from the rock sample’s
lateral and longitudinal dimensions in respect to the strain gauge’s height and angle. The
behavior of a rock sample was investigated using different strain gauges installed in lateral
and longitudinal directions. The ultimate stress and strain values of all models, namely
DNN, ANFIS-FF, ANFIS-GA, ANFIS-GWO, and ANFIS-PSO, are compared to the actual
curve as shown in Figures 6 and 7. In this comparative study, it is clear that, DNN is the
best model in lateral and longitudinal when compared to other hybrid models. When just
hybrid models are considered, the ANFIS-PSO is the best model, followed by the ANFIS-FF,
ANFIS-GA, and ANFIS-GWO in both directions.
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6.2. Actual vs. Predicted

For the training and testing datasets in x and y directions, Figures 8–11 shows the
predicted strain values calculated by different generated models compared to experimental
results. The developed model’s performance will increase as the points get closer to the
regression line. Based on R2 values, it can be stated that the DNN model outperforms other
models, whilst the ANFIS-GWO is the least performing model.
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6.3. Statistical and Score Analysis

Tables 1 and 2 for the lateral and longitudinal strains, respectively, show the statistical
evaluation and score of the proposed models. Herein, the values of performance indices are
presented based on the normalized outputs. Models achieved better performances level in
all the cases of rock sample. RMSE, MAE, MAPE and MBE should be close to 0, R2 should
be near to 1, and VAF should be close to 100 to consider greater efficiency of the models.
As a result, all of the models’ better fit is verified. WI is a measure that ranges from 0 to 1
for the degree of error in model predictions. Two is considered to be the ideal value of PI.
According to the limitations and range of parameters in these tables, all models have the
best value. A score system is utilized to compare the predictive model’s performance. Each
five model’s training and testing data are used to calculate the score value. The number of
models determines the range of score values from 1 to 5. The causation value for a scoring
system is the ideal value, and the comparative best model has a higher score value. The
model’s overall performance is calculated by adding all of the score values for training and
testing data.

Total score =

[
m

∑
i=1

Si +
n

∑
j=1

Sj

]
(17)

where S is the score, i and j are the training and testing performance indicators, and m and
n are the number of performance indicators in the training and testing dataset. DNN (78
and 74) has the highest score, followed by PSO (56 and 62), GA (48 and 43), FF (39 and 37),
and GWO (18 and 24). As a result, when compared to the hybrid ANFIS model, DNN is
the best performing model.
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Table 1. Statistical parameter of all the models in lateral (x) direction.

Model DNN (x) ANFIS-FF ANFIS-GA ANFIS-GWO ANFIS-PSO

Parameter Train Test Train Test Train Test Train Test Train Test

R2 Value 0.9153 0.8992 0.8341 0.8336 0.872 0.8757 0.6837 0.6814 0.8753 0.8774
Score 5 5 2 2 3 3 1 1 4 4

RMSE
Value 0.004 0.0044 0.0055 0.0056 0.0049 0.005 0.008 0.0083 0.0048 0.0049
Score 5 5 2 2 3 3 1 1 4 4

VAF
Value 91.4161 89.7735 83.4162 83.3357 86.8917 87.3625 64.7175 63.5929 87.425 87.6902
Score 5 5 2 2 3 3 1 1 4 4

PI
Value 1.8253 1.7919 1.6624 1.6604 1.7356 1.7437 1.3221 1.3073 1.7444 1.7487
Score 5 5 2 2 3 3 1 1 4 4

MAPE
Value 23.3885 28.8132 36.9813 38.9793 32.2192 32.173 56.3826 59.7222 37.9168 38.6925
Score 5 5 3 2 4 4 1 1 2 3

WI
Value 0.9784 0.9744 0.9546 0.9557 0.9617 0.9638 0.91 0.9102 0.9654 0.9671
Score 5 5 2 2 3 3 1 1 4 4

MAE
Value 0.0028 0.0032 0.0041 0.0043 0.0036 0.0037 0.0061 0.0064 0.0037 0.0038
Score 5 5 2 2 4 4 1 1 3 3

MBE
Value −0.0004 −0.0004 8.3 ×

10−6 −0.0001 −0.0008 −0.0009 0.0006 0.0006 0.0006 0.0005

Score 4 4 5 5 1 1 2 2 2 3

Sub Total 39 39 20 19 24 24 9 9 27 29

Total 78 39 48 18 56

Table 2. Statistical parameter of all the models in longitudinal (y) direction.

Model DNN (y) ANFIS-FF ANFIS-GA ANFIS-GWO ANFIS-PSO

Parameter Train Test Train Test Train Test Train Test Train Test

R2 Value 0.9925 0.9927 0.9343 0.9391 0.9605 0.9606 0.8459 0.8525 0.97 0.9724
Score 5 5 2 2 3 3 1 1 4 4

RMSE
Value 0.0054 0.0055 0.0149 0.0149 0.012 0.0123 0.0232 0.0236 0.0104 0.0104
Score 5 5 2 2 3 3 1 1 4 4

VAF
Value 99.2325 99.2491 93.4307 93.8945 96.0017 95.9656 84.0775 84.6858 96.8645 97.0723
Score 5 5 2 2 3 3 1 1 4 4

PI
Value 1.9794 1.9797 1.8535 1.8628 1.9084 1.9077 1.6631 1.675 1.9281 1.9326
Score 5 5 2 2 3 3 1 1 4 4

MAPE
Value 9.3529 10.4821 28.0462 28.2933 25.6443 28.6168 48.2624 53.1781 22.7195 24.4756
Score 5 5 2 3 3 2 1 1 4 4

WI
Value 0.9979 0.9979 0.9831 0.9839 0.989 0.9889 0.9531 0.9539 0.9916 0.9921
Score 5 5 2 2 3 3 1 1 4 4

MAE
Value 0.0035 0.0038 0.0105 0.0106 0.0091 0.0094 0.0177 0.018 0.0077 0.0077
Score 5 5 2 2 3 3 1 1 4 4

MBE
Value 0.0017 0.0018 0.0007 0.0009 −0.0029 −0.0023 0.0001 0.0002 −0.0016 −0.0013
Score 2 2 4 4 1 1 5 5 3 3

Sub Total 37 37 18 19 22 21 12 12 31 31

Total 74 37 43 24 62

6.4. Error Diagram

The predicted error level of the developed DNN, ANFIS-FF, ANFIS-GA, ANFIS-GWO
and ANFIS-PSO models for testing dataset are shown in the error diagram (Figures 12 and 13).
In error diagram are showing the minimum, average and maximum error value of the
predicted model. The DNN average error value (0.000096) is very less than ANFIS hybrid
model in x direction. GWO (0.0122) is slightly less in the average value of ANFIS hybrid
model, followed by GA (0.0219), FF (0.0301), and PSO (0.0357) and deviation of that value
also less. Simultaneously, DNN average error value (0.0047) in the y direction is lower than
that of other models. In y direction, considering ANFIS hybrid models FF is considered
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as best when compared to PSO (0.0247), GA (0.0268) and GWO (0.0637). PSO (0.8331 and
0.5223) is followed by FF (1.0689), GA (1.1027), and GWO (1.1287) in the x direction and
GA (0.5986), FF (0.7895), and GWO (1.2156) in the y direction when considering depth
of error in ANFIS hybrid models. It shows that, as compared to ANFIS hybrid models,
more than 95 percent of the error in the x and y directions of DNN model predictions
for the testing data are in a smaller interval, indicating that the error scatter is focused
around zero. Furthermore, the number of outliers in ANFIS hybrid models is higher than
in DNN models.
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6.5. Taylor Diagram

Figures 14 and 15 shows the Taylor diagrams of all best developed models for the
training and testing dataset in x and y directions, which illustrate how the predictable
values correspond to the experimental results. The compliance degree of the predictable
and experimental values is determined using three performance parameters: standard
deviation, RMSE, and correlation coefficient. When compared to other hybrid ANFIS
models, it reveals that the hybridized ANFIS model using PSO algorithms can provide the
best accurate predictions. However, the accuracy of the ANFIS-PSO model is not as good
as that of the DNN model in both directions.
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6.6. Error Matrix

In this section, Figures 16 and 17 show the amount of error associated with the models
based on several performance parameters. This is nothing but a heat map matrix that is
developed by comparing the ideal values of performance parameters. For example, R2

and RMSE have ideal values of one and zero. In this study, the values of these indices for
the DNN model (x direction) in the training phase are 0.9153 and 0.004, respectively. As a
result, the mentioned model attained an R2 of 8% (1 − 0.9153 = 0.0847) and an RMSE of
0% (0.004). Similarly, the values of PI are obtained as 1.8253 in the training phase of DNN
(x direction) which means the DNN model achieved 9% (1 − (1.8253/2) = 0.09) error as
the ideal value of PI is two. In the same way, inferences about the correctness of the other
indexes are reached. In this matrix, the DNN has achieved a comparatively lower error
in training and testing of the x and y directions. Simultaneously, ANFIS-GWO has the
worse result due to the larger error level in both the direction of training and testing. In the
ANFIS hybrid model, PSO is followed by GA and FF in both the training and testing of x
and y directions.
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7. Summary and Conclusions

In this study, the results of strain prediction in the lateral and longitudinal dimensions
of a rock sample have been presented. The strain in lateral and longitudinal dimensions
was predicted using the 2040 dataset. Three influencing parameters, namely height, angle,
and stress were considered as the input parameters for this purpose. Four hybrid ANFIS
models and DNN were utilized to predict strain. For training and testing of models, 70%
and 30% of the main dataset were used from the total dataset. Based on the experimental
results, the DNN (R2 = 0.9153; 0.8992 and 0.9925; 0.9927) was found to be more accurate
than hybrid ANFIS models, including ANFIS-PSO (R2 = 0.8753; 0.8773 and 0.9699; 0.9724),
ANFIS-GA (R2 = 0.8720; 0.8756 and 0.9604; 0.9606), ANFIS-FF (R2 = 0.834; 0.8336 and
0.9343; 0.9390) and ANFIS-GWO (R2 = 0.6837; 0.6814 and 0.8458; 0.8524) in both training
and testing of x and y directions. Herein, the values of R2 are mentioned in order of training
and testing phase for x and y directions, respectively. Apart from performance indices,
the employed models were analyzed using rank analyses. Overall, the DNN model was
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found to be the best performing model, followed by ANFIS-PSO, ANFIS-GA, ANFIS-FF,
ANFIS-GWO in both x and y directions in predicting the rock strain. Overall, the developed
DNN model can be used as a promising tool to predict the rock strain based on existing
experimental datasets. The future direction of this study may include a detailed assessment
of the developed DNN and hybrid models of other optimization algorithms and artificial
neural networks, extreme learning machines. In addition, a comparative assessment of
several conventional soft computing models can be performed.
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