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Abstract: Crack is a condition indicator of the pavement’s structure. Generally, crack detection is
an essential task for effective diagnosis of the road network. Moreover, evaluation of road quality
is necessary to ensure traffic security. Since 2011, a periodic survey of approximately 57,500 km of
Moroccan roads has been performed using an inspection vehicle (SMAC) which is equipped with
high resolution cameras and GPS/DGPS receivers. Until recently, the teams of the National Center
for Road Studies and Research (CNER) analyzed road surface states by visualization of pavement
surface image sequences captured by the Multifunctional Pavement Assessment System (SMAC)
in order to detect defects in road surfaces and classify them according to their type. However, this
method involves manual processing and is complex, time consuming and subjective. In this paper,
we propose an automated methodology for crack detection and classification in Moroccan flexible
pavements using Convolutional Neural Networks (CNN). Transfer learning is also applied by testing
a pre-trained Visual Geometry Group 19 (VGG-19) model. For the dataset used in this paper, the
results indicate that good crack detection and classification are achieved using both models.

Keywords: deep learning; convolutional neural network; pavement crack detection; VGG19; crack
classification; pavement inspection; image processing

1. Introduction

Road crack detection and crack type classification are necessary to ensure road dura-
bility, traffic security and driver safety [1]. In Morocco, roads are inspected every two years
in order to plan the necessary maintenance and reconstruction efforts [2].

In the past, the detection of road defects was performed visually by specialized agents
stopping every 200 m along the road and taking images in order to verify the state of road
damage, classify the different types of defects present (e.g., alligator cracking, longitudinal
cracking, pothole, transverse cracking) [2,3] and then determine the surface condition
indicator (ISU) [2]. Such visual inspections are very time consuming, complex and risky
for the inspectors. Since multi-functional road detection systems are safer and objective,
the National Center for Road Studies and Research (CNER) acquired, in 2011, a road
detection vehicle for the characterization of different road damage types (SMAC). The road
condition recording is completed at a vehicle velocity of 100 km/h. The multifunctional
pavement assessment vehicle is equipped with three front cameras and three macro cameras
operating with high resolution. It also contains lighting equipment for ensuring sufficient
brightness during recording at night and GPS/DGPS receivers to record the position of the
vehicle [2,4].

There are many studies present in the literature describing road surface inspection
systems. In 2017, Eisenbach et al., in [5], used a multifunctional road detection vehicle
with an inertial navigation system, laser sensors for evenness and texture measurement, a
2D laser range finder and two cameras. A majority of literature sources report, however,
less sophisticated recording equipment being used for such purposes. In many cases, a
smartphone mounted on a vehicle is used to acquire the pavement surface images [6–8].
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In Morocco, the image acquisition method for road defect detection has evolved, but
the analysis of the data is still based on traditional image processing performed manually
in the CNER laboratory using the image processing software “Argus” [2,4]. Since automatic
image processing in the field of road infrastructure is very limited in our country, this
paper proposes and evaluates a new method for automatic road crack detection using a
convolutional neural network (CNN) [9]. The proposed method allows us to classify the
road cracks into three classes: longitudinal, alligator type crack or no crack [1,3]. In order
to demonstrate the capabilities of the proposed CNN model, the results are also compared
with the classification outcome of a pre-trained transfer learning model (Visual Geometry
Group 19 [10]).

In the literature, several deep learning algorithms for image processing were pre-
sented to detect road cracks [8]. In 2016, Zhang et al., in [6], proposed a method for
crack detection from square image patches using ConvNets applied on a database of
500 images. Mandal et al., in [7], presented a neural network algorithm based on YOLO
V2 in 2018, using images obtained from a smartphone mounted on a vehicle. In the same
year, Maeda et al., in [8], demonstrated accuracies of 71% and 77% by applying MobileNet
and Inception V2, respectively. In this case, an inference time of 1.5 s, by developing a
large-scale image database taken by a vehicle-mounted smartphone, was used. In 2019,
Fan et al., in [11], achieved 99.92% accuracy when applying a deep learning algorithm for
adaptive segmentation to extract cracks from the pavement surface. In the same year, a
system that uses DCNN to detect and classify the pavement crack was developed [12].
Another end-to-end CNN model called DeepCrack was applied by Zou et al. in [13].
Although the results show that DeepCrack achieved an F1 score of over 87%, the model
was sensitive to crack image noise. In 2020, Weidong et al., in [14], used CrackSeg and
Mei, in [15], introduced a GoPro on the back of a vehicle in order to implement the Con-
nCrack method, which combines Wasserstein’s adversarial network and connectivity maps.
Fan et al., in [16], proposed an algorithm that uses an encoder–decoder architecture with
hierarchical feature learning and dilated convolution (U-HDN), and Sheta et al., in [17],
achieved an average accuracy of 97.27% working on a lightweight convolutional neural
network model used in real time. Fan et al., in [18], proposed an ensemble of convolu-
tional neural networks without a pooling layer using two public crack databases: CFD
and AigleRN. The results indicated that a good crack detection from measured recording
was achieved. In 2021, Fan et al., in [19], built a new RAO-UNet pavement crack detection
model using an encoder–decoder and achieved better performance in processing speed
and detection accuracy. In the same year, Hacıefendioğlu et al., in [20], deduced that the
number of cracks detected at concrete road surfaces was independent of weather conditions
during recording (sunny day and cloudy day) when they used a new approach based on
fast pre-trained R-CNN.

Fan et al., in [21], proposed a deep residual convolutional neural network called
Parallel ResNet for the purpose of detecting cracks at two publicly available datasets
(CrackTree200 and CFD). Xu et al., in [22], developed a new network called The LETNet
for crack detection in pavements, which is very effective, especially when dealing with
images of cracks recorded with a lot of noise and complex lighting conditions. Xu et al.,
in [23], obtained good results by applying Faster R-CNN and Mask R-CNN on a database
composed of only 130+ images.

Many studies presented in the literature describe powerful transfer learning algorithms
for the detection and classification of road cracks, especially when a large dataset is involved
(e.g., the pre-trained CNN architectures AlexNet [24–26], VGG-16 [27–29], ResNet [24–26]
SqueezeNet [23], GoogleNet [25–27] and VGG-19 [10,30]).

This paper addresses the following aspects of an automated crack detection method
and an example of its application for road inspection purposes:

• description of a novel inspection solution applied to Moroccan flexible pavement
using a multifunctional pavement assessment system vehicle (SMAC) and deep neural
networks for automatic crack detection and classification,
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• application of the classification method on a large dataset extracted from videos
captured by high-resolution cameras mounted on a SMAC vehicle,

• proposal and evaluation of a new method for automatic road crack detection using
a convolutional neural network (CNN). The results are further compared with the
outcome of a pre-trained transfer-learning VGG-19 model.

This paper is structured as follows: the dataset and methods used are described in
Section 2. The results of the two deep learning models for crack detection and classification
are evaluated and discussed in Section 3. Finally, the main conclusions are summarized in
the last section, Section 4.

2. Dataset and Methods
2.1. Measurement and Resulting Dataset

In the proposed road crack classification approach, we used real images extracted
from video frames of a video database delivered by the Moroccan National Center for Road
Studies and Research (CNER) and acquired by the SMAC system. The system is equipped
with three macro digital cameras with a field of view orthogonal to the road plane. For a
high-definition recording of the road surface, lighting with aligned strobe lights and three
front cameras are applied: one directed towards the front and two other optional cameras to
film the lateral environment of the road. Figure 1 shows a rear and a front view of a vehicle
equipped with the SMAC system. It is important to note that the Multifunctional Pavement
Inspection System SMAC is the first high-performance equipment used in Morocco to
capture surface videos of the pavement and its environment at traffic speed [2,4].
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Figure 1. Multifunctional Pavement Inspection System SMAC with macro cameras (left) and front
cameras (right).

In this work, we are particularly interested in the cracks of alligator and longitudinal
types, since they are the most common defects at the level of the Moroccan flexible pave-
ments. We extracted a dataset of 3287 images which were manually labelled. The labels are
divided into three classes (no crack, alligator crack and longitudinal crack), as exemplarily
shown in Figure 2 and described in Table 1.

Table 1. Types of road cracks.

Types of Road Damage Description Class Name

Longitudinal cracking Parallel to the centerline of the road Longitudinal crack

Alligator cracking Interlaced cracking pattern Alligator crack

No cracking No distress No crack

In this study, the image dataset is randomly divided into 50% of images for training,
25% for validation and 25% of the remaining image data for testing our models. The amount
of images used for training, validation and testing is listed in Table 2. The performance of
the proposed CNN model and the VGG-19 pre-trained model in the context of pavement
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crack detection and classification is evaluated using the collected, labeled and resized
images (size 250 × 250 RGB).
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Table 2. Number of images used for training, validation and testing.

Training Validation Test

1643 823 821

2.2. Convolution Neural Network

The CNN, also called ConvNet, is a deep learning algorithm first proposed in 1989
by LeCun et al. [31]. It is one of the most successful deep learning models for image
classification [9].

In this work, a CNN model with an input size of 250 × 250 pixels is applied. The
architecture of the model is shown in Figure 3. It is composed of seven convolutional
layers, six maxpooling layers, two fully connected layers and a last softmax layer for
classification. The convolutional layer is the first layer of a neural network and is considered
as a relevant feature extractor. Kernels and filters of the convolutional layer scan the images
to detect patterns.

The CNN consists of 3 convolution blocks, where the first block is composed of
3 convolution layers, the first and second layer contain 32 filters of size 3 × 3 pixels and the
third contains 64 filters of size 3 × 3 pixels. The three convolution layers are succeeded by
two maxpooling layers of filter size 2 × 2. The second block contains 2 convolution layers
with 64 filters of size 3 × 3 followed by 2 maxpooling layers with a filter of size 2 × 2. In
the third block, 2 convolution layers are given with 128 filters of size 3 × 3, succeeded by
2 maxpooling layers with a filter of size 2 × 2.
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We are using the activation function ReLU (Rectified Linear Unit) after each convo-
lution. According to equation 1, ReLU replaces all negative pixel values in the feature
map with 0. The application of ReLU also prevents the occurrence of the vanishing
gradient problem.

Relu(x) = Max(0, x) (1)

The maxpooling layer is used to perform the pooling. Its purpose is to reduce the
dimension of each feature map and to reduce the number of parameters and calculations
in the network while keeping the important information. The dropout layer comes after
the maxpooling layers to minimize the overfitting of the model. The dropout of the first
and second block is 25%, and the dropout of the third block is 50%. Flatten is used to
convert the feature map into one dimension (vector) for further classification. In our study,
the output of the flatten layer is a one-dimensional vector of dimension 1152. Then, this
vector is sent to a fully-connected network containing three dense layers. The first and
second fully connected layers contain 128 and 64 neurons, respectively. The mathematical
operation of the fully connected layer is defined by:

ZV0×1 = WV0×V1 IVi×1.BV0×1 (2)

where vi and v0 are the input and output vector size. Z is the output of the fully connected
layer. W represents the weights matrix, and B represents the bias matrix.

The final layer contains three neurons. It uses the softmax function (Equation (3)) as
an activation function for classification. As the input, it takes a vector of real values and
normalizes it to a probability between 0 and 1. This is the probability for the input image to
belong to one of the three classes.

So f tmax σ(z)i = ezi

/ k

∑
j=1

ezj (3)

2.3. Pre-Trained VGG-19 Model

The Visual Geometry Group 19 (VGG-19) transfer learning model was developed by a
research team at Oxford University [10]. This model is a deep learning model and has been
trained on millions of diverse images with complex classification tasks.
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In this section, we propose the use of a pre-trained Deep Convolutional Neural
Network (VGG19) model with transfer learning for automated pavement crack detection
and classification. Using Keras in Tensorflow, we applied the pre-trained model on our
database. The VGG-19 comprises 19 convolutional layers, as shown in Figure 4. It is
composed of 16 convolution layers with a filter size of 3 × 3 and 5 2 × 2 pooling layers.
This is followed by a fully connected layer with a filter size of 3 × 3, and a softmax layer
for image classification.
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3. Results

The performance of the two deep learning models for crack detection and classification
was evaluated on a database of 3287 Moroccan road images. The number of parameters for
each model is listed in Table 3. The program is currently implemented in Python code.

Table 3. Number of parameters in the used classification models.

Model Number of Parameters

CNN 479971

VGG-19 20099651

The results confirm that the CNN model used requires a lower number of parameters
compared with the VGG-19 pre-trained model. As listed in Table 3, the VGG-19 model
contains a four-times higher number of parameters than the CNN. We expect that having
more parameters significantly extends the classification time. Additionally, the number
of parameters in the VGG-19 model strongly indicates higher complexity of the model
compared with the CNN model. In this study, the number of training epochs is set to 40.
A larger value of training epochs may extend the training time and lead to overfitting of
the models.

Figures 5 and 6 summarize the results of the training and validation of the two
networks, CNN and VGG-19. The Loss function, observed during training and validation
phases, measures the rate of error in the model and, therefore, the performance of the
model. The VGG model converged to the minimum loss value of 10.47% at the 40th epoch,
and reached the minimum loss value of the validation of 22.72% at the 32nd epoch. The
lowest loss value of the proposed CNN model in training is 12.65% at the 40th epoch and,
in validation, is 18.65% at epoch 34/40.
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The results of our study are listed in Tables 4 and 5. To compare the performance
of the new CNN model with the VGG-19 model, a variety of evaluation metrics, such as
accuracy, precision, recall and F1-score, are calculated. These measures use the notions of
positive and negative. Table 4 shows the values of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (TN) calculated from the results of the confusion
matrices obtained after testing the two models, CNN and VGG-19, shown in Figure 7.

Table 4. Performance metrics for each class of CNN model.

Class Name Recall Precision F1-Score

Alligator crack 0.9522 0.9177 0.9345

Longitudinal crack 0.9157 0.8534 0.8853

No crack 0.9232 0.9908 0.9558
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Table 5. Performance metrics for each class of VGG-19 model.

Class Name Recall Precision F1-Score

Alligator crack 0.9692 0.8289 0.8934

Longitudinal crack 0.7878 0.9528 0.8624

No crack 0.9427 0.9542 0.9483
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Considering a positive class, true positive (TP) is the number of testing images that
are correctly classified. True negative (TN) is the number of the negative testing images
correctly classified as negatives. False positive (FP) is the number of negative images that
are tested and classified as positive. False negative (FN) is the number of positive images
that are classified as negative after the test.

In our study, four metrics are used for the evaluation of the proposed networks, which
are: accuracy, recall, precision and F1-score. According to Equation (4), the accuracy is
defined as the ratio of correctly classified images to the total number of tested images.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Recall is defined as the ratio of positive images correctly identified as positive to
the total number of True positive and False negative images, as given by the following
Equation (5).

Recall =
TP

TP + FN
(5)

Precision is the ratio of positive images correctly classified as positive to the total
number of true positive and false positive according to the following relation:

Precision =
TP

TP + FP
(6)

Finally, the F1-score measures accuracy by using the values of precision and recall
based on the following relation:

F1 score = 2 × Precision × Recall
Recall + Precision

(7)
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The values of precision, recall and F1-score of each class in our image dataset are listed
in Table 4. It is observed that the highest F1-score value results for the no crack class are
95.58% for CNN and 94.83% for VGG-19. Both models are most accurate in detecting the
no crack class. Moreover, both models are more accurate in the detection of alligator cracks
than in the detection of longitudinal cracks. This finding can be explained by the lower
number of images of the longitudinal crack class in the database. In our case, the CNN
model performs better than the VGG model in detecting all classes.

According to the summarized results in Table 6, both models show high F1-score
values. It means that both models have successfully detected and classified the images into
alligator crack, longitudinal crack and no crack. The CNN model performs with an F1-score
value of 93.19%, which is higher than the F1-score value of the VGG model (90.76%). The
above results show that the proposed CNN network performs better than the pre-trained
VGG-19 network.

Table 6. Recall, precision and F1-score values of models used for pavement crack classification.

Model Recall Precision F1-Score

CNN 0.9319 0.9319 0.9319

VGG-19 0.9076 0.9076 0.9076

The results of the proposed models deliver similar performance levels as many studies
presented in the literature for solving road crack detection and classification problems, such
as using SVM [6], YOLO V2 [7] MobileNet and Inception V2 [8]. However, the comparison
with other deep learning algorithms is partially valid due to the fact that different databases
for training are used.

4. Conclusions

In this research, we have proposed a methodology for pavement image crack detection
and classification utilizing an artificial neural network, particularly, convolutional neural
networks applied for the classification of recordings from Moroccan pavement inspection.
The performance of two models was evaluated for the detection and classification of cracks
in pavement structures. We used a database of 3287 high-definition images extracted from
videos captured by high-resolution cameras mounted on the SMAC vehicle. We found that
the accuracy and F1-score of the CNN model are slightly higher compared with those of
the VGG-19 model, while the complexity and training duration of the latter, caused by a
larger network size, are significantly higher. This indicates that the crack detection and
classification are more accurately achieved with the CNN model, even though it contains
fewer convolution layers than the VGG-19 pre-trained model. The proposed CNN model
requires a smaller number of parameters compared to the pre-trained model, resulting in
better performance.

The results showed that the F1-score result of the alligator cracks, 93.45% for CNN and
89.34% for VGG-19, is larger than the results of longitudinal cracks: 88.53% for CNN and
86.24% for VGG-19. It is concluded that while the database used in this work is relatively
large, a larger dataset of pavement images with a higher amount of longitudinal cracks
would certainly increase the detection precision of the longitudinal crack class.

All the results indicated that the proposed CNN and pre-trained model VGG-19 can be
used for automatic detection and classification in Moroccan flexible pavement. Our research
also demonstrates the benefit of deep learning models in Moroccan road inspection.

In future work, we are planning to investigate the road crack classification performance
of other deep learning algorithms on larger databases in order to detect and classify
additional pavement damage types.
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the manuscript.



Infrastructures 2022, 7, 152 11 of 12

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laboratoire Centrale des Ponts et Chaussées. LCPC Méthode D’Essai No.52. Available online: https://www.ifsttar.fr/fileadmin/

user_upload/editions/lcpc/MethodeDEssai/MethodeDEssai-LCPC-ME52.pdf (accessed on 28 July 2015).
2. Analyse de la Méthode Marocaine des Degradations de Chaussées. Available online: http://www.ampcr.ma/actes/9eme_

congres_national_de_la_route/CONGRE/A4/A4_3.pdf (accessed on 8 October 2014).
3. Modèles de Dégradation des Chaussées Marocaines. Available online: http://www.ampcr.ma/actes/7eme_congres_national_

de_la_route/CONGRE/TH2/TH2_9.pdf (accessed on 25 October 2006).
4. Presentation du CNER. Available online: http://www.equipement.gov.ma/AR/Infrastructures-routieres/Reseau-Routier-du-

Maroc/Documents/brochure%20CNER%202019.pdf (accessed on 17 January 2020).
5. Eisenbach, M.; Stricker, R.; Seichter, D.; Amende, K.; Debes, K.; Sesselmann, M.; Ebersbach, D. How to get pavement distress detec-

tion ready for deep learning? A systematic approach. In Proceedings of the IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017;
pp. 2039–2047.

6. Zhang, L.; Yang, F.; Zhang, D.Y.; Zhu, J.Y. Road crack detection using deep convolutional neural network. In Proceedings of the
IEEE International Conference on Image Processing (ICIP), Philadelphia, PA, USA, 25–28 September 2016; pp. 3708–3712.

7. Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated road crack detection using deep convolutional neural networks. In Proceedings
of the IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5212–5215.

8. Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road damage detection and classification using deep neural networks
with smartphone images. Comput.-Aided Civ. Infrastruct. Eng. 2018, 1–15, 1127–1141. [CrossRef]

9. Introduction to Convolutional Neural Networks. Available online: https://cs.nju.edu.cn/wujx/paper/CNN.pdf (accessed on
30 April 2017).

10. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the ICLR,
San Diego, CA, USA, 7–9 May 2015.

11. Fan, R.; Bocus, J.M.; Zhu, Y.; Jianhao, J.; Wang, L.; Fulong, M.; Shanshan, C.; Ming, L. Road crack detection using deep
convolutional neural network and adaptative thresholding. In Proceedings of the IEEE Intelligent Vehicules Symposium, Paris,
France, 9–12 June 2019; pp. 474–479.

12. Yusof, N.A.M.; Osman, M.K.; Noor, M.H.M.; Ibrahim, A.; Tahir, N.M.; Yusof, N.M. Crack detection and classification in asphalt
pavement images using deep convolution neural network. In Proceedings of the 8th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), Penang, Malaysia, 23–25 November 2018; pp. 227–232.

13. Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deep Crack: Learning hierarchical convolutional features for crack detection.
IEEE Trans. Image Process. 2019, 28, 1498–1512. [CrossRef] [PubMed]

14. Weidong, S.; Guohui, J.; Hong, Z.; Di, J.; Lin, G. Automated pavement crack damage detection using deep multiscale convolutional
features. J. Adv. Transp. 2020, 2020, 1–11.

15. Mei, Q.; Gül, M. A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build.
Mater. 2020, 256, 119397. [CrossRef]

16. Fan, Z.; Li, C.; Chen, Y.; Wei, J.; Loprencipe, G.; Chen, X.; DiMascio, P. Automatic crack detection on road Pavements Using
Encoder-Decoder Architecture. Materials 2020, 13, 2960. [CrossRef] [PubMed]

17. Sheta, A.; Turabieh, H.; Aljahdali, S.; Alangari, A. Pavement crack detection using a lightweight convolutional neural network.
EPIC Ser. Comput. 2020, 69, 214–223.

18. Fan, Z.; Li, C.; Chen, Y.; Mascio, P.D.; Chen, X.; Zhu, G.; Loprencipe, G. Ensemble of Deep Convolutional Neural Networks for
Automatic Pavement Crack Detection and Measurement. Coatings 2020, 10, 152. [CrossRef]

19. Fan, L.; Zhao, H.; Li, Y.; Li, S.; Zhou, R.; Chu, W. Rao-Unet: A residual attention and octave Unet for road crack detection via
balance loss. IET Intell. Transp. Syst. 2021, 16, 332–343. [CrossRef]

20. Haciefendioglu, K.; Basaga, H.B. Concrete road crack detection using deep learning-based faster R-CNN method. Ir. J. Sc. Techn.
Transact. Civ. Eng. 2021, 46, 1621–1633. [CrossRef]

21. Fan, Z.; Lin, H.; Li, C.; Su, J.; Li, C.; Bruno, S.; Loprencipe, G. Use of Parallel ResNet for High-Performance Pavement Crack
Detection and Measurement. Sustainability 2022, 14, 1825. [CrossRef]

22. Xu, Z.; Guan, H.; Kang, J.; Lei, X.; Ma, L.; Yu, Y.; Chen, Y.; Li, J. Pavement crack detection from CCD images with a locally
enhanced transformer network. Int. J. Appl. Earth Observat. Geoinformat. 2022, 110, 102825. [CrossRef]

23. Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack Detection and Comparison Study Based on Faster R-CNN and
Mask R-CNN. Sensors 2022, 22, 1215. [CrossRef] [PubMed]

24. Ullah, A.; Elahi, H.; Sun, Z.; Khatoon, A.; Ahmad, I. Comparative Analysis of AlexNet, ResNet18 and SqueezeNet with Diverse
Modification and Arduous Implementation. Arab J. Sci. Eng. 2022, 47, 2397–2417. [CrossRef]

25. Jana, S.; Thangam, S.; Kishore, A.; Kumar, V.S.; Vandana, S. Transfer learning based deep convolutional neural network model for
pavement crack detection from images. Int. J. Nonlinear Anal. Applicat. 2022, 13, 1209–1223.

https://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/MethodeDEssai/MethodeDEssai-LCPC-ME52.pdf
https://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/MethodeDEssai/MethodeDEssai-LCPC-ME52.pdf
http://www.ampcr.ma/actes/9eme_congres_national_de_la_route/CONGRE/A4/A4_3.pdf
http://www.ampcr.ma/actes/9eme_congres_national_de_la_route/CONGRE/A4/A4_3.pdf
http://www.ampcr.ma/actes/7eme_congres_national_de_la_route/CONGRE/TH2/TH2_9.pdf
http://www.ampcr.ma/actes/7eme_congres_national_de_la_route/CONGRE/TH2/TH2_9.pdf
http://www.equipement.gov.ma/AR/Infrastructures-routieres/Reseau-Routier-du-Maroc/Documents/brochure%20CNER%202019.pdf
http://www.equipement.gov.ma/AR/Infrastructures-routieres/Reseau-Routier-du-Maroc/Documents/brochure%20CNER%202019.pdf
http://doi.org/10.1111/mice.12387
https://cs.nju.edu.cn/wujx/paper/CNN.pdf
http://doi.org/10.1109/TIP.2018.2878966
http://www.ncbi.nlm.nih.gov/pubmed/30387731
http://doi.org/10.1016/j.conbuildmat.2020.119397
http://doi.org/10.3390/ma13132960
http://www.ncbi.nlm.nih.gov/pubmed/32630713
http://doi.org/10.3390/coatings10020152
http://doi.org/10.1049/itr2.12146
http://doi.org/10.1007/s40996-021-00671-2
http://doi.org/10.3390/su14031825
http://doi.org/10.1016/j.jag.2022.102825
http://doi.org/10.3390/s22031215
http://www.ncbi.nlm.nih.gov/pubmed/35161961
http://doi.org/10.1007/s13369-021-06182-6


Infrastructures 2022, 7, 152 12 of 12

26. Khan, M.N.; Ahmed, M.M. Weather and surface condition detection based on road-side webcams: Application of pre-trained
convolutional neural network. Int. J. Transport. Sci. Technol. 2021, 11, 468–483. [CrossRef]

27. Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review.
Infrastructures 2021, 6, 115. [CrossRef]

28. Qu, Z.; Mei, J.; Liu, L.; Zhou, D. Crack Detection of Concrete Pavement with Cross-Entropy Loss Function and Improved VGG16
Network Model. IEEE Access 2020, 8, 54564–54573. [CrossRef]

29. Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Construct.
2019, 99, 52–58. [CrossRef]

30. Samma, H.; Suandi, A.S.; Ismail, N.A.; Sulaiman, S. Evolving Pre-Trained CNN Using Two-Layers Optimizer for Road Damage
Detection from Drone Images. IEEE Access 2021, 9, 158215–158226. [CrossRef]

31. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

http://doi.org/10.1016/j.ijtst.2021.06.003
http://doi.org/10.3390/infrastructures6080115
http://doi.org/10.1109/ACCESS.2020.2981561
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.1109/ACCESS.2021.3131231
http://doi.org/10.1162/neco.1989.1.4.541

	Introduction 
	Dataset and Methods 
	Measurement and Resulting Dataset 
	Convolution Neural Network 
	Pre-Trained VGG-19 Model 

	Results 
	Conclusions 
	References

