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Abstract: The seismic assessment of existing bridges is of the utmost importance to characterise the
main structural deficiencies, estimate the risk, prioritise retrofit interventions, or estimate losses and
repair costs in case of earthquakes. The above tasks require information on the damage mechanisms
likely to occur as well as on the damage extent over the structure. Such types of information are
generally not provided by classical fragility analysis, which is mainly focused on the evaluation of
the global performance of the bridge. In this paper, a systematic probabilistic methodology for the
evaluation of bridge fragility is proposed. The methodology aims at offering insight into the failure
mechanisms most likely to occur and the evolution and extent of damage within the bridge structure.
First, a mathematical description of the proposed analysis methods is given, then an application to a
realistic case study—a reinforced concrete multi-span simply supported deck link-slab bridge—is
provided to illustrate the applicability of the tool. A nonlinear 3D finite element model is developed,
and a multiple-stripe (nonlinear dynamic) analysis is performed by using a stochastic bidirectional
seismic input. The results highlight the suitability of the proposed methodology to reveal the main
structural deficiencies, the relations among different failure mechanisms (involving piers, bearings,
abutments, etc.), and the expected damage extent.

Keywords: earthquakes; fragility curves; bridges; damage mechanisms; failure; stochastic model;
probabilistic analysis

1. Introduction

Bridges are key components of transport and infrastructural systems. Their safety is of
paramount importance, considering that their disruption can have a high socio-economic
impact and their failure can seriously endanger people’s lives [1]. Vulnerability and risk
analysis procedures for bridges are gaining more and more attention and the scientific
literature on the topic is growing, with studies concerning various sources of hazards such
as seismic [2–5] or flood-induced actions (e.g., scour) [6–8].

To date, fragility curves represent a tool widely accepted by the community for
the seismic performance assessment of any structural system (buildings and bridges).
However, bridges are characterised by a wide spectrum of structural typologies (different
static schemes) and potential failure modes (e.g., either ductile or brittle damage can
develop on piers, abutments, bearing devices, and so on), and the failure scenario may
vary substantially from case to case, especially for existing bridges designed according to
inadequate seismic codes and methods.

Therefore, the information provided by fragility curves should not be too synthetic,
otherwise, risk and loss may not be estimated properly. For instance, some common
practices from past studies, such as estimating fragility curves based on a unique response
parameter [9–11] or cataloguing bridges within homogeneous fragility classes [12–14], may
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be revealed as inadequate in view of the variability of the specificities of every single
bridge structure, although these approaches are certainly useful for a preliminary or global
scale analysis.

A detailed analysis of the bridge with its specific features is indeed required in the
majority of cases, as also suggested by other authors [15,16]. The analysis of bridge fragility
can be carried out by focusing either on the global performance of the bridge or on the single
structural component response, and an “in-series” system assumption is often adopted for
the global failure assessment of bridges [15–19].

Some past studies addressed the problem of multiple critical components in seismic
assessment by analysing the correlation between pairs of structural component responses
and by proposing methodologies to develop probabilistic demand models [20–24]. In
particular, [20,21] focused their attention on the piers’ response by considering both flexural
and shear mechanisms and their correlation effects on the bridge’s global fragility, but
no other bridge elements were considered as contributing to the system failure. A step
forward was made in [22], where classical fragility curves were provided for a set of
bridge components (one curve for each component) to assess the effectiveness of retrofit
interventions. In [23] a similar analysis typology was performed but it was extended at the
network level. However, for the purpose of a detailed analysis of the bridge performance
and the associated consequences, the evaluation of the contribution to the global fragility
of all the failure mechanisms and their mutual relations, as well as the quantification of
the damage extension over the bridge by focusing on a single component level, reveal
very important information and none of the previous works have addressed these aspects.
Finally, it is worth mentioning a relevant interesting study on this topic, i.e., [24], in which
the authors proposed conditional probability importance measures (CIMs) to account for
the contribution of different bridge components to the system failure.

In the present paper, a novel easy-to-use and practical-oriented procedure for fragility
analysis is proposed with the aim of providing a higher level of information about the
possible failure mechanisms of existing bridges, overcoming some limits of classical ap-
proaches, and providing rapid and useful data to directly support the decision-making
process (e.g., driving risk planning and management activities). More specifically, the pro-
posed strategy is based on a novel organisation of the results coming from Multiple-Stripe
Analysis (MSA) [25], and it is conceived to perform two types of analysis having different
but complementary objectives:

• The failure mode analysis, consisting of a qualitative estimation of the most significant
failure modes and related mutual relations, provides useful insights for the selection
of the most suitable retrofit intervention.

• The damage extent analysis, consisting of a quantitative assessment of the damage
spreading over the system, is useful to perform loss analysis, prioritisation of repair
interventions (e.g., within a given infrastructural network), and develop a rational
design of retrofit strategies.

The presented method exploits basic probability theory concepts and manipulates
them in order to provide, for each of the two tasks listed above, new typologies of fragility
functions, namely, multiple damage fragility functions and damage extent fragility functions.

An illustrative application of the method is presented in a realistic case study, a multi-
span simply supported reinforced concrete Link Slab (LS) bridge designed according to the
Italian codes of the 1970s. This typology is widespread within the Italian infrastructural
network [26,27] and can be commonly found in the infrastructural stock of many other
countries such as Turkey or China [28–30]. In this framework, the application also provides
insights into the LS bridge’s seismic fragility. A bidirectional seismic input is used, and
a stochastic ground motion model is exploited for the generation of sets of earthquake
time series to perform nonlinear time history (TH) analyses within the MSA framework.
The proposed strategy was revealed to be able to provide a clear overview of the most
significant bridge failure modes and the damage extension on the bridge.
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2. Proposed Methodology for the Fragility Analysis of Bridges

The methodology proposed below aims to achieve a deeper understanding of the most
significant failure modes of the bridge by also highlighting their reciprocal relation and
explicitly assessing the damage extent relevant to each mode.

Principal notations adopted throughout the paper are recalled below for the purpose of
the presentation. Failure is herein defined as the attainment of unsatisfactory performance,
and it is identified by the exceedance of a threshold value of a selected response parameter
controlling the behaviour and the damage evolution of a key structural component. Differ-
ent response parameters can be considered to control all the possible failure mechanisms of
the bridge, which can affect piers, abutments, bearings, and so on.

A limit state is described by a set of thresholds relevant to different potential failure
modes. Different limit states (sets of thresholds) can be of interest, according to different
performance states of the structure, e.g., serviceability or ultimate conditions. Therefore,
failures could occur in different components and concern different response parameters and
thresholds exceedance (limit states). Limit states are considered one by one in the following.

For this study, failure events are grouped in families related to parameters of interest,
and each family is denoted by a capital letter (e.g., A,B,C, . . . ). For instance, we can suppose
a bridge has the following failure modes: A, pier flexural failure; B, pier shear brittle failure;
and C, bearings failure due to maximum stroke attainment. A given failure mode (e.g., A)
may occur in one or more components of the family and the failure of each component is
denoted by Ak, with k = 1, . . . NAk, where NAk is the number of components that may suffer
the type of failure A. Consequently, the failure event A occurs if at least one component
experiences failure, i.e., one or more Ak events occur:

A = ∪k Ak (1)

Fragility functions can be used to specify the probability of failure (i.e., of any limit
state of interest) of a system as a function of some seismic intensity measure, IM (further
discussed later). The fragility function relevant to event A, hereafter called the Mode
A-fragility curve, is defined as

FA(im) = P[A|IM = im] (2)

while the fragility curve of a single element, Ak, of the family A, is denoted as the Mode A
component-fragility curve and is defined as follows:

FAk (im) = P[Ak|IM = im] (3)

Different failure modes (A,B,C, . . . ) are considered so that a Global fragility curve, FGfc,
can be defined (Equation (4)) on the union event U (with U = A∪B∪C . . . ) denoting the
global failure event).

FG f c(im) = P[U|IM = im] (4)

Global fragility curves represent the typical output of the vulnerability analysis carried
out according to the existing common practical approaches. Two novel types of analysis and
organisation of the outcomes of a seismic analysis are proposed in this paper and discussed
in the following sections: the failure modes analysis and the damage extent analysis, each
providing different information about the system vulnerability, and a different contribution
to the risk assessment and the decision-making process.

2.1. Failure Mode Analysis

The analysis is oriented to provide qualitative information about the bridge vulnera-
bility, giving evidence of typical or recurrent failure modes. For this purpose, the (global
failure) event U is partitioned into subsets of disjoint events Ml, with l = 1, . . . NM, con-
sidering all the NM possible combinations of failure types, such as the occurrence of only
one failure mode and the coupling of two or more failure modes. As an example, if three



Infrastructures 2022, 7, 122 4 of 20

failure modes A, B, and C are possible, U is partitioned into seven sets (Figure 1): U\(B∪C),
U\(A∪C), U\(A∪B), (A∩C)\B, (B∩C)\A, (A∩B)\C, and (A∩B∩C).
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three failure modes A, B, and C.

The probability of occurrence of U is the sum of the probabilities of Ml, i.e.,

P[U] = ∑l P[Ml ] (5)

and the function
FMl (im) = P[Ml |IM = im] (6)

characterises the fragility associated with the l-th failure scenario (combination of given
damage modes) and will thus be named the Multiple damage fragility curve.

These types of fragility functions (i.e., based on the grouping of two or more failure
modes) permit not only the highlighting of the most recurrent failure modes of the bridge
but also the ability to investigate their probable interactions (probabilities of joint events
and relevant variability with the seismic intensity). This information may be crucial to
choose the most effective type of seismic risk mitigation strategy for the bridge.

2.2. Analysis of the Damage Extent

With reference to a specific failure mode, the analysis aims to provide a quantitative
evaluation of the failure extent; the outcomes can be of interest for the assessment of seismic
losses since reconstruction or repair costs depend on the effective number of components
undergoing damage. In this case, the single failure type, e.g., A, is studied and the event is
partitioned based on its NAk components to obtain information about the damage extent.
This partition is based on the number of damaged elements, e.g., subsets Sm, m = 1 . . . NS,
that may concern failures occurring in 1 element, 2 elements, . . . all the NAk = NS elements.
It is evident that each subset can collect failures of the same family occurring at different
locations along the bridge because only the failure number is counted. In this sense, the
approach is not able to provide information about the location of damage but only about
the damage spreading.

The number of components is often high, and a rougher partition obtained by joining
some subsets (i.e., NS < NAk) is often convenient, considering situations in which failures
involve increasing percentages of the elements of the family (e.g., up to 25%, from 25%
to 50%, from 50% to 75% and from 75% to 100%). A schematic representation is given
in Figure 2, where the failure mode A is studied and S1, S2,and S3 are used for events
involving damage in 25%, 50%, and 75% of the elements of the family.

Therefore, subsets of disjoint events Dm can be considered such that,{
Dm = Sm m = 1

Dm = Sm/Sm−1 m = 2, . . . , ND
(7)



Infrastructures 2022, 7, 122 5 of 20

with ND being the total number of possible combinations. It follows that the probability of
A can also be defined as follows.

P[A] = ∑ND
m=1 P[Dm] = P[S1] + ∑ND

m=2 P[Sm\Sm−1] (8)
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There are different postprocessing analyses that can be consequently performed, each
aimed to highlight a specific perspective of the damage situation. One might be interested
in the fragility curves of disjoint failure subsets

FDm(im) = P[Dm|IM = im] (9)

Relevant to specific intervals of damage extent (e.g., between 25% and 50% of damaged
elements). One might be also interested in assessing how the probability of a specific
damage condition (e.g., 25% damaged elements) varies over the seismic intensity levels,
thus a fragility curve expressed by

FSm(im) = P[Sm|IM = im] (10)

can be used. Finally, the exceedance probability of a given damage condition can be
expressed through the following fragility function

FSm
(im) = P

[
Sm
∣∣IM = im

]
(11)

in which Sm denotes the complementary event of Sm.

2.3. Probabilistic Tools for the Proposed Methodology

The methodology proposed in the previous section requires a probabilistic tool to be
combined with to collect the data for estimating fragility functions.

Different methods can be used [25], such as Incremental Dynamic Analysis (IDA),
Cloud analysis, and Multiple-Stripe Analysis (MSA) [31]. In this work, the efficient and
widely used MSA is suggested. It consists of performing several nonlinear dynamic
analyses at different seismic intensity levels; unlike IDA, different acceleration time series
are used at each IM level, with the possibility of considering changes of the ground motion
features with the seismic intensity [32]. Recorded seismic events are frequently used
for this purpose, requiring scaling or spectral matching procedures to achieve the target
conditioning to the different intensity levels, operations which often lead to accelerograms
with unrealistic features [33]. More efficiently, a proper stochastic model can be adopted,
overcoming the issue of scaling and lack of real high-magnitude records, especially at the
highest IM levels. The latter strategy is adopted in the present work, although the proposed
methodology can be applied using recorded accelerograms as well.

In detail, the simple but exhaustive point-source spectrum model of Boore [34] is herein
exploited, in combination with the stochastic ground motion model of Atkinson-Silva [35],
for the generation of bidirectional seismic samples and the characterisation of the IM hazard
curve νIM (im), the latter denoting the Mean Annual Frequency (MAF) of exceeding a given
value, im, of the random variable, IM. As for the choice of the IM, the most practical and
used ones for the 2D analysis of bridges are the Peak Ground Acceleration (PGA) [15,22]
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and the spectral acceleration Sa(1.0) at the period of 1.0 s [36,37]. The spectral acceleration
Sa (T1) can be used as well, where T1 is the period of the first mode of vibration; however,
this approach may suffer from the generally large difference between the longitudinal and
the transverse periods of the bridge. To cope with this issue, an average period, T, between
the transversal (1.15 s) and longitudinal vibration (0.67 s) modes is considered in this study.
In order to account for the bidirectional nature of the seismic input (X and Y directions), the
maximum spectral acceleration component at the period T is selected as the conditioning
parameter [38,39], i.e., IM = max{Sa,X (T), Sa,Y (T)}.

It is worth noting that the record-to-record variability represents the most important
source of uncertainty for the seismic response characterisation of bridges; the other sources
of uncertainty (e.g., concerning the structural model, etc.) are thus neglected in this work,
given the usually low influence on the response [40,41].

Fragility functions F(im) are analytically evaluated from the output of MSA by fol-
lowing an EDP-based method in which either empirical or parametric approaches can be
adopted. The former can be mathematically expressed as follows [31,42]:

F(im) ∼=
1

NGM

NGM

∑
k=1

Ik(im) (12)

where NGM is the total number of ground motion samples per IM level and Ik(im) is the
indicator function (Ik = 1 if a failure occurs at the k-th time-history analysis for IM = im,
Ik = 0 otherwise). Alternatively, starting from the count of the fraction of records, Nfi in
each stripe causing failure, a parametric lognormal cumulative distribution, Φ

(
θ̂, β̂
)
, can

be fitted, which is a reasonable assumption for a large set of cases, whose parameters,{
θ̂, β̂
}

(θ expressing the median of the fragility function and β the standard deviation of the
natural logarithm of IM), can be evaluated by maximising the logarithm of the likelihood
function [43]:

F(im) = Φ
(

ln(im/θ̂)
β̂

){
θ̂, β̂
}
= argmax

θ,β

NIM
∑

i=1

{
ln
(

NGM
N f i

)
+ N f i·ln Φ

(
ln
(

imi
θ

)
β

)
+
(

NGM − N f i

)
ln
[
1−Φ

(
ln(imi/θ)

β

)]}
(13)

with NIM as the number of IM levels. Both the empirical and the parametric approaches are
used in this work.

2.4. Procedure Implementation

The algorithm for generating fragility curves according to the proposed strategy
(which finds a formal mathematical definition in Sections 2.1 and 2.2) is now explained
by the means of two simple explicative examples having the role of aiding the interested
reader in practical procedures implementation.

The procedure for building multiple damage fragility functions is first presented, accord-
ing to the schematic flowchart given in Figure 3. For example, suppose having two element
families, A and B, the former made of two sub-components (e.g., two piers) and the latter
constituting three sub-elements (e.g., three kinematic link bars). We perform MSA analysis
at four IM levels by using three ground motion samples (the proposed case is deliberately
chosen to be extremely simple at the expense of scarce physical significance) and we want
to provide both single component fragility curves (FA and FB) and multiple damage fragility
curve FAB. The procedure can be summarised through the following steps:

(1) Consider family A; for each element (in this case, A1 and A2) a Boolean NGM × NIM
matrix is built collecting 1 s for failure cases (i.e., the EDPs exceed a given threshold
value) and 0 s otherwise.

(2) Compute the union A1∪A2, which is still a Boolean matrix and characterises the
failure states of the whole family A (i.e., failure occurs if at least one component of the
family fails).
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(3) Steps 1 and 2 must be repeated for set B, here supposed to have three sub-elements,
hence, three Boolean matrixes are first generated and then the union B1∪B2∪B3
is computed.

(4) The resulting union matrixes of A and B can be used individually to evaluate classical
single component fragility functions (through either Equation (12) or (13)), i.e., FA
and FB.

(5) Additionally, the intersection between the resulting union matrixes of A and B can be
computed and used to estimate the multiple damage fragility function FAB, which adds
information about the occurrence of simultaneous failures to the previous fragility
types on the considered components.
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The flowchart given in Figure 4 can be followed concerning the procedure for extract-
ing the damage extent fragility functions. For example, suppose having the family B from the
previous example:

(1) For each element (B1, B2, and B3), a Boolean NGM × NIM matrix is built collecting 1 s
and 0 s based on the same criterion presented in step 1 of the previous procedure.

(2) Compute the matrix sum B1 + B2 +B3, which is no longer Boolean and contains
quantitative information on the number of components that failed in family B.

(3) Supposing we are interested in characterising the probabilities of having more than
two elements at every IM level, a Boolean NGM × NIM matrix can be built collecting
1 s in the matrix positions where the values are higher than 2 and 0 s where the values
are equal or lower than 2.

(4) The resulting matrix can be used to build a quantitative damage extent fragility func-
tion FB.
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3. Case Study
3.1. Seismic Hazard

The seismic scenario is described by the point-source spectrum model of Boore [34],
combined with the stochastic ground motion model of Atkinson-Silva [35]. The values of
the parameters governing the stochastic ground motion model are set in order to provide
an IM hazard curve representative of medium-high seismicity in Italy (Figure 5a).
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Figure 5. (a) IM hazard curve and relevant IM levels; response spectra of the horizontal components
of seismic samples at two intensity levels; (b) Tr = 50 years; (c) Tr = 450 years.

Following the recommendations provided in [31], the IM curve of Figure 5a is divided
into 20 stripes equally spaced in the log-log plane (highlighted by red circle markers),
with the relevant spectral acceleration values summarised in Table 1. Moreover, a set of
20 ground motion pairs is selected for every IM level to properly account for the record-to-
record variability. For the sake of completeness, the response spectra of both the horizontal
components of the seismic input conditional to two intensity levels (i.e., IM level 5 and
IM level 10, corresponding to return periods of 50 years and 450 years, respectively) are
depicted in Figure 5b,c.
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Table 1. Correspondence between IM levels and spectral accelerations (in g).

IM levels 1 2 3 4 5 6 7 8 9 10

Sa (T = 0.9) 0.004 0.030 0.063 0.103 0.157 0.225 0.306 0.415 0.531 0.663

IM levels 11 12 13 14 15 16 17 18 19 20

Sa (T = 0.9) 0.802 0.976 1.140 1.316 1.529 1.693 1.823 2.134 2.470 2.816

3.2. Geometrical and Structural Details

A multi-span simply supported pre-stressed concrete bridge is considered in this paper
to show the potential of the proposed methodology for fragility analysis. Geometrical
and mechanical parameters of the case study are chosen to make it as accurate as possible
and representative of a specific bridge class, in order to increase the general validity of
the results for the bridge typology. In detail, reference is made to existing Italian bridges
constructed in the 1970s, before the emanation of codes introducing seismic detailing and
capacity design concepts.

The bridge deck is 130 m long, with five simply supported spans of 25 m each. The
cross-section is composed of a cast-in-site slab (12.50 m wide) and three V-shape pre-
stressed concrete girders (Figure 6a). Neoprene bearing supports are installed (Figure 6b),
having the same semi-rigid mechanical behaviour along the two horizontal directions.
Spans are connected at the slab level through kinematic links, made by a set of DYWIDAG
bars of diameter Ø40 mm; the link zone between two adjacent spans is 200 mm long. A
schematic representation of the links and a detail of the joint from a real design project [44]
are provided in Figure 7. The bar arrangement at each link is determined consistently with
the static scheme, having a fixed constraint located at the right abutment (Figure 6c) for
entrusting the longitudinal seismic actions. Moderately slender (10 m tall) RC piers with
a circular cross-section of a diameter of 2 m are adopted (having a height/diameter ratio
equal to 5). A schematic longitudinal view of the bridge is provided in Figure 6d.

Gravity loads are derived directly from the deck self-weight, while permanent loads
of the superstructure are estimated to be 50 kN/m. A simulated design has been performed
according to the Italian Codes [45,46], considering both gravity and seismic loads. The
latter is modelled as equivalent seismic forces applied separately along the transverse and
longitudinal directions of the bridge. Piers are designed as cantilever elements subjected to
forces derived from the masses of a single span while links are designed considering the
cumulative contributions of the span masses, depending on the link position with respect to
the fixed abutment. The equivalent seismic force Fh, provided by the above codes, is 7% of
the gravity loads. By assuming a concrete grade Rck 300 (cubic characteristic strength equal
to 30 MPa) and a steel grade FeB44k (yielding strength equal to 435 MPa), the simulated
design requires 59 longitudinal steel rebars of diameter 26 mm for piers and Ø14 mm hoops
equally spaced at 25 cm along the whole pier shaft. A longitudinal reinforcement ratio of
1% is assumed for the piers, compatible with the minimum amount required by the code
(i.e., 0.6%, [46]). Links are designed assuming the allowable design stresses foreseen by [46]
for prestressing steel. As for piers, the confinement effect due to stirrups is considered,
assuming confined and unconfined compressive strength and ultimate strains for the cover
and core concrete, respectively. The DYWIDAG bars are pre-tensioned at 60% of the steel
yielding stress. For sake of completeness, the material constitutive laws are depicted in
charts in Figure 8, whereas material properties are reported in Table 2.

Finally, to sustain gravity and permanent loads, neoprene bearings with supporting
area A = 157.5 cm2, thickness t = 52 mm, and shear modulus G = 1 MPa are adopted [47].
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Table 2. Steel and concrete mechanical properties.

DYWIDAG Steel Bars Steel Reinforcement Confined
Concrete

Unconfined
Concrete

Elastic modulus (MPa) 206,000 206,000 30,000 30,000

Yielding/Peak strength (MPa) 950 (σprestress = 60%
yielding) 435 26.75 25.00

Ultimate strength (MPa) 1050 540 18.57 3.58

Yielding/Peak strain (-) 0.0046 0.00207 0.0027 0.002

Ultimate strain (-) 0.04 0.12000 0.0114 0.0060

3.3. Bridge Structural Model

A three-dimensional (3D) nonlinear model is developed in OpenSees [48]. Deck
girders are modelled as elastic beam elements [17] with nonlinearity concentrated at the
joints, within the kinematic links. Each kinematic link has a total length of 200 mm and is
composed of DYWIDAG bars which are in part covered by the concrete (link portion inside
the slab, 50 mm long) and in part uncovered (bare central part of the bars, 100 mm long) [29].
According to this configuration, three in-series fibre section sub-elements are adopted
to model the links: a straight layer of fibres with Steel02 elastic-plastic behaviour and
pretension stress (60% of yielding stress) are used for the DYWIDAG bars; and Concrete01
material is used for the slab.

Bearings are modelled according to [49] by means of zero-length elements with Steel01
uniaxial material and elastic stiffness k = GA/t expressed as a function of the shear modulus
G, the supporting area of the device A, and the device thickness t. The maximum force of
the bearing is calculated as Fmax = min{γlimGA; µ0w}, i.e., as the minimum between the
force µ0w related to the friction mechanism (w is the vertical load acting on the bearing and
µ0 is the sliding coefficient between the concrete surface and neoprene, assumed equal to
0.25), and the shear failure of the neoprene γlimGA (γlim is the maximum allowable shear
strain for neoprene, assumed equal to 100%). In this case, the shear rupture of the neoprene
pads governs the bearing failure.

Pier caps are assumed as rigid elements connecting the deck beam ends to the bear-
ings. Columns are modelled using displacement-based fibre elements, able to account
for the evolution of the plastic hinge at the base of the pier [22]. Concrete is described
by the Concrete01 material, with parameters assumed according to Mander, Priestley, and
Park [50] (Figure 8a); longitudinal steel rebars are introduced as line fibres with Steel02
uniaxial material.

Seat-type abutments resting on piles are considered since this typology is the most
widespread on the Italian road networks. The response of the abutments is modelled
by evaluating the contribution of both the earth pressure and the structural stiffness in
longitudinal and transverse directions. Along the longitudinal direction, the passive
resistance mobilised at the abutment back wall is simulated using the hyperbolic soil model
proposed by Shamsabadi et al. [51], assuming a granular soil type. The active response
in the longitudinal direction and the transverse forces are instead entirely assigned to
piles, whose response is schematised with a trilinear force deformation law (Figure 8b).
Parameters characterising the pile constitutive law are determined following the design
recommendations in [52], assuming a 7 kN/mm/pile resistance and considering yielding
force as the inertial force proportional to the mass of the entire bridge deck to be carried by
the foundation piles.

The bilinear contact element developed by Muthukumar and DesRoches [53] is used
to model the pounding between the deck and the left abutment, as well as between adjacent
spans after the rupture of the link bars at the ultimate strain. In fact, the link bar’s ultimate
capacity is explicitly accounted for by the adoption of a MinMax material that activates
once the ultimate strain in the bars is attained.



Infrastructures 2022, 7, 122 12 of 20

Distributed masses on deck and pier elements are defined considering a density of
2.5 t/m3 for the RC and lumped nodal masses are instead used for the pier cap. Gravity
and permanent loads are directly derived from distributed and nodal masses and applied
before the Time History (TH) nonlinear analysis.

A graphical summary of the main details of the modelling strategy is given in Figure 9.
It is worth noting that the modelling strategy detailed in this Section was also validated by
performing a comparison in terms of the modal properties (frequencies and mode shapes)
between the two models of the bridge: the one developed in OpenSees and a less-refined
model developed within commercial software (Figure 10). The modal properties of the FE
model in the commercial software derive from the Operational Modal Analysis results of
an existing viaduct in Central Italy [54].
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3.4. Demand Parameters and Capacity Limits

The following demand parameters are monitored to assess the structural response of
the bridge: (1) the pier top maximum displacement, controlling the pier ductile mechanism;
(2) the bearings maximum displacement; (3) the maximum strain on the link-slab steel
bars; (4) the abutment maximum longitudinal displacement for the soil passive response;
(5) the abutment maximum longitudinal displacement for the soil active response; and
(6) the abutment maximum transverse displacement. It must be noted that the plastic hinge
status at the base of the pier is related to the pier top displacement through a suitable
moment-curvature sectional analysis of the pier cross-section by assuming a cantilever
system. Brittle failure on the piers is not considered because the shear capacity largely
overcomes the shear demand (after the hinge opening) for the case study at hand.

Three Performance Levels (PLs) are assessed: the onset of an irreversible damage
condition, denoted as dy (e.g., piers or DYWIDAG bars yielding or sliding activation for
bearings); the attainment of the ultimate capacity of the bridge component, denoted as
du (e.g., the maximum stroke of the bearings, ultimate strains in the DYWIDAG bars or
pier collapse); and an intermediate limit state, dLS, is introduced to represent an extensive
damage condition, related to the Life Safety limit state of the current code [55].

The limit values for every performance level and bridge component (summarised in
Table 3) are based on literature studies [36] (PLs for abutments), technical documents [49]
(bearings and piers) and seismic codes [55]. Values assumed for the DYWIDAG bars are
consistent with the specific steel grade.

Table 3. Performance levels and related demand threshold values for the bridge components.

Performance Level
(PL)

Link Bars
εbar (-)

Piers
up (m)

Bearings
ub (m)

Abutment-
Passive

uAB-P (m)

Abutment-
Active

uAB-A (m)

Abutment-
Transverse
uAB-T (m)

Yielding/Damage (dy) 0.0046 0.077 0.080 0.037 0.00975 0.00975
Life Safety (dSL) 3/4 εbar,u 3/4 up,u 3/4 ub,u 1.000 0.0072 0.0072

Collapse (du) 0.0400 0.234 0.200 1.000 1.000 1.000

4. Results and Discussion

This section presents the results stemming from the application of the proposed
fragility analysis method to the selected case study. The bridge response is examined at
different levels of detail. First, the fragilities of each family of elements and related failure
modes are discussed (Section 4.1) according to a classical fragility analysis procedure.
Afterwards, fragility analysis is performed according to the proposed approach, with
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the aim of evaluating: (1) the mechanisms which most contribute to the bridge fragility
(Section 4.2), (2) their mutual interactions (Section 4.2), and (3) the extent of damage over
the bridge (Section 4.3). Given the specific features of the considered case study, a unique
failure mode can be identified for each system component (failures of bearings are only
due to strokes, kinematic links failure is governed by the strain of the bar, and piers failure
is governed by the pier head displacement). The only components showing three potential
failure modes are the abutments, which are characterised by two longitudinal and one
transverse failure mode; the three failure modes of the abutments will be enveloped in
Sections 4.2 and 4.3 to make the results discussion clearer.

4.1. Failure Modes and Global Fragility Analysis

According to the notation of Section 2, the Mode A-fragility function is defined according
to Equation (2) and represents the envelope of the fragility curves of single elements Ak
contributing to the given failure mode A. For the application of the proposed methodology
to the present case study, the following quantities are defined: Mode L-fragility curve
characterising the failure of Link (L) bars; Mode P-fragility curve for the Piers (P); Mode
B-fragility curve for the Bearings (B); and Mode AP-, Mode AA-, and Mode AT-fragility curves
characterising the failure of Abutments for Passive (AP), Active (AA), and Transverse
(AT) mechanisms, respectively. In Figure 11, the six failure mode fragility curves (L, P, B,
AP, AA, and AT) are compared. Such a representation in the results is quite classical in
fragility analysis and allows for the identification of some general trends of the bridge
seismic response. For every performance level, the failure modes governing the fragility
can be identified based on their relative position within the charts, i.e., ordered from the
left (higher fragility) to the right (lower fragility). For the adopted case study, Links are
the most vulnerable component while Piers are the less fragile ones. The level of detail of
the results is sometimes further reduced by considering a global fragility representation for
every performance level, corresponding to the envelope of the single failure mode fragility
curves of Figure 11. According to this, the Link’s fragility curves would fully represent
the fragility of the whole bridge under investigation. Previous considerations make it
evident that in the limit of a classical analysis procedure a large amount of information
remains hidden, such as: which link, or group of links, is more vulnerable among the
family; how many components (e.g., number of Links) are experiencing failure; and which
combination of failure modes (e.g., links and bearings) most govern the failure within a
given interval of seismic intensities. To provide such a major level of detail to the bridge
response characterisation, the fragility method proposed in Section 2 should be applied, as
presented hereafter.
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4.2. Multiple Damage Fragility Analysis

As discussed in the previous sections, the knowledge of the relative probabilistic
contribution provided by one or more failure mechanisms to the global fragility has great
relevance, particularly for organising and managing repair interventions on the bridge.
This information can be achieved through multiple damage fragility curves (i.e., FMl (im)
(Equation (6))), according to the analysis of the failure modes presented in Section 2.1.

Since different numbers of mechanisms may undergo damage by varying the IM,
multiple damage fragility curves do not necessarily have a monotonically increasing trend,
and a broken-line representation is herein preferred.

Three sets of plots are reported in Figure 12 to show the combination of damage
mechanisms at the considered performance levels, and, for each of them, different charts
are represented to provide a clearer view of the results. Capital letters, introduced in the
previous section (i.e., P, L, B, and A), are used to denote the different mechanisms. In the
charts, black thick solid lines represent the global fragility curves for damage, life safety,
and collapse performance levels. The multiple damage fragility curves are shown with thin
solid lines with different colours for each combination of mechanisms. Only non-null
fragility curves are shown in the figures.
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Some illustrative comments are given below for the collapse limit state (Figure 12c) to
show the quality of information that can be derived from the proposed analysis. At the
lowest seismic intensities (Sa (T) ≤ 0.5 g), link bars are the only components contributing to
the collapse fragility (i.e., global fragility overlaps with links fragility); for higher intensities
(0.5 g < Sa (T) ≤ 1.5 g), bearings start experiencing failure so that the bridge collapse is
attained due to a combination of concurring failures on link bars and bearings together; at
very high seismic intensities (Sa (T) > 1.5 g), slight participation of the abutments on the
global collapse fragility can be observed. The knowledge of the most probable concurring
failure mechanisms can help to select the best retrofit intervention and plan monitoring
strategies. Moreover, knowing the range of IMs at which specific failure combinations take
place, more informed and focused post-earthquake in-situ inspections could be organised
depending on the seismic intensity registered at the bridge location.

4.3. Analysis of the Damage Extent

A quantitative evaluation of the damage extent, which may be of interest for the seismic
loss assessment, is addressed in this Section. Three types of quantitative fragility functions
are examined, as detailed in the next relevant Sections. Unfortunately, the presentation and
the discussion of all three fragility types for all the bridge structural components are not
feasible due to space limits. For this reason, only one component will be examined for each
fragility typology: Type 1 fragility functions are provided for links; Type 2 fragility functions
are presented for piers; and Type 3 fragility functions are provided for bearings.
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4.3.1. Type 1 Quantitative Fragility Functions

This Section presents fragility curves for specific intervals of damage extent (e.g., be-
tween 25% and 50% of damaged elements) obtained by considering disjointed failure
subsets according to Equation (9) of Section 2.2. The current evaluation is performed on the
number of individual link bars involved in the failure. Fragility curves for different percent
intervals of damage extent are plotted in Figure 13 and compared to the Mode L-fragility
curve (black thick solid line), representing the envelope (classical) fragility curve for the
link bars, and also corresponding to the sum of all the single damage extent fragility curves
(being the separated damage intervals and collectively exhaustive for the Links failure
event L).
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Figure 13. Type 1 quantitative fragility functions for link-slab bars: probabilities of occurrence of
damage mechanisms for different percentages of involved links at (a) damage; (b) life safety; and
(c) collapse performance levels.

Several pieces of information could be extracted by interpreting the results of Figure 13.
For instance, it can be observed that in the range of low-medium seismic intensities

(Sa (T) < 1.0 g), there is a quite high probability (up to 85%) that 75% to 100% of the link
bars are slightly damaged (Figure 13a); in the same IM range, there is also a quite high
probability (up to over the 90%) to observe severe damages (Figure 13b) and collapses
(Figure 13c) on 50% to 75% of link bars. For the damage performance level, the condition of
totally damaged link bars presents a high probability of exceedance (i.e., >50%) starting
from Sa (T) = 0.5 g The failure condition involving 100% of the link bars has a significant
probability of occurrence (i.e., >50%) starting from Sa (T) = 1.7 g (life safety performance
level) and 2.1 g (collapse performance level).

4.3.2. Type 2 Quantitative Fragility Functions

Another possible way to organise the analysis results is by evaluating the probability
of having exact percentages of failed bridge components, namely: 25%, 50%, 75%, and 100%.
Results concerning the piers are shown in Figure 14 for the damage performance level only.
The envelope fragility curve (sum of the plotted quantitative curves) is also reported (black
solid line). The highest contributions to the failure are relative to the cases of 50% and 100%
piers damaged, with probabilities growing starting from 1.0 g of spectral acceleration. This
means that the structural system is more prone to develop a rapid evolution of damage
along the bridge rather than a gradual one. More specifically, for 1.0 g < Sa (T) < 2.0 g,
the major contribution to the fragility of piers is that 50% of piers are damaged (blue line);
at very high IMs (i.e., Sa (T) > 2.0 g), the condition that all the piers exceed the damage
condition is prevalent, with probabilities growing rapidly from about 40% to 80%.
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Figure 14. Type 2 quantitative fragility functions for piers: probabilities of occurrence of damage
mechanisms for different percentages of involved piers at collapse performance levels.

4.3.3. Type 3 Quantitative Fragility Functions

This type of quantitative fragility curve is obtained by computing the probability
of observing failure on a number of elements greater or equal to prefixed significative
percent thresholds. For illustrative purposes, the family of bearing devices is analysed.
Given the high number of elements, bearings are grouped in six sets, each corresponding
to deck support (i.e., four sets relevant to piers and two sets relevant to abutments). To
assess the damage extent, four percent thresholds are assumed (≥ 25%, ≥ 50%, ≥ 75%, and
=100%), with the following correspondence in terms of bearing sets: ≥ two sets of bearings
(≥ 25%); ≥ three sets of bearings (≥ 50%); ≥ four sets of bearings (≥ 75%); = six sets of
bearings (= 100%).

The outcomes stemming from the analysis are shown in Figure 15, according to which,
the system shows a partially fragile behaviour at damage and life safety performance levels,
with the probabilities of exceeding damage for 25% and 50% of the supporting device sets
almost equal (compare magenta and blue curves). It is interesting to notice that whatever
performance threshold is considered, the failure never involves 100 of the bearing sets.
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5. Conclusions

Fragility analyses carried out according to common procedures are typically focused
on the evaluation of the global performance of the bridge. They provide a synthetic
characterisation of the failure probability of the system but hide the causes behind such
failure propensity; the resulting knowledge of the actual bridge’s vulnerability might be
thus insufficient for the quantification of the consequences and costs associated with seismic
risk, and they are not very effective in supporting the decision-making processes related to
seismic prevention.
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In this paper, a systematic methodology for the evaluation of bridge fragility is pro-
posed which exploits basic probability theory concepts and organises the results of a
multi-stripe analysis. The proposed fragility analysis provides new typologies of “fragility
functions”, which provide a higher level of information with respect to conventional
fragility curves and make results available that can be more effectively used to plan preven-
tion actions and to predict losses in post-event seismic scenarios.

More specifically, the following two typologies of fragility functions are presented,
having different but complementary objectives: multiple damage fragility functions and
damage extent fragility functions. The former provides information about the set of the most
probable multiple mechanisms contributing to the failure of the bridge and it is of interest
for planning effective strengthening actions. This way, the probabilistic information is
not limited to the single damage mechanism, as it is common in fragility analysis, but
it is extended to all the possible combinations of mechanism activation, hence useful
information concerning their mutual correlation is provided as well. It is worth noting that
the information extracted by applying this proposed fragility analysis can be conveniently
used to choose the best repair action, optimise/prioritise the retrofit interventions in case
of occurrence of an earthquake, or for maintenance purposes. In addition, by knowing the
seismic intensity at which specific combinations of failure mechanisms are expected, more
informed and focused post-earthquake in-situ inspections could be organised based on the
real intensity of the occurred seismic event.

Concerning the latter fragility function proposed, three different strategies of results
manipulation are presented, all aimed at a probabilistic characterisation of the damage
extension of a given failure mechanism and useful to predict the extent of potential losses.

Moreover, the different types of fragility curves presented in this paper can be used
within a broader probabilistic framework oriented to seismic risk estimation (i.e., exploiting
the convolution integral between fragility and hazard) to perform life-cycle cost analysis
and/or estimate the seismic losses. Moreover, the proposed methodology can be extended
within frameworks oriented towards path-dependent seismic risk analysis, including
ageing and degradation phenomena.

The mathematical formulation of tools proposed in this paper is first presented; then,
details concerning the implementation of practical procedures are given, and finally, the
methodology is applied to a realistic case study consisting of a reinforced concrete link-
slab bridge.

Finally, despite the illustrative purpose of the presented application, some preliminary
insights on the seismic fragility of this benchmark case study were obtained through the
proposed analysis methodology, such as the extreme vulnerability of the link bars and
the bearings. Future studies will be aimed to assess, through the proposed strategy, the
vulnerability of other widespread bridge typologies (e.g., steel-concrete composite decks).
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