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Abstract: New or in-service truss bridges, with or without upper bracing systems, may display
instability phenomena such as general lateral torsional buckling of the upper chord. The buckling
of structural elements, particularly in the case of steel bridges, can be associated with the risk of
collapse or temporary/permanent withdrawal from service. Such incidents have occurred in the case
of several bridges in different countries: the collapse of the Dee bridge with truss girders in 1847 in
Cheshire, England; the collapse of the semi-parabolic truss girder bridge near Ljubičevo over the
Morava River in Serbia in 1892; the collapse of the Dysart bridge in Cambria County, Pennsylvania
in 2007; the collapse of the Chauras bridge in Uttarakhand, India in 2012; and the collapse of a
bridge in Nova Scotia, Canada (2020), and such examples may continue. Buckling poses a significant
danger as it often occurs at lower load values compared to those considered during the design phase.
Additionally, this phenomenon can manifest suddenly, without prior warning, rendering intervention
for its prevention impossible or futile. In contemporary times, most research and design calculation
software offer the capability to establish preliminary values for buckling loads, even for highly
intricate structures. This is typically achieved through linear eigenvalue buckling analyses, often
followed by significantly more complex large displacement nonlinear analyses. However, interpreting
the results for complex bridge structures can be challenging, and their accuracy is difficult to ascertain.
Consequently, this paper aims to introduce an original method for a more straightforward estimation
of the buckling load of the upper chord in steel truss bridges. This method utilizes the theory of
beams on discrete elastic supports. The buckling load of the upper chord was determined using both
the finite element method and the proposed methodology, yielding highly consistent results.

Keywords: truss bridges; buckling; eigenvalue buckling; large displacements; buckling load; finite
element method; conservative loads

1. Introduction

In the past few decades, rapid evolution and advancements in structural analysis
software, alongside increased computing speed and storage capacity, have provided bridge
designers with the capability to analyze increasingly intricate solutions. Furthermore,
another focal area of research has been enhancing the physical–mechanical characteristics
of construction materials in terms of strength and durability. These developments have
led to new bridge designs with larger dimensions, being slender and lighter compared
to traditional beam bridges. As a result, the advantages from an economic standpoint
are evident. However, especially in the realm of steel bridges, these advantages come
with a higher risk of general or localized instability phenomena leading to major accidents
(Figures 1 and 2).

Due to the high degree of redundancy; simple composition, especially in the welded
elements solution; rapid execution; and reduced steel consumption, half-through truss
girder bridges (Figures 2 and 3) represent, even today, the most efficient solution for
designing railway, road, and pedestrian bridges in the field of medium and large spans.
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Figure 1. The collapse of the Chauras bridge, India, 2012. 

 
Figure 2. The collapse of a bridge in Guysborough County, Nova Scotia, Canada, 2020. 

Due to the high degree of redundancy; simple composition, especially in the welded 
elements solution; rapid execution; and reduced steel consumption, half-through truss 
girder bridges (Figures 2 and 3) represent, even today, the most efficient solution for de-
signing railway, road, and pedestrian bridges in the field of medium and large spans. 

In the case of steel truss bridges supporting the bottom and lacking an upper bracing 
system (half-through truss bridges), specific external loading conditions can induce out-
of-plane buckling in the compressed top chord. This occurs because, in the transverse di-
rection, only the transverse half-frames formed by cross beams, verticals, and diagonals 
counteract the tendency for lateral displacement of the chord. Therefore, in the analysis of 
the stability of the compressed top chord, it is permissible to use a simplified calculation 
model (Figure 3), namely the model of a beam on discrete elastic supports, as presented 
by Hetényi [1], Timoshenko [2], Engesser [3], and Bürgermeister [4]. 
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In the case of steel truss bridges supporting the bottom and lacking an upper bracing
system (half-through truss bridges), specific external loading conditions can induce out-
of-plane buckling in the compressed top chord. This occurs because, in the transverse
direction, only the transverse half-frames formed by cross beams, verticals, and diagonals
counteract the tendency for lateral displacement of the chord. Therefore, in the analysis of
the stability of the compressed top chord, it is permissible to use a simplified calculation
model (Figure 3), namely the model of a beam on discrete elastic supports, as presented by
Hetényi [1], Timoshenko [2], Engesser [3], and Bürgermeister [4].
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Figure 3. A simplified model for analyzing the general stability of a compressed chord. 
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elastic supports, is extensively discussed in the specialized literature [5–8]. Determining 
the critical loading value typically relies on employing existing theoretical methods found 
in the literature, involving a multitude of variables, such as the elastic constant of the elas-
tic foundation or discrete elastic supports in the transverse direction, the type of axial force 
variation along the element, the type of end restraints of the element, the presence of up-
per bracing systems, the buckling length value, the existence of execution imperfections, 
and alterations in the physical and mechanical characteristics of the material composing 
the element during the deformation process. 

For some of these variables, proposed approaches have been suggested and are con-
sidered within existing design standards. However, for others, clear provisions have not 
been established as the issue remains under global study. 

Thus, in Refs. [9,10], the results of studies regarding the influence of upper bracing 
systems on the stability loss mode of compressed chords in truss bridges are presented. 
Additionally, the issue of the position of bracing systems is addressed, including their 
composition (solely diagonals, solely cross beams, or combinations thereof) and the num-
ber of bracing planes. 

In Ref. [11], the authors present the effects of considering material nonlinearity and 
geometric imperfections on the critical buckling load of the compressed chord in truss 
bridge structures. Additionally, the study investigates this phenomenon while consider-
ing elastomeric bearings with lead cores. The issue of initial geometric imperfections re-
sulting from the industrial manufacturing processes of bridge elements is also addressed 
in Ref. [12]. The influence of imperfections existing in some of the elements contributing 
to the stiffness of the transverse frames, specifically cross beams, verticals, and diagonals, 
is studied. Ref. [13] comprises a theoretical study regarding the stability of the von Mises 
framework, well-known in the specialized literature, but introduces novelty by consider-
ing the post-elastic behavior of materials in the study of structural elements’ stability. 

Halpern and Adriaenssens [14] present a study regarding the general nonlinear in-
plane buckling of truss arches and propose alternative simplified equivalent models of 
arches for calculations. These models aim to accurately provide the critical buckling load 
value compared with the results obtained using the general buckling theory or finite ele-
ment models. 

In a lot of theoretical studies on the general buckling of compressed chords, deter-
mining the critical buckling load is often achieved using energy methods, which provide 
exact values. However, there are alternative approaches, as presented in Ref. [15]. This 
article compares the results of the lateral buckling analysis of the compressed chord for a 
truss footbridge using methods proposed by Holt (1952), Timoshenko and Gere (1961), 
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The stability of compressed chords of truss bridges, analyzed as beams on discrete
elastic supports, is extensively discussed in the specialized literature [5–8]. Determining
the critical loading value typically relies on employing existing theoretical methods found
in the literature, involving a multitude of variables, such as the elastic constant of the elastic
foundation or discrete elastic supports in the transverse direction, the type of axial force
variation along the element, the type of end restraints of the element, the presence of upper
bracing systems, the buckling length value, the existence of execution imperfections, and
alterations in the physical and mechanical characteristics of the material composing the
element during the deformation process.

For some of these variables, proposed approaches have been suggested and are con-
sidered within existing design standards. However, for others, clear provisions have not
been established as the issue remains under global study.

Thus, in Refs. [9,10], the results of studies regarding the influence of upper bracing
systems on the stability loss mode of compressed chords in truss bridges are presented.
Additionally, the issue of the position of bracing systems is addressed, including their
composition (solely diagonals, solely cross beams, or combinations thereof) and the number
of bracing planes.

In Ref. [11], the authors present the effects of considering material nonlinearity and
geometric imperfections on the critical buckling load of the compressed chord in truss
bridge structures. Additionally, the study investigates this phenomenon while considering
elastomeric bearings with lead cores. The issue of initial geometric imperfections resulting
from the industrial manufacturing processes of bridge elements is also addressed in Ref. [12].
The influence of imperfections existing in some of the elements contributing to the stiffness
of the transverse frames, specifically cross beams, verticals, and diagonals, is studied.
Ref. [13] comprises a theoretical study regarding the stability of the von Mises framework,
well-known in the specialized literature, but introduces novelty by considering the post-
elastic behavior of materials in the study of structural elements’ stability.

Halpern and Adriaenssens [14] present a study regarding the general nonlinear in-
plane buckling of truss arches and propose alternative simplified equivalent models of
arches for calculations. These models aim to accurately provide the critical buckling load
value compared with the results obtained using the general buckling theory or finite
element models.

In a lot of theoretical studies on the general buckling of compressed chords, deter-
mining the critical buckling load is often achieved using energy methods, which provide
exact values. However, there are alternative approaches, as presented in Ref. [15]. This
article compares the results of the lateral buckling analysis of the compressed chord for
a truss footbridge using methods proposed by Holt (1952), Timoshenko and Gere (1961),
Alberta Transportation (2016), and British Standards Institution-BS (2000). The authors
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conclude that the Holt and BS methods are the most conservative, while the other two yield
similar results.

The factors that have the greatest influence on the critical buckling load of compressed
chords in truss bridge structures include the buckling length, the distribution of axial
force along the chord, and the presence and type of transverse loading. Studies presented
in Refs. [16,17] address the values of buckling lengths recommended for the practical
stability analyses of compressed chords in truss bridges. These values are discussed
in comparison with those stipulated in current standards. Additionally, the authors in
Refs. [18–20] propose alternative methods for considering the distribution of axial force
along the compressed chord, comparing them to the commonly used parabolic distribution.
In Ref. [19], the critical loading value was obtained by considering the element continuously
supported on an elastic Winkler or Pasternak foundation, taking into account only axial
forces, only transverse forces, and combinations of axial and transverse forces. Furthermore,
the influence of different types of end restraints on the element was investigated.

Starting from the classic model proposed by Engesser for the analysis of a beam on an
elastic foundation and presented in Refs. [2–4], over time, alternative models for studying
the stability of compressed chords in truss bridges have been proposed. These models,
such as those presented in Refs. [8,21], involve discrete elastic support elements, allowing
for the determination of the critical buckling load with sufficient accuracy. These studies
explore various configurations of the arrangement of elastic supports, such as the distance
between them and their corresponding stiffness.

As observed, the issue of general stability in compressed chords of truss bridges has
been extensively studied over time. However, general instability phenomena not only occur
in truss bridges but also in other types of bridges, such as those with arches, especially
when the supporting structure comprises a single centrally positioned arch [22–24]. Despite
the increasing availability of calculation programs that enable both linear eigenvalue
buckling and nonlinear analyses, solving the problem of general stability in these bridge
types remains incomplete. Determining the critical buckling load for general instability is
challenging because, although it can be obtained through automatic calculation, it cannot
be directly verified. This is due to the impracticality of conducting natural-scale tests on
such structures or their elements.

Taking this aspect into account, this article presents an alternative simplified theoret-
ical method for calculating the critical buckling load of compressed chords. This study
builds upon existing theoretical approaches in the literature and extends them to encom-
pass various end-restraint situations for the element, considering both conservative and
non-conservative axial compressive forces. The critical loading value obtained using the
proposed methodology is compared with values obtained through classical theoretical
methods and also more elaborate finite element models.

2. The Formulation of Stability Problem and the Determination of Critical Load from
the Literature

In the case of a beam supported by multiple equally spaced discrete elastic
supports [2–8], [25], all having the same stiffness and subjected to an external compressive
force P, the effect of these supports on the buckled beam can be replaced by the action of a
continuous or discrete elastic foundation (Figures 3 and 4).
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The elastic response of the supports in a current section of the beam will be propor-
tional to the displacement in that section. Denoting α as the elastic constant of each support
and d as the horizontal distance between two support points, the stiffness of the elastic
supports can be expressed by the coefficient β:

β =
α

d
, (1)

where β represents the elastic modulus of the supports.
In other words, the value of β above represents the magnitude of the support reaction

per unit length when the displacement equals unity. Considering the coordinate system in
Figure 1, the deformed axis of the beam can be represented by the series:

y = a1sin
πx
l

+ a2sin
2πx

l
+ a3sin

3πx
l

+ . . . , (2)

The bending strain energy of the beam can be expressed as:

UM
i =

EI
2

∫ l

0

(
d2y
dx2

)2

dx =
π4EI
4l3

∞

∑
n=1

n4a2
n, (3)

Expressing the strain energy of the elastic supports and considering that the reaction
of an element dx of the beam is βydx, it can be written as:

Uβ
i =

1
2

∫ l

0
βyydx =

β

2

∫ l

0
y2dx =

βl
4

∞

∑
n=1

a2
n, (4)

The mechanical work performed by the compressive force P is expressed as:

Lp = Pλ =
Pπ2

4l

∞

∑
n=1

n2a2
n, (5)

Expressing the equality between the mechanical work performed and the system’s
energy, it can be written as:

π4EI
4l3

∞

∑
n=1

n4a2
n +

βl
4

∞

∑
n=1

a2
n =

Pπ2

4l

∞

∑
n=1

n2a2
n, (6)

so that the force P will be:

P =
π2EI

l2

∑n=∞
n=1 n2an

2 + βl4

π4EI ∑n=∞
n=1 an

2

∑n=∞
n=1 n2an2 , (7)

Minimizing the expression (7) implies finding a relationship between the coefficients
a1, a2, . . . an and leads to the critical value of the force P. Considering all coefficients to be
equal to 0 except for one, the deformed axis will take on a sinusoidal shape. Considering
that this coefficient different from 0 is am, it can be written as:

y = amsin
mπx

l
, (8)

and the critical load will be given by the relationship below:

Pcr =
π2EI

l2

(
m2 +

βl4

m2π4EI

)
, (9)

In the above relationship; m represents the number of sinusoidal half-waves into which
the buckled beam can be divided; β provides information regarding the discrete elastic
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supports of the beam, while l, E, and I are intrinsic characteristics of the beam (the length,
Young’s modulus, and bending moment of inertia respectively).

To determine the number of half-waves for which the aforementioned expression of
critical loading attains its minimum, we initially consider the scenario where no elastic
supports are present, hence setting m = 1. This scenario characterizes the buckling of a
hinged beam. When 0 < β << 1, and m = 1 is considered in Equation (9), it is noticeable
that under highly flexible elastic conditions, the beam can buckle without exhibiting
intermediary points of inflection. Should β > 1, it results in a scenario where the force in
Equation (9) is lower for m = 2 than for m = 1, causing the beam to buckle with two equal
half-waves. The threshold value of β is derived from the condition that, at this critical
value, the force P derived from Equation (9) should yield equivalent values for both m = 1
and m = 2.

So, it can be written:

1 +
βl4

π4EI
= 4 +

βl4

4π4EI
, (10)

⇒ βl4

π4EI
= 4, (11)

By writing the same equation when the number of half-waves changes from m to
(m + 1), we will obtain the limit value of β for this case.

m2 +
βl4

m2π4EI
= (m + 1)2 +

βl4

(m + 1)2π4EI
(12)

⇒ βl4

π4EI
= m2(m + 1)2 (13)

The relationship (9) that gives the value of the critical load Pcr can also be written in
the form:

Pcr =
π2EI

L2 (14)

where L is defined as the reduced length. Values for the reduced length can be obtained
based on tables where ratios of L/l have been established depending on values β·l4/16EI [7].

3. Study on the Second Order Statics of a Compressed Beam on a Continuous
Elastic Supports

In the case of open truss bridges (Figures 2 and 3), in the transverse direction, the
lateral displacement tendency of the compressed upper chord is counteracted solely by the
transverse half-frames formed by cross-beams, verticals, and diagonals (Figure 5).
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Hence, for the analysis of the compressed chord, the simplified calculation model of a
beam placed on an elastic support can be assumed.

Let there be an elastic medium characterized by the following relationship:

pel = βv (15)
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β representing the response of the medium to a unit displacement of a beam and
having the dimension [FL−2], while pel [FL−1].

v is the vertical displacement of the beam (see Figure 6).
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On the other hand, it is known that in a deformed state, the relationships exist, with
q(x) being the effective load on the beam (Figure 6):

dM
dx = V

dV
dx = −q(x) + P d2v

dx2 + βv

}
(16)

It is known that there exists a relationship between the bending moment and displacement:

d2v
dx2 = − M

EI
(17)

By taking two more derivatives and assuming EI = const., it is obtained:

d4v
dx4 +

P
EI

d2v
dx2 +

β

EI
v =

q(x)
EI

(18)

It is to be noted:
P
EI = k2

β
EI = 4λ4

}
(19)

Replacing (19) in (18) results in:

⇒ d4v
dx4 + k2 d2v

dx2 + 4λ4v =
q(x)
EI

(20)

A principle verification of the relationship (20) is the following:

- If the response of the elastic medium does not exist, that is, β = 0 ⇒ 4λ4 = 0 it leads to
the following equation:

d4v
dx4 + k2 d2v

dx2 =
q(x)
EI

(21)

which corresponds to the second-order statics of the compressed beam.

- If P = 0 ⇒ k = 0, it results in the following relationship:

d4v
dx4 + 4λ4v =

q(x)
EI

(22)

which corresponds to the beam on an elastic medium.

To solve Equation (20), it must be taken into account that it is a second-order differential
equation. The following notation is made: r2 = d2v

dx2 .
For the homogeneous equation, the characteristic equation takes the following form:

r4 + k2r2 + 4λ4 = 0 (23)
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(
r2)2

+ k2(r2)+ 4λ4 = 0
∆ = k4 − 16λ4 (23a)

where ∆ is the discriminant of the obtained quadratic equation. It results in:

r2 =
−k2 ±

√
k4 − 16λ4

2
(24)

Relation (24) can also be written as:

r2 = − k2

2

1 ±

√
1 − 16

λ4

k4

 (25)

The solution of the differential equation will differ depending on whether the discrim-
inant ∆ is positive or negative.

3.1. Case 1

The discussion begins with the case where the discriminant is positive [1,2] (i.e., for
small values of λ and large values of k).

d2 = 1 − 16
λ4

k4 > 0 (26)

Thus:

r2 = − k2

2
(1 ± d)

{
− k2

2 (1 + d)
− k2

2 (1 − d)
(27)

The final solutions are:

r1 = 1√
2

ik
√

1 + d = iα, where α = k√
2

√
1 + d

r2 = − 1√
2

ik
√

1 + d = −iα

r3 = 1√
2

ik
√

1 − d = iβ, where β = k√
2

√
1 − d

r4 = − 1√
2

ik
√

1 − d = −iβ

(28)

The solution of the homogeneous equation is:

vom = Aeiαx + Be−iαx + Ceiβx + De−iβx (29)

However:
eiαx = cos αx + i sin αx eiβx = cos βx + i sin βx (30)

And incorporating i into the constants, it can be written as:

⇒ vom = C1 cos αx + C2 sin αx + C3 cos βx + C4 sin βx (31)

The general solution is:
v = vom + vpart (32)

vpart for Equation (20) depends on the form of the function q(x), that is, on the load.
The integration constants are determined from the boundary conditions.
A verification of relationship (31) is the following:
If λ = 0, from relationship (26) and (28), it results in d = 1 and α = k, while β = 0; thus,

r3 = r4 = 0, and the general form becomes:

vom = C1 cos kx + C2 sin kx + C3x + C4 (33)
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namely, the homogeneous part of the equation of the deformed axis of the compressed
beam in second-order statics.

3.2. Case 2

The discriminant ∆ is, in this case, negative.

d2 = 1 − 16
λ4

k4 < 0 (34)

Thus:
r2 = − k2

2
(1 ± id1) (35)

where d1 here is positive, meaning:

d1
2 = 16

λ4

k4 − 1 (35a)

For the homogeneous equation, the solutions are:

r1 = 1√
2

ik
√

1 + id1

r3 = 1√
2

ik
√

1 − id1

r2 = − 1√
2

ik
√

1 + id1

r4 = − 1√
2

ik
√

1 − id1


(36)

Let us attempt a transformation of relationships (36) for the root r1:

i√
2

k
√

1 + id1 = A + iB

− k2

2 (1 + id1) = A2 − B2 + 2ABi
(37)

⇒
{

A2 − B2 = − k2

2
2AB = − k2

2 d1
⇔

{
A2 − B2 = − k2

2
4A2B2 = k4

4 d1
2 (38)

4A2
(

A2 +
k2

2

)
=

k4

4
d1

2 ⇒ 4A4 + 2A2k2 − k4

4
d1

2 = 0 (39)

where retaining the positive part from the parenthesis results in:

A = ± k
2

√√
1 + d1

2 − 1 (40)

B = ± k
2

√√
1 + d1

2 + 1 (41)

For the second root r2, it can be written as:

− i√
2

k
√

1 + id1 = C + iD

− k2

2 (1 + id1) = C2 − D2 + 2CDi
(42)

⇒
{

C2 − D2 = − k2

2
2CD = − k2

2 d1
⇔

{
C2 − D2 = − k2

2
4C2D2 = k4

4 d1
2 (43)

4C2
(

C2 +
k2

2

)
=

k4

4
d1

2 ⇒ 4C4 + 2C2k2 − k4

4
d1

2 = 0 (44)

C2 =
−2k2 ±

√
4k4 + 4k4d1

2

8
=

−k2 ± k2
√

1 + d1
2

4
=

k2

4

(
−1 ±

√
1 + d1

2
)

(45)
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And retaining the positive part from the parenthesis results in:

⇒ C = ± k
2

√√
1 + d1

2 − 1 (46)

⇒ D = ± k
2

√√
1 + d1

2 + 1 (47)

For the third root r3, it will be:

i√
2

k
√

1 − id1 = E + iF

− k2

2 (1 − id1) = E2 − F2 + 2EFi
(48)

And proceeding in the same manner as with roots r1 and r2, it is obtained:

E2 =
−2k2 ±

√
4k4 + 4k4d1

2

8
=

−k2 ± k2
√

1 + d1
2

4
=

k2

4

(
−1 ±

√
1 + d1

2
)

(49)

After retaining the positive part results in:

⇒ E = ± k
2

√√
1 + d1

2 − 1 (50)

⇒ F = ± k
2

√√
1 + d1

2 + 1 (51)

For the fourth root r4, the calculation relationships are:

− i√
2

k
√

1 − id1 = G + iH

− k2

2 (1 − id1) = G2 − H2 + 2GHi
(52)

And applying the same calculation procedure yields:

G2 =
−2k2 ±

√
4k4 + 4k4d1

2

8
=

−k2 ± k2
√

1 + d1
2

4
=

k2

4

(
−1 ±

√
1 + d1

2
)

(53)

After retaining the positive part finally results in:

⇒ G = ± k
2

√√
1 + d1

2 − 1 (54)

⇒ H = ± k
2

√√
1 + d1

2 + 1 (55)

So, for all the roots of the homogeneous Equation (23), r1, r2, r3, r4, the same form was
obtained. Further notations are introduced:

k
2

√√
1 + d1

2 + 1 = δ = k
2

√
4 λ2

k2 + 1 =
√

λ2 + k2

4

k
2

√√
1 + d1

2 − 1 = γ = k
2

√
4 λ2

k2 − 1 =
√

λ2 − k2

4

− k
2

√√
1 + d1

2 + 1 = −δ = − k
2

√
4 λ2

k2 + 1 = −
√

λ2 + k2

4

− k
2

√√
1 + d1

2 − 1 = −γ = − k
2

√
4 λ2

k2 − 1 = −
√

λ2 − k2

4


(56)
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Therefore, the solution of the homogeneous equation takes the following form:

vom = eγx(C1 cos δx + C2 sin δx) + e−γx(C3 cos δx + C4 sin δx) (57)

An immediate verification of solution (57) is the following: when k = 0 (thus, there is
no force P), it results in γ = δ = λ, and solution (57) exactly takes the form of the solution
corresponding to beams on an elastic medium.

In studying the stability problem, one starts from the solution (57) of the homoge-
neous equation because it is observed that for common cases in practice, relationship (34)
is fulfilled.

The characteristics of the beam and the elastic foundation are defined, as previously
shown, by the quantities k, λ, γ, δ. Three possible cases are distinguished (Figure 7):

(a) The case of the beam with end supports resting on an elastic medium.
(b) The case of the beam without end supports and resting on an elastic medium—the

case of non-conservative forces.
(c) The case of the beam without end supports and resting on an elastic medium—the

case of conservative forces.

Infrastructures 2024, 9, 56 13 of 22 
 

 
Figure 7. Model of the beam on elastic supports/medium for cases (a), (b), and (c) above. 

Case (a)—The boundary conditions that can be written are: 

x = 0:
0

0
v
M

=
 =

 x = l: 
0

0
v
M

=
 =

 (58) 

where v represents the vertical displacement of the beam and M represents the bending 
moment. 

Taking into account the previously expressed variables , , ,k λ γ δ  and the expres-
sions (16), (17), and (56), the resulting system of homogeneous equations is as follows: 

( ) ( ) ( ) ( )

2 2 2 2 1

2

2 2 2 2 2 2 2 2

1 0 1 0
2 2

cos sin cos sin

cos sin cos sin

2 sin 2 cos 2 sin 2 cos

l l l l

l l l l

C
Ce l e l e l e l

l l l l
e e e e

l l l l

γ γ γ γ

γ γ γ γ

γ δ γδ γ δ γδ
δ δ δ δ

γ δ δ γ δ δ γ δ δ γ δ δ

γδ δ γδ δ γδ δ γδ δ

− −

− −

 
 − − − 
  ⋅
 

       − − − + − + − − 
        
                

3

4

0
C
C

 
 
  = 
 
  

 (59) 

By solving the aforementioned system of Equation (59), i.e., by equating the determi-
nant to zero, there is ultimately an arrival at a transcendental equation in k (that means, in 
P). This equation can be solved, for instance, through a stepwise graphical representation 
of the function D (here, being the determinant of the system of equations) for various val-
ues of k (or P). The first zero value for D will consequently lead to the desired solution. 

Similarly, the other two cases corresponding to the beam without end supports and 
resting on an elastic medium (non-conservative forces—case (b), and conservative 
forces—case (c)) are solved in the same manner. 

Case (b)—The boundary conditions for this case are: 

x = 0: 
0

0
M
V

=
 =

 x = l: 
0

0
M
V

=
 =

 (60) 

These conditions lead to the following homogeneous system of linear equations: 

Figure 7. Model of the beam on elastic supports/medium for cases (a), (b), and (c) above.

Case (a)—The boundary conditions that can be written are:

x = 0 :
{

v = 0
M = 0

x = l :
{

v = 0
M = 0

(58)

where v represents the vertical displacement of the beam and M represents the bending moment.
Taking into account the previously expressed variables k, λ, γ, δ and the expressions

(16), (17), and (56), the resulting system of homogeneous equations is as follows:


1 0 1 0

γ2 − δ2 2γδ γ2 − δ2 −2γδ

eγl cos δl eγl sin δl e−γl cos δl e−γl sin δl

eγl
[ (

γ2 − δ2) cos δl−
2γδ sin δl

]
eγl

[ (
γ2 − δ2) sin δl+

2γδ cos δl

]
e−γl

[ (
γ2 − δ2) cos δl+

2γδ sin δl

]
e−γl

[ (
γ2 − δ2) sin δl−

2γδ cos δl

]
 ·


C1
C2
C3
C4

 = 0 (59)

By solving the aforementioned system of Equation (59), i.e., by equating the determi-
nant to zero, there is ultimately an arrival at a transcendental equation in k (that means, in
P). This equation can be solved, for instance, through a stepwise graphical representation of
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the function D (here, being the determinant of the system of equations) for various values
of k (or P). The first zero value for D will consequently lead to the desired solution.

Similarly, the other two cases corresponding to the beam without end supports and
resting on an elastic medium (non-conservative forces—case (b), and conservative forces—
case (c)) are solved in the same manner.

Case (b)—The boundary conditions for this case are:

x = 0 :
{

M = 0
V = 0

x = l :
{

M = 0
V = 0

(60)

These conditions lead to the following homogeneous system of linear equations:


γ2 − δ2 2γδ γ2 − δ2 −2γδ

γ
(
γ2 − 3δ2

)
δ
(
3γ2 − δ2

)
−γ

(
γ2 − 3δ2

)
δ
(
3γ2 − δ2

)
eγl

[ (
γ2 − δ2

)
cos δl−

2γδ sin δl

]
eγl

[
2γδ cos δl+(
γ2 − δ2

)
sin δl

]
e−γl

[ (
γ2 − δ2

)
cos δl+

2γδ sin δl

]
e−γl

[ (
γ2 − δ2

)
sin δl−

2γδ cos δl

]
eγl

(
γ3 cos δl − 3γδ2 cos δl−
3γ2δ sin δl + δ3 sin δl

)
eγl

(
3γ2δ cos δl − δ3 sin δl+
γ3 sin δl − 3γδ2 sin δl

)
e−γl

(
−γ3 cos δl + 3γδ2 cos δl−
3γ2δ sin δl + δ3 sin δl

)
e−γl

(
3γ2δ cos δl − δ3 cos δl−
γ3 sin δl + 3γδ2 sin δl

)
 ·


C1
C2
C3
C4

 = 0 (61)

Case (b)—The boundary conditions are:

x = 0 :

{
M = 0
T = −EI d3v

dx3 = P dv
dx

x = l :

{
M = 0
T = −EI d3v

dx3 = P dv
dx

(62)

Similarly to obtaining the system of Equation (61), the system of equations correspond-
ing to this case is also derived, and it is presented below.


γ2 − δ2 2γδ γ2 − δ2 −2γδ

γ
(
γ2 − 3δ2 + k2

)
δ
(
3γ2 − δ2 + k2

)
−γ

(
γ2 − 3δ2 + k2

)
δ
(
3γ2 − δ2 + k2

)
eγl

[ (
γ2 − δ2

)
cos δl−

2γδ sin δl

]
eγl

[
2γδ cos δl+(
γ2 − δ2

)
sin δl

]
e−γl

[ (
γ2 − δ2

)
cos δl+

2γδ sin δl

]
e−γl

[ (
γ2 − δ2

)
sin δl−

2γδ cos δl

]
eγl

[
γ
(
γ2 − 3δ2 + k2

)
cos δl+

δ
(
δ2 − 3γ2 − k2

)
sin δl

]
eγl

[
δ
(
3γ2 − δ2 + k2

)
cos δl+

γ
(
γ2 − 3δ2 + k2

)
sin δl

]
e−γl

[
γ
(
3δ2 − γ2 − k2

)
cos δl+

δ
(
δ2 − 3γ2 − k2

)
sin δl

]
e−γl

[
δ
(
3γ2 − δ2 + k2

)
cos δl+

γ
(
3δ2 − γ2 − k2

)
sin δl

]
 ·


C1
C2
C3
C4

 = 0 (63)

4. Validation of the Proposed Methodology Using a Case Study

Based on the theoretical considerations presented earlier, a case study was conducted
to determine the critical buckling load for a beam placed on an elastic medium, which also
has end supports. For illustration, the upper chord of a steel bridge structure with truss
girders in use within the railway network of Romania was considered. The overall shape
and dimensions are provided in Figure 8. The same figure also depicts the cross-section of
the considered compressed upper chord.
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to determine the critical buckling load for a beam placed on an elastic medium, which also 
has end supports. For illustration, the upper chord of a steel bridge structure with truss 
girders in use within the railway network of Romania was considered. The overall shape 
and dimensions are provided in Figure 8. The same figure also depicts the cross-section 
of the considered compressed upper chord. 
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The analysis considered that the elastic supports of the upper chord are constituted by
the transversal half-frames made of cross-beams and verticals (Figure 9).
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Figure 9. The scheme for calculation of the elastic supports stiffness.

The unit reaction of the support (taking into account the geometric characteristics of
the cross-sectional sections of the cross-beams and verticals) is:

r =
1
y
=

1
h3

3EIm
+ dh2

2EIa

== 361.5 kN/m (64)

The following parameters are involved in the above relationship:
h is the depth of the main girders, with a value of 8.47 m;
d represents the distance between the axes of the main girders (the theoretical length

of the cross-beams), with a value of 5.10 m;
E is the Young’s modulus of steel (E = 2.1 × 105 N/mm2);
Im is the moment of inertia of the cross-section of the verticals (about de strong axis),

with the value of 37,588 × 10−8 m4;
Ia is the moment of inertia of the cross-section of the cross-beams (about the strong

axis), with a value of 435,910 × 10−8 m4;
y represents the transverse displacement of the upper chord caused by the application

of unit force at the ends of the verticals.
The reaction per unit length of the elastic supports can be established, taking into

account the distance between two consecutive elastic supports; therefore, the distance
between frames (dr = 5.5 m) is based on the relationship:

β =
r
dr

=
r

5.5
=

361.5
5.5

= 65.7 kN/m (65)

The moment of inertia of the cross-section of the upper chord was considered a
weighted average of the moments of inertia of the segments composing the upper chord,
as follows:

IUCH =

4
∑

i=1
Ii li

4
∑

i=1
li

=
l1
(
2 × 79.31 × 107 + 2 × 121.59 × 107)

4l1
=

(79.31 + 121.59)× 107

2
= 100.45 × 107 mm4 (66)

Considering the system of Equation (59), taking into account the quantities whose
expressions have been previously presented, and using a number of load steps, a graphical
representation of the determinant function D of the system of Equation (59) was obtained,
using a computer program created for this purpose, written in Borland Pascal. The abscissa
value for which the determinant function equals zero represents the critical load value at
which the beam on discrete elastic supports loses its stability. This value is Pcr = 7470 kN.
The P-D graph is shown in Figure 10, where D represents the value of the determinant of
the system of Equation (59).
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Starting right now from Equation (13) and considering the characteristics of the upper
chord, an equation of the second order in m is obtained, which, when solved, provides the
number of half-waves m of the beam at the moment of stability loss.

The second-order equation is:

m2 + m − 3.46 = 0 (67)

and this leads to:

→ m =
−1 ±

√
1 + 13.84
2

=
−1 +

√
14.84

2
= 1.43 (68)

This value of m introduced in Equation (9) leads to the following critical load value
Pcr:

Pcr =
π2EI

l2

(
m2 +

1
m2

βl4

π4EI

)
== 8495.2 kN (69)

A value even closer to the one obtained through the calculation using the created
program is obtained based on the table values in Ref. [7], which provide the value of the

ratio L/l based on the ratio βl4

16EI . The value of this ratio for the considered case is 72.96,
and linearly interpolating in the tables yields the value of the ratio L/l = 0.3784. Hence, the
value of the reduced length is (based on the theoretical length of the beam) L = 16.65 m.
The critical force Pcr in this case results in:

Pcr =
π2EI

L2 == 7509.7 kN (70)

Another analysis was conducted using the finite element method on a three-dimensional
model. Following eigenvalue buckling and geometric nonlinear analyses (large displace-
ments), the critical buckling force value found was Pcr = 7514.5 kN. For the analysis, the
finite element system LUSAS [26] was employed. The finite element model is shown in
Figure 11 in elevation and plan views.

In the modeling, non-conforming isoparametric Kirchhoff finite elements with four
nodes, BS4, were employed [26], where the fourth node was used to define the local
coordinate plane. For this type of finite element, global displacements and rotations are
independently interpolated using linear Lagrange shape functions for the nodes at the ends
of the element and a quadratic function for the central node. This allows for the fulfillment
of the continuity condition of displacements (C0 class) in the element plane. It has been
observed that considering a number of three to four finite elements for each structural
element of the bridge ensures the stability and convergence of the solution process in
nonlinear geometric analyses.

In all conducted analyses, the Total Lagrangian formulation was employed, along with
the modified Newton–Raphson method, and as needed, the modified arc length method
implemented by Crisfield [26].

The convergence issues arising due to the presence of limit points (where the current
stiffness parameter of the structure and the minimum pivot value in the stiffness matrix
are negative) and bifurcation points (where the current stiffness parameter is positive, and
the minimum pivot value in the stiffness matrix is negative) were resolved by manually
constructing restart files in the programming language required by the software. Further,
the iterative process was resumed from the point where it had previously stopped.

Using this methodology, complete force-displacement curves for the evolution of the
displacement of the point located in the middle of the compressed upper chord of the
bridge as a function of the loading factor (the value of the critical axial force in the chord)
were plotted. Such a curve is presented in Figure 12, below.
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In this way, the value of the critical loading for the compressed upper chord was determined.

5. Discussion

The analysis conducted in this study aimed to determine the general lateral buckling
critical load for the compressed upper chord of truss bridge decks using the model of
a beam on continuous or discrete elastic supports. The proposed method differs from
commonly used methods described in the specialized literature. These often focus on the
deformation energy of the compressed beam on an elastic foundation, considering various
axial force distributions along the bar.

Within the proposed method, the approach starts from the second-order analysis of a
compressed beam on a continuous elastic medium, also considering a possible transverse
action on the beam. By analyzing the material characteristics of the beam, cross-section
geometric characteristics, and the stiffness of the continuous or discrete elastic supports,
solutions to the differential equations describing the deformed axis of the compressed beam
were obtained. These solutions were adapted for various end-supports of the beam, having
as a result the formation of systems of linear homogeneous equations. To determine the
critical load value, an alternative approach was proposed, plotting the determinant function
of each equation system as a function of loading steps—a different approach compared to
existing methods.

Using this methodology, a value of Pcr = 7470 kN was obtained, closely matching
values derived from other methods in the literature. Employing the energy method and
pre-determining the number of half-waves of the buckled beam resulted in a critical load
value of Pcr,1 = 8495.2 kN. Another method used for comparison relied on the reduced
length of the bar and existing tabulated values, yielding a value of Pcr,2 = 7509.7 kN.

Considering that the finite element method is currently a standard structural analysis
procedure, the critical lateral buckling load for an existing truss bridge deck in Romania’s
railway network was determined. Following an eigenvalue buckling analysis performed
on a discrete three-dimensional model resulted in a critical load value of Pcr,3 = 7514.4 kN.

Furthermore, to highlight the capabilities of the proposed method, three bridge decks
of old and new railway bridges in Romania were further analyzed, each featuring different
dimensions and configurations of truss beams (Figures 13–15).
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The results obtained from analyzing these steel decks using all the methods employed
for Structure 1 were not detailed, as in the case of the first structure. Instead, they were
condensed and presented in tabular form in Tables 1–4.

Table 1. Results obtained using the proposed method.

Structure L, Span
[m]

h
[m]

E
[N/mm2]

d
[m]

Im
[mm4]

Ia
[mm4]

ITS
[mm4]

dr h3/3EIm dh2/2EIa r̄ [kN/m]
β

[kN/m2]
Pcr

[kN]

2 42 4.60 210,000 4.90 2.17 × 10+08 3.09 × 10+09 7.62 × 10+08 8.40 7.13 × 10−04 7.99 × 10−05 1260.71 150.08 9829
3 48 7.20 210,000 5.00 1.47 × 10+08 7.40 × 10+09 1.00 × 10+09 4.80 4.03 × 10−03 8.34 × 10−05 243.09 50.64 6502
4 32.05 4.18 210,000 5.00 2.30 × 10+07 1.03 × 10+09 3.20 × 10+08 3.21 5.03 × 10−03 2.01 × 10−04 191.11 59.63 3998

The significance of the quantities in the header of the table is the same as that in the detailed example.

Table 2. Results obtained using the energy method and the number of half-waves.

Structure β
[kN/m2]

l
[m]

E
[N/mm2]

ITS
[mm4] β·l4/π4EI m π2EI/l2 Pcr

[kN]

2 150.08 33.6 210,000 7.62 × 10+08 12.28 1.44 1398.232 11,197.13389
3 50.64 48 210,000 1.00 × 10+09 13.13 1.47 900.266 7425.170261
4 59.63 33.8 210,000 3.20 × 10+08 11.88 1.42 581.087 4586.433478

The significance of the quantities in the header of the table is the same as that in the detailed example.

Table 3. Results obtained using the table values.

Structure β·l4/16EI L/l L (Reduced Length) [m] Pcr [kN]

2 74.75 0.3763 12.64 9874.400

3 79.95 0.3710 17.81 6540.685

4 72.31 0.3792 12.82 4041.144
The significance of the quantities in the header of the table is the same as that in the detailed example.

Table 4. Results obtained using 3D models and the finite element method.

Structure Pcr[kN]

2 10433

3 6780

4 4205

As evident from the aforementioned values, the proposed methodology yields a
critical buckling load value for the compressed beam on discrete elastic supports that aligns
closely with values obtained through other existing methods in the literature. Moreover, the
obtained value is the most conservative, indicating higher safety margins. This consistency
in values suggests that the proposed method can effectively be used in stability analyses
for compressed upper chords of half-through truss bridge decks.

The main advantages of this method lie in the potential for complete automation of the
calculation process, a simple analysis model, and the use of a reduced set of well-defined
parameters describing the calculation model, significantly reducing analysis time. This
method could serve as an alternative to currently used methods like finite element analysis
in confirming values obtained for complex structures.

Future studies will further extend this research to account for geometric and material
imperfections resulting from construction processes, such as the heat treatment of steel,
welding procedures, or eccentricities of applied compressive forces.

6. Conclusions

This paper presents a detailed analysis of determining the critical lateral buckling load
for compressed upper chords of half-through truss bridge decks. The proposed method,
involving discrete modeling of the beam on continuous or discrete elastic supports, offers a
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novel approach compared to traditional methods. It starts from the second-order statics
of the compressed beam and employs an innovative strategy to determine the critical
load. The detailed analysis of values obtained through various methods confirms the
effectiveness and accuracy of the proposed method, suggesting that it could be a viable
alternative to traditional methods used in structural stability analyses.
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