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Abstract: Partially stabilized zirconia (PSZ) is considered for use as an oxygen-sensor material in
liquid lead-bismuth eutectic (LBE) alloys in the radiation environment of an acceleration-driven
system (ADS). To predict its lifetime for operating in an ADS, the effects of radiation on the PSZ
were clarified in this study. A tetragonal PSZ was irradiated with 100 keV electrons and analyzed by
X-ray diffraction (XRD). The results indicate that the phase transition in the PSZ, from the tetragonal
to the monoclinic phase, was caused after the irradiation. The deposition energy of the lattice and
the deposition energy for the displacement damage of a 100 keV electron in the PSZ are estimated
using the particle and heavy ion transport code system and the non-ionizing energy loss, respectively.
The results suggest that conventional radiation effects, such as stopping power, are not the main
mechanism behind the phase transition. The phase transition is known to be caused by the low-
temperature degradation of the PSZ and is attributed to the shift of oxygen ions to oxygen sites. When
the electron beam is incident to the material, the kinetic energy deposition and excitation-related
processes are caused, and it is suggested to be a factor of the phase transition.

Keywords: phase transition; electron irradiation; partially stabilized zirconia; XRD; radiation simulation

1. Introduction

An acceleration-driven system (ADS) is a powerful tool for effectively transmuting
minor actinides in the double-strata fuel cycle strategy for separation/conversion technol-
ogy [1,2]. As a neutron source and coolant, such systems use a liquid lead–bismuth eutectic
(LBE) alloy as a nuclear spallation target [3]. The LBE alloy is designed to flow through
piping at 2 m/s. It causes erosion and corrosion in the pipes [4,5], which are suppressed by
adjusting the oxygen concentration by about 10−7 wt.% in the LBE alloy [6]. Therefore, an
oxygen sensor is required to control the oxygen concentration in the LBE alloy.

Oxygen sensors based on yttria-stabilized zirconia (YSZ) and a Pt/air electrode are
used worldwide to monitor the oxygen concentration in LBE alloys [7,8]. Such oxygen
sensors must have high fracture toughness because a high load is applied by the flowing
LBE alloy. The fracture toughness of YSZ depends on the yttrium concentration [9]. YSZ
with 3 mol% yttrium is called partially stabilized zirconia (3Y–PSZ).

Under high stress, 3Y–PSZ undergoes a phase transition from a tetragonal (t) phase
to a monoclinic (m) phase [10–12]. Because the m phase contributes to arresting crack
propagation, it has been shown to play an important role in endowing this material with
high fracture toughness. Therefore, if the fracture toughness can be maintained in the ADS
operating environment, the PSZ may become an important material for use in ADS oxygen
sensors.

As the LBE alloy flows through the entire ADS cooling system, it becomes radioactive
through the spallation reaction. The LBE alloy is predicted to expose the oxygen sensor to
a high radiation field of over 1 kGy/h [6], which is expected to lead to radiation damage in
the oxygen-sensor material.
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In a previous study of pure zirconia irradiated with 340 keV Xe and 800 keV Bi ion
beams [13–15], an m-to-t phase transition was observed. The phase transition between m
and t is considered to be caused by the cumulative transfer of energy laid down in the
displacement cascades. On the other hand, the t phase of 3Y-PSZ is a metastable phase and
is related to its strong mechanical properties. However, the t-to-m transition is triggered by
mechanical stress and thermal annealing, and may be affected by the deposition energy of
the radiation because of the metastable state phase.

To use the PSZ device in a radiation environment, the behavior of the PSZ in the
metastable t phase must be investigated. In this study, the effect of PSZ on a 100 keV
electron beam was investigated, using a crystal structure and radiation simulation analysis.

2. Materials and Methods

The PSZ specimens consisted of zirconia doped with 3 mol% yttria (3Y–PSZ, Tsukuba
Ceramic Works) and were cut into 4.0 mm (length) × 10.0 mm (width) × 3.0 mm (depth)
specimens. They were sintered at 1500 ◦C. The top and bottom surfaces were mirror
polished. To remove the phase transition during the shape processing, the PSZ specimens
were processed with a quench heat treatment at 900 ◦C and air cooled.

The specimens were irradiated with a 100 keV electron beam generated by a Cockcroft–
Walton electron accelerator at Osaka Prefecture University (OPU). In order to avoid gener-
ating heat in a small area with the micro-focus beam, the electron beam was defocused to
about 2 cmΦ. The area of irradiation was extended to 6 cm × 10 cm much more than the
surface of the sample by the scanning coil. The required electron fluence was determined
from the number of charges flowing to the ground collected in a Faraday cup and the flux
was 5 × 1012 cm2/s during the irradiation. Before and after irradiation, the specimens
were subjected to X-ray diffraction (XRD), and the crystal structure was analyzed using the
θ−2θ method. The XRD measurements were carried out using Cu Kα radiation.

3. Results

Figure 1 shows the XRD pattern of 3Y-PSZ before and after irradiation with a 100 keV
electron beam. In Figure 1a, the main XRD peaks are assigned to all measurement regions.
This result indicates that the t (111) phase dominates the 3Y-PSZ specimen at approximately
2θ = 30◦, before and after irradiation [16]. The peaks of the m (11 − 1) and (111) phases at
approximately 2θ = 28◦ and 31.5◦ do not appear because the signal intensity is much lower
than that of the t phase. A peak is known to exist in the m (11 − 1) phase.
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In Figure 1b, to focus on the m (11 − 1) peak, the diffraction angle was set between
27◦ and 29◦. The results show that the intensity of the peak monotonically increases after
irradiation, depending on the fluence of 100 keV electrons.

The fraction CM of the m phase to the t phase can be evaluated from the peak areas of
the most intense signals of t (101), m (11 − 1), and t (111), using the following equation [13]:

CM = 0.82× Im(11− 1) + Im(111)
It(101)

× 100% (1)

where Im and It are the peak intensities of m and t, respectively. Figure 2 shows the
fractional content of the m phase as a function of the electron fluence. This result indicates
that the fractional content of m increases as the absorbed dose increases. Therefore, the
phase transformation in 3Y–PSZ is caused by electron irradiation.
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Because the phase transition is detected by XRD, the absorbed dose should be calcu-
lated in the shallow surface region that is probed by XRD. This region was determined by
the X-ray penetration depth. The fraction G(x) of the total diffracted intensity, due to a
surface layer of depth xx, can be expressed using the following [17,18]:

G(x) = 1− exp
(
−2µx
sin θ

)
(2)

where µ is the absorption coefficient and −2µx/ sin θ is the effective path length for X-rays
to penetrate to a depth x at a given Bragg angle θ. For the PSZ, the path length of Cu Kα

X-rays incident at θ = 28◦ is approximately 9 µm, as shown in Equation (2), with G(x) = 0.99.
The electrons are known to have a short flight distance in the materials. To investigate
the range of the flight distance, the Monte Carlo calculation for radiation behavior was
conducted, using the particle and heavy ion transport code system (PHITS) [19].

Figure 3 shows the depth distribution of the dose from the surface of the PSZ, in the
case of irradiation with one of the 100 keV electrons. This result indicates that the value of
the dose rate peaks at approximately 5 µm, and continues to 30 µm. Therefore, the flight
range of a 100 keV electron was considered to be longer than the observation range of the
XRD analysis.

When charged particles, e.g., electrons and ions, pass through materials, the radiation
effect is expressed as a loss of energy, due to an interaction called total stopping power
(S). One type of S is collision stopping power (Scol), e.g., electronic stopping power (Se),
nuclear stopping power (Sn), and radiative stopping power (Srad). Sn is the main factor
that causes the displacement and migration of atoms.
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In an effort to describe the fraction of energy that moves into displacements such
as the Sn, due to radiation, the non-ionizing energy loss (NIEL) was developed and is
expressed as follows [20–22]:

NIEL (E) =
NA
A

∫ π

θmin

L[T(θ, E)]T(θ, E)
dσ(θ, E)

dΩ
dΩ (3)

where NA is Avogadro’s number, A is the atomic mass, E is the energy of the incident
particle, θ is the scattering angle, σ is the scattering cross-section, and Ω is the solid angle of
scattering. The equation also requires information regarding the differential cross-section
for atomic displacements (dσ(θ, E)/dΩ), the average recoil energy of the target atoms
(T(θ, E)), and the Lindhard partition factor (L[T(θ, E)]), which partitions the energy into
ionizing and non-ionizing events.

Figure 4 shows the NIEL vs. energy for Zr, Y, and O atoms for electrons. The result
shows that the NIEL value for each element rapidly increases above a certain energy
threshold (Eth). An increase in the NIEL value means that the kinetic energy given by the
electron beam to the atom exceeds the displacement threshold energy (Ed) and causes the
production of a primary knock-on atom (PKA).
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However, the Eth values of Y, Zr, and O are higher than the energy of the incident
electrons by approximately 2200, 1250, and 600 keV, respectively. Therefore, the phase
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transition is considered to be caused by the transfer of kinetic energy lower than the recoil
effect, similar to PKA.

From the calculation result in Figure 3, the deposition energy such as the Se is also
estimated to be 1.9× 10−14 eV when an electron passes the lattice of t-PSZ having a volume
of 137 Å3, which might be much lower than the energy that causes the phase transition.

The phase transition from t to m in the PSZ is also known to be a thermal effect which
is between 150 and 300 ◦C, as shown in Figure 5 [23]. The electron beam that heats the
sample surface is considered to be about 80 mW because the condition of electron beam is a
defocus-beam, rather than a micro-focus beam. The region such as 25 µm from the surface,
which is main energy deposition region indicated from Figure 3, is 11 K/s. The sample
temperature between the electron irradiation was less than 40 ◦C. For the above reasons,
in the irradiation, the sample temperature is lower than the annealing temperature which
causes a phase transition from the t-to-m phase. Therefore, the observed phase transition
caused by the irradiation with 100 keV electrons is not considered to be a radiation effect
such as the Se, the Sn and the thermal effect.
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4. Discussion

The crystal structures of the t and m phases of PSZ are shown in Figure 6 [24]. This
phase transformation is considered to be a martensitic transition. Generally, an athermal
diffusionless martensitic transition occurs quickly, with the motion of the phase boundary
as high as the speed of sound [25]. The overall transition proceeds in two major stages [26].
First, the transition of the lattice structure from tetragonal to monoclinic occurs by the
shearing displacement of zirconium ions. The second stage involves the sliding of oxygen
ions to the oxygen sites in the monoclinic lattice. The displacement of oxygen ions from the
ideal fluorite positions along the c-axis was investigated by X-ray diffraction (XRD) [27].
Therefore, the 100 keV electron is considered to cause the shearing displacement of zirco-
nium ions and the sliding of oxygen ions. In [9], the reported activation energies for the
phase transition are close to 100 kJ/mol (~1 eV), which is similar to the activation energy
for the sliding of oxygen ions to oxygen sites. In order to find the mechanism of the phase
transition, the factor of the sliding of oxygen ions to oxygen sites should be considered.
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One of the factors is the kinetic energy transfer due to the elastic collision between the
electron and target atoms. The kinetic energy of the target atom from the incident electron
is expressed as follows:

Ep =
2Me

MT
· 1
Mec2

(
E + 2Mec2

)
E sin2 θ

2
(4)

where E, θ, c, MT, and Me denote the energy of the incident electron, scattering angle, speed
of light, mass of the target atom, and electron mass, respectively. Therefore, in the case of θ
= 0◦, Ep takes the maximum value (Ep,max), which is represented by the following equation:

Ep, max =
2E
(
E + 2Mec2)

MTc2 (5)

Figure 7 shows the Ep,max for Zr, Y, and O atoms, as a function of the energy of the
incident electron. The result shows that the value of Ep,max for the O atom is 1 eV at
the energy of the 7.2 keV incident electron. This suggests that a 100 keV electron can
cause the migration of oxygen ions to oxygen sites, by elastic scattering, to trigger the
phase transition.
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Another factor to consider are the excitation-related processes [28]. The amorphous-
to-crystalline phase transition via the excitation-related processes is often observed in
amorphous ceramics such as Al2O3, ScPO4 and LaPO4 [29]. The behavior of phase transi-
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tion via excitation-related processes is known to have an approximate relationship with
the Bethe formula [30], which is as the following:

− dE
dx

= 2πe4NA
ρZ
AE

ln
(√

2
E
I

)
(6)

I = 9.76Z +
58.5

Z0.19 , (7)

where e is the elementary charge, NA is the Avogadro number, ρ is the mass density, Z is
the atomic number, A is the atomic weight, E is the electron energy, is the base of natural
logarithm, I is the mean excitation energy, and Z is the mean atomic number.

Figure 8 shows the calculation result of the stopping power for electron in ZrO2 as a
function of the energy of the incident electron. The result indicates that the stopping power
increases with the decreasing incident electron energy. This tendency is in contrast to the
kinetic energy of the elastic collision as shown in Figure 7. The possible factors that cause
the phase transformation are the transfer of kinetic energy or the electronic excitation effect.
In further research, in order to investigate the mechanism of the m→t phase transition
in PSZ, it is important to determine the energy dependence of the phase transformation
by low-energy electron beams. If the phase transformation rate increases with decreasing
incident electron energy, the electronic excitation effect is the main factor. On the other
hand, when the tendency between the energy and the phase transformation rate is opposite,
the influence of kinetic energy application is considered to be large.
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5. Conclusions

It was observed that the monoclinic phase in 3Y-PSZ increased with increasing electron-
beam fluence. The calculation results using PHITS suggested that the energy deposited
by a 100 keV electron to the PSZ lattice was not the main reason for the phase transition.
The NIEL calculation indicated that the atoms in the PSZ only recoiled under electron
irradiation at energies over 0.56 MeV; 100 keV electrons cannot cause displacement damage.

However, the kinetic energy or the excitation-related processes from incident electrons
in the PSZ might be higher than the energy needed to shift oxygen ions to oxygen sites,
and is suggested to be the cause of the phase transition.
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