Next Article in Journal
Proton-Cluster-Beam Lethality and Mutagenicity in Bacillus subtilis Spores
Previous Article in Journal
Control and Modification of Nanostructured Materials by Electron Beam Irradiation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Erratum

Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19

1
Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37966, USA
2
Center for International Security and Cooperation, Stanford University, Stanford, CA 94305, USA
*
Author to whom correspondence should be addressed.
Quantum Beam Sci. 2021, 5(3), 24; https://0-doi-org.brum.beds.ac.uk/10.3390/qubs5030024
Submission received: 22 July 2021 / Accepted: 29 July 2021 / Published: 6 August 2021
During the final production steps after the proofreading of this paper [1], an error in the citation order was introduced, which affected the citation order from reference 45 to 102 and the respective call outs in the main text.
The reference list and corresponding citations throughout the manuscript have been revised. The order of references from reference 45 to 102 should be as listed below:
45.
Palomares, R.I.; Tracy, C.L.; Zhang, F.; Park, C.; Popov, D.; Trautmann, C.; Ewing, R.C.; Lang, M. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell. J. Appl. Crystallogr. 2015, 48, 711–717, doi:10.1107/S160057671500477X.
46.
Tracy, C.L.; Lang, M.; Pray, J.M.; Zhang, F.X.; Popov, D.; Park, C.Y.; Trautmann, C.; Bender, M.; Severin, D.; Skuratov, V.A.; et al. Redox response of actinide materials to highly ionizing radiation. Nat. Commun. 2015, 6, 9, doi:10.1038/ncomms7133.
47.
Pakarinen, J.; He, L.F.; Hassan, A.R.; Wang, Y.Q.; Gupta, M.; El-Azab, A.; Allen, T.R. Annealing-induced lattice recovery in room-temperature xenon irradiated CeO2: X-ray diffraction and electron energy loss spectroscopy experiments. J. Mater. Res. 2015, 30, 1555–1562, doi:10.1557/jmr.2015.13.
48.
Yablinsky, C.A.; Devanathan, R.; Pakarinen, J.; Gan, J.; Severin, D.; Trautmann, C.; Allen, T.R. Characterization of swift heavy ion irradiation damage in ceria. J. Mater. Res. 2015, 30, 1473–1484, doi:10.1557/jmr.2015.43.
49.
Costantini, J.-M.; Miro, S.; Gutierrez, G.; Yasuda, K.; Takaki, S.; Ishikawa, N.; Toulemonde, M. Raman spectroscopy study of damage induced in cerium dioxide by swift heavy ion irradiations. J. Appl. Phys. 2017, 122, 205901, doi:10.1063/1.5011165.
50.
Palomares, R.I.; Shamblin, J.; Tracy, C.L.; Neuefeind, J.; Ewing, R.C.; Trautmann, C.; Lang, M. Defect accumulation in swift heavy ion-irradiated CeO2 and ThO2. J. Mater. Chem. A 2017, 12193–12201, doi:10.1039/C7TA02640D.
51.
Maslakov, K.I.; Teterin, Y.A.; Popel, A.J.; Teterin, A.Y.; Ivanov, K.E.; Kalmykov, S.N.; Petrov, V.G.; Petrov, P.K.; Farnan, I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162, doi:10.1016/j.apsusc.2018.04.077.
52.
Cureton, W.F.; Palomares, R.I.; Walters, J.; Tracy, C.L.; Chen, C.-H.; Ewing, R.C.; Baldinozzi, G.; Lian, J.; Trautmann, C.; Lang, M. Grain size effects on irradiated CeO2, ThO2, and UO2. Acta Mater. 2018, 160, 47–56, doi:10.1016/j.actamat.2018.08.040.
53.
Shelyug, A.; Palomares, R.I.; Lang, M.; Navrotsky, A. Energetics of defect production in fluorite-structured CeO2 induced by highly ionizing radiation. Phys. Rev. Mater. 2018, 2, 093607, doi:10.1103/PhysRevMaterials.2.093607.
54.
Cureton, W.F.; Palomares, R.I.; Tracy, C.L.; O’Quinn, E.C.; Walters, J.; Zdorovets, M.; Ewing, R.C.; Toulemonde, M.; Lang, M. Effects of irradiation temperature on the response of CeO2, ThO2, and UO2 to highly ionizing radiation. J. Nucl. Mater. 2019, 525, 83–91, doi:10.1016/j.jnucmat.2019.07.029.
55.
Costantini, J.-M.; Gutierrez, G.; Watanabe, H.; Yasuda, K.; Takaki, S.; Lelong, G.; Guillaumet, M.; Weber, W.J. Optical spectroscopy study of modifications induced in cerium dioxide by electron and ion irradiations. Philos. Mag. 2019, 99, 1695–1714, doi:10.1080/14786435.2019.1599145.
56.
Yamamoto, Y.; Ishikawa, N.; Hori, F.; Iwase, A. Analysis of Ion-Irradiation Induced Lattice Expansion and Ferromagnetic State in CeO2 by Using Poisson Distribution Function. Quantum Beam Sci. 2020, 4, 26.
57.
Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823, doi:10.1016/j.nimb.2010.02.091.
58.
Kumar, A.; Devanathan, R.; Shutthanandan, V.; Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Yong, Y.; Thevuthasan, S.; Seal, S. Radiation-Induced Reduction of Ceria in Single and Polycrystalline Thin Films. J. Phys. Chem. C 2012, 116, 361–366, doi:10.1021/jp209345w.
59.
Park, C.; Popov, D.; Ikuta, D.; Lin, C.; Kenney-Benson, C.; Rod, E.; Bommannavar, A.; Shen, G. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source. Rev. Sci. Instrum. 2015, 86, 072205, doi:10.1063/1.4926893.
60.
Tahara, Y.; Zhu, B.; Kosugi, S.; Ishikawa, N.; Okamoto, Y.; Hori, F.; Matsui, T.; Iwase, A. Study on effects of swift heavy ion irradiation on the crystal structure in CeO2 doped with Gd2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2011, 269, 886–889, doi:10.1016/j.nimb.2010.12.032.
61.
Neuefeind, J.; Feygenson, M.; Carruth, J.; Hoffmann, R.; Chipley, K.K. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 287, 68–75, doi:10.1016/j.nimb.2012.05.037.
62.
Schmitt, R.; Nenning, A.; Kraynis, O.; Korobko, R.; Frenkel, A.I.; Lubomirsky, I.; Haile, S.M.; Rupp, J.L.M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020, 49, 554–592, doi:10.1039/C9CS00588A.
63.
Devanathan, R. Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material. MRS Adv. 2017, 2, 1225–1230, doi:10.1557/adv.2017.9.
64.
Skanthakumar, S.; Soderholm, L. Oxidation state of Ce in Pb2Sr2Ce1−xCaxCu3O8. Phys. Rev. B 1996, 53, 920–926, doi:10.1103/PhysRevB.53.920.
65.
Zhang, J.; Lang, M.; Lian, J.; Liu, J.; Trautmann, C.; Della-Negra, S.; Toulemonde, M.; Ewing, R.C. Liquid-like phase formation in Gd2Zr2O7 by extremely ionizing irradiation. J. Appl. Phys. 2009, 105, 113510, doi:10.1063/1.3124370.
66.
Matzke, H.; Lucuta, P.G.; Wiss, T. Swift heavy ion and fission damage effects in UO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166–167, 920-926, doi:10.1016/S0168-583X(99)00801-0.
67.
Toulemonde, M.; Paumier, E.; Dufour, C. Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 1993, 126, 201–206, doi:10.1080/10420159308219709.
68.
Szenes, G. Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 2005, 336, 81–89, doi:10.1016/j.jnucmat.2004.09.004.
69.
Meftah, A.; Brisard, F.; Costantini, J.M.; Hage-Ali, M.; Stoquert, J.P.; Studer, F.; Toulemonde, M. Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect. Phys. Rev. B 1993, 48, 920–925, doi:10.1103/PhysRevB.48.920.
70.
Rose, M.; Gorzawski, G.; Miehe, G.; Balogh, A.G.; Hahn, H. Phase stability of nanostructured materials under heavy ion irradiation. Nanostruct. Mater. 1995, 6, 731–734, doi:10.1016/0965-9773(95)00162-X.
71.
Toulemonde, M.; Dufour, C.; Meftah, A.; Paumier, E. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166, 903–912, doi:10.1016/S0168-583X(99)00799-5.
72.
Weber, W.J. Alpha-irradiation damage in CeO2, UO2 and PuO2. Radiat. Eff. 1984, 83, 145–156, doi:10.1080/00337578408215798.
73.
Lang, M.; Zhang, F.; Zhang, J.; Wang, J.; Schuster, B.; Trautmann, C.; Neumann, R.; Becker, U.; Ewing, R.C. Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 2009, 8, 793–797, doi:10.1038/nmat2528.
74.
Kourouklis, G.A.; Jayaraman, A.; Espinosa, G.P. High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 1988, 37, 4250–4253, doi:10.1103/PhysRevB.37.4250.
75.
Duclos, S.J.; Vohra, Y.K.; Ruoff, A.L.; Jayaraman, A.; Espinosa, G.P. High-pressure x-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 1988, 38, 7755–7758, doi:10.1103/PhysRevB.38.7755.
76.
Wang, J.; Ewing, R.C.; Becker, U. Electronic structure and stability of hyperstoichiometric UO2+x under pressure. Phys. Rev. B 2013, 88, 024109, doi:10.1103/PhysRevB.88.024109.
77.
Ge, M.Y.; Fang, Y.Z.; Wang, H.; Chen, W.; He, Y.; Liu, E.Z.; Su, N.H.; Stahl, K.; Feng, Y.P.; Tse, J.S.; et al. Anomalous compressive behavior in CeO2 nanocubes under high pressure. New J. Phys. 2008, 10, 123016, doi:10.1088/1367-2630/10/12/123016.
78.
Chen, W.; Navrotsky, A. Thermochemical study of trivalent-doped ceria systems: CeO2–MO1.5 (M = La, Gd, and Y). J. Mater. Res. 2006, 21, 3242–3251, doi:10.1557/jmr.2006.0400.
79.
Tahara, Y.; Shimizu, K.; Ishikawa, N.; Okamoto, Y.; Hori, F.; Matsui, T.; Iwase, A. Study on effects of energetic ion irradiation in Gd2O3-doped CeO2 by means of synchrotron radiation X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 277, 53–57, doi:10.1016/j.nimb.2011.12.048.
80.
Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A. Molecular dynamics simulation of fast particle irradiation to the Gd2O3-doped CeO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 316, 176–182, doi:10.1016/j.nimb.2013.09.004.
81.
Zhu, B.; Ohno, H.; Kosugi, S.; Hori, F.; Yasunaga, K.; Ishikawa, N.; Iwase, A. Effects of swift heavy ion irradiation on the structure of Er2O3-doped CeO2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 3199–3202, doi:10.1016/j.nimb.2010.05.088.
82.
Lucid, A.K.; Keating, P.R.L.; Allen, J.P.; Watson, G.W. Structure and Reducibility of CeO2 Doped with Trivalent Cations. J. Phys. Chem. C 2016, 120, 23430–23440, doi:10.1021/acs.jpcc.6b08118.
83.
Tracy, C.L.; McLain Pray, J.; Lang, M.; Popov, D.; Park, C.; Trautmann, C.; Ewing, R.C. Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 326, 169–173, doi:10.1016/j.nimb.2013.08.070.
84.
Preuss, A.; Gruehn, R. Preparation and Structure of Cerium Titanates Ce2TiO5, Ce2TiO7, and Ce4Ti9O24. J. Solid State Chem. 1994, 110, 363–369, doi:10.1006/jssc.1994.1181.
85.
Uberuaga, B.P.; Sickafus, K.E. Interpreting oxygen vacancy migration mechanisms in oxides using the layered structure motif. Comput. Mater. Sci. 2015, 103, 216–223, doi:10.1016/j.commatsci.2014.10.013.
86.
Adachi, G.-y.; Imanaka, N. The Binary Rare Earth Oxides. Chem. Rev. 1998, 98, 1479–1514, doi:10.1021/cr940055h.
87.
Gaboriaud, R.J.; Jublot, M.; Paumier, F.; Lacroix, B. Phase transformations in Y2O3 thin films under swift Xe ions irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 310, 6–9, doi:10.1016/j.nimb.2013.05.014.
88.
Sattonnay, G.; Bilgen, S.; Thomé, L.; Grygiel, C.; Monnet, I.; Plantevin, O.; Huet, C.; Miro, S.; Simon, P. Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation. Phys. Status Solidi (b) 2016, 253, 2110–2114, doi:10.1002/pssb.201600451.
89.
Lang, M.; Zhang, F.; Zhang, J.; Tracy, C.L.; Cusick, A.B.; VonEhr, J.; Chen, Z.; Trautmann, C.; Ewing, R.C. Swift heavy ion-induced phase transformation in Gd2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 326, 121–125, doi:10.1016/j.nimb.2013.10.073.
90.
Bilgen, S.; Sattonnay, G.; Grygiel, C.; Monnet, I.; Simon, P.; Thomé, L. Phase transformations induced by heavy ion irradiation in Gd2O3: Comparison between ballistic and electronic excitation regimes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 435, 12–18, doi:10.1016/j.nimb.2017.12.024.
91.
Bevan, D.J.M. Ordered intermediate phases in the system CeO2-Ce2O3. J. Inorg. Nucl. Chem. 1955, 1, 49–59, doi:10.1016/0022-1902(55)80067-X.
92.
Da Silva, J.L.F. Stability of the Ce2O3 phases: A DFT+U investigation. Phys. Rev. B 2007, 76, 193108, doi:10.1103/PhysRevB.76.193108.
93.
Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 2004, 95, 5949–5971, doi:10.1063/1.1707213.
94.
Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143, doi:10.1016/0079-6786(83)90001-8.
95.
Zhang, F.X.; Tracy, C.L.; Lang, M.; Ewing, R.C. Stability of fluorite-type La2Ce2O7 under extreme conditions. J. Alloys Compd. 2016, 674, 168–173, doi:10.1016/j.jallcom.2016.03.002.
96.
Lang, M.; Lian, J.; Zhang, J.; Zhang, F.; Weber, W.J.; Trautmann, C.; Ewing, R.C. Single-ion tracks in Gd2Zr2-xTixO7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B 2009, 79, 224105, doi:10.1103/PhysRevB.79.224105.
97.
Lang, M.; Zhang, F.X.; Ewing, R.C.; Lian, J.; Trautmann, C.; Wang, Z. Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 2009, 24, 1322–1334, doi:10.1557/jmr.2009.0151.
98.
Tracy, C.L.; Shamblin, J.; Park, S.; Zhang, F.; Trautmann, C.; Lang, M.; Ewing, R.C. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. Phys. Rev. B 2016, 94, 064102, doi:10.1103/PhysRevB.94.064102.
99.
Park, S.; Lang, M.; Tracy, C.L.; Zhang, J.; Zhang, F.; Trautmann, C.; Rodriguez, M.D.; Kluth, P.; Ewing, R.C. Response of Gd2Ti2O7 and La2Ti2O7 to swift-heavy ion irradiation and annealing. Acta Mater. 2015, 93, 1–11, doi:10.1016/j.actamat.2015.04.010.
100.
Sickafus, K.E.; Minervini, L.; Grimes, R.W.; Valdez, J.A.; Ishimaru, M.; Li, F.; McClellan, K.J.; Hartmann, T. Radiation Tolerance of Complex Oxides. Science 2000, 289, 748.
101.
Shamblin, J.; Feygenson, M.; Neuefeind, J.; Tracy, C.L.; Zhang, F.; Finkeldei, S.; Bosbach, D.; Zhou, H.; Ewing, R.C.; Lang, M. Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 2016, 15, 507–511, doi:10.1038/nmat4581. Available online: http://0-www-nature-com.brum.beds.ac.uk/nmat/journal/v15/n5/abs/nmat4581.html#supplementary-information (accessed on 30 April 2021).
102.
Shamblin, J.; Tracy, C.L.; Palomares, R.I.; O’Quinn, E.C.; Ewing, R.C.; Neuefeind, J.; Feygenson, M.; Behrens, J.; Trautmann, C.; Lang, M. Similar local order in disordered fluorite and aperiodic pyrochlore structures. Acta Mater. 2018, 144, 60–67, doi:10.1016/j.actamat.2017.10.044.
The journal would like to apologize for any convenience caused to the readers by these changes. The changes do not affect the scientific results. The published version will be updated on the article’s webpage, with a reference to this erratum.

Reference

  1. Cureton, W.F.; Tracy, C.L.; Lang, M. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cureton, W.F.; Tracy, C.L.; Lang, M. Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. Quantum Beam Sci. 2021, 5, 24. https://0-doi-org.brum.beds.ac.uk/10.3390/qubs5030024

AMA Style

Cureton WF, Tracy CL, Lang M. Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19. Quantum Beam Science. 2021; 5(3):24. https://0-doi-org.brum.beds.ac.uk/10.3390/qubs5030024

Chicago/Turabian Style

Cureton, William F., Cameron L. Tracy, and Maik Lang. 2021. "Erratum: Cureton et al. Review of Swift Heavy Ion Irradiation Effects in CeO2. Quantum Beam Sci. 2021, 5, 19" Quantum Beam Science 5, no. 3: 24. https://0-doi-org.brum.beds.ac.uk/10.3390/qubs5030024

Article Metrics

Back to TopTop