
Supporting Information

Data Collection and Reduction

X-ray total scattering data were collected on an amorphous silicon area detector (Varex 4343CT) at

beamline 6-ID-D at the Advanced Photon Source. Data for liquid water were acquired at 300K using

0.153394 Å x-rays at an approximate sample to detector distance of 270 mm. Data for molten sulfur

were acquired at 453K using 0.123696 Å x-rays at an approximate sample to detector distance of 300

mm. Appropriate background data were acquired for each sample under complementary conditions.

CeO2 (NIST standard 676a) was used to calibrate the sample to detector distance, beam center, detector

tilt and rotation in GSAS-II. Masking of bad pixels and integration of the diffraction images were

performed in GSAS-II.

Equations from Main Text

1. 𝑓𝛼(𝑄) = 𝑓𝛼
0(𝑄) [1 −

𝑎𝑂

𝑧𝛼
𝑒(−𝑄

2 2𝛿2⁄)]

2. 𝑆(𝑄) − 1 =
𝐼(𝑄)−∑ 𝑐𝛼𝑓𝛼

2(𝑄)−𝐶(𝑄)𝛼

[∑ 𝑐𝛼𝑓𝛼(𝑄)𝛼]2

3. 𝐺(𝑟) − 1 =
1

2𝜋2𝜌
∫ 𝑄[𝑆(𝑄) − 1]

𝑠𝑖𝑛(𝑄𝑟)

𝑟
𝑀(𝑄)𝑑𝑄

𝑄𝑚𝑎𝑥

0

4. 𝐷(𝑟) = 4𝜋𝜌𝑟[𝐺(𝑟) − 1]

5. 𝑆(𝑄 = 0) − 1 =
𝑘𝐵𝑇[∑ 𝑐𝛼𝑓𝛼(0)𝛼]2−∑ 𝑐𝛼𝑓𝛼

2(0)𝛼

[∑ 𝑐𝛼𝑓𝛼(0)𝛼]2

6. 𝑛𝛼𝛽 = ∫ 4𝜋𝜌𝑟2𝑐𝛽𝑔𝛼𝛽(𝑟)𝑑𝑟
𝑟2

𝑟1

7. 𝐺(𝑟) =
2

𝜋
∫ 𝑄[𝑆(𝑄) − 1]𝑠𝑖𝑛(𝑄𝑟)𝑀(𝑄)𝑑𝑄
𝑄𝑚𝑎𝑥

0
 (Billinge/Egami formulation)

8. 𝐹(𝑄) = 𝑄[𝑆(𝑄) − 1]

9. 𝑛 =
𝑄𝑚𝑎𝑥𝑖𝑛𝑠𝑡𝑟𝑝𝑜𝑙𝑦

𝜋

GudrunX Extended Discussion

GudrunX was developed as an x-ray version of an earlier software, Gudrun, which was originally created

for obtaining structure factors and PDFs from neutron scattering data. GudrunX is primarily designed for

analysis of scattering data from laboratory x-ray sources, so it provides many additional parameters

specific to those sources, but the program is also applicable for synchrotron x-ray data [1]. Prior to

calculation of structure factors and pair distribution functions with GudrunX, 2θ-binned I(Q) data were

manually corrected for detector attenuation and oblique incidence [2], since these corrections are not

available in GudrunX. Then in GudrunX, the workflow is managed through a GUI divided into tabs for

Instrument, Beam, Normalisation, Background, and Sample. Under the Instrument tab, the Q range was

set as 0.45-20 Å-1 for both water and sulfur. The Beam tab is used to define the X-ray source. Sample

geometry was set to cylindrical, and the beam edges were defined corresponding to a 0.5 X 0.2 mm

beam centered on the sample. Parameters for bremsstrahlung, pertinent for a lab-based X-ray source,

were not used. In the Normalisation tab, the azimuthal angle of the detector was set to 0, normalization

was set to <F>^2, a Breit-Dirac factor 2 was used, and Krogh-Moe & Norman normalization was enabled

with an overlap factor of 0. For the Background tab, background scaling was set to 1. On the Sample tab,

mass densities were set to 1.0 and 1.8 g/cm3 for water and sulfur, respectively. Factors to modify the

multiple and Compton scattering were both set to 1. Fluorescence corrections were applied by entering

the K-edge energies for either hydrogen and oxygen (water), or for sulfur. The overall fluorescence level,

which represents how much fluorescence contributes to I(Q), was manually adjusted to optimize the fit

of I(Q) to the self-scattering. Incident beam polarization was set to -1, which, along with the detector

azimuthal angle of 0, results in no fluorescence correction. (Fluorescence was already corrected in earlier

steps with Fit2D).

In the Sample tab, GudrunX also offers parameters for the so-called “top hat” convolution [3], a method

used to remove any residual long-wavelength background in S(Q), which may be present due to

insufficient or inaccurate data corrections (e.g., large multiple scattering effects for highly x-ray absorbing

samples). The top hat convolution uses two parameters: (1) rmin, which is set to be smaller than the first

atomic pair correlation in real-space, and (2) QT, which is the threshold for which frequencies are to be

suppressed in S(Q) to remove the residual background. GudrunX provides output files before and after

the top hat convolution is applied in the *.soq and *.int01 files, respectively. Ideally, the top hat

convolution is not necessary, and the S(Q) obtained before and after the top hat will be nearly identical.

However, if residual long-wavelength background cannot be removed by tweaking the other corrections

(e.g., Compton scattering, multiple scattering, or fluorescence), the top hat is a final option adjust S(Q)

so its high-Q baseline is flat. It is absolutely essential that the software user compare the S(Q) before and

after the top hat function to ensure it has been applied appropriately and with reasonable parameters

(as defined in the manual), otherwise the top hat may distort the data. For water, QT was set at 5.0 Å-1

and rmin was 0.7 Å. For sulfur, QT was set at 2.5 Å-1 and rmin was 1.4 Å.

After the top hat settings, two parameters are used to define the revised Lorch function that can

optionally be applied during the Fourier transform to obtain the pair distribution function. (The original

Lorch function is not provided as an option in GudrunX.) The width of broadening was set to 0.1 Å, and

the broadening power was 0. These parameter values were chosen so that the revised Lorch function

produced a pair distribution function similar to that obtained from a Fourier transform with a

conventional Lorch function, which was calculated in a separate program. The Fourier transforms of the

*.soq and *.int01 files are provided in the *.gr1 and *.gofr files, respectively. For the analysis of water

and sulfur, the *.int01 and *.gofr files (after top hat correction) were used.

It is important to note that the GudrunX outputs for structure factors (*.soq and *.int01) are actually

S(Q) – 1, and the pair distribution functions (*.gr1 and *.gofr) are actually G(r) – 1. For comparison to

other PDF extraction packages, D(r) was back-calculated from the *.gofr files by rearranging [eq 4].

Extracting g(r) from GSAS-II

Minimal code required for export of g(r) data from GSAS-II, which is not currently implemented in the

GUI as of writing this review.

import os,sys,glob,re #load these modules for all my code

import numpy,scipy #need numpy for sure, loaded scipy just in case

sys.path.insert(0,"C:\\[path-redacted]\\gsas2full\\GSASII") # needed

to "find" GSAS-II modules, should be actual path to GSAS-II python

files

import GSASIIscriptable as G2sc #need this for GSAS-II functions

from PIL import Image #need this to read in images and save them

from matplotlib import pyplot as plt #plotting utility

from matplotlib.path import Path

import csv

#def __reset__(): get_ipython().magic('reset -sf') #not called in

function, used to reset in interactive python session

datadir = '[path-redacted-2]'

os.chdir(datadir) #set working directory to current directory

dataoutdir = os.getcwd() ##use current working directory

gpx = G2sc.G2Project(gpxfile=os.path.join(datadir,"project.gpx"))

pdflist=gpx.pdfs()

r_GSASII = pdflist[0].data['PDF Controls']['g(r)'][1][0]

g_r_GSASII = pdflist[0].data['PDF Controls']['g(r)'][1][1]

fig, ax = plt.subplots()

plt.plot(r_GSASII,g_r_GSASII)

plt.xlim([0, 20])

plt.show()

with open('samplename.gofr', 'w') as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerows(zip(r_GSASII, g_r_GSASII))

Scripting pair distribution function extraction in PDFgetX2 via IDL and Python

A significant barrier to use of PDFgetX2 is the inability to natively batch process large datasets. Per the

PDFgetX2 manual, PDFs can be batch extracted using IDL; however, this functionality is not well

documented. Below are some minimal examples of IDL and python code that leverages the IDL/Python

bridge module. The full (PRO) version of IDL is required for this functionality. Python can be used to copy

an existing PDFgetX2 history file to a new file and update the relevant filenames and scale factors. This

can effectively allow for a sequential optimization and extraction of PDFs.

1. IDL code

 installdir = 'PDFgetX2_installation_directory'

 restore, installdir + 'pdfgetx2.sav'

 workingdir = 'directory with files'

 cd, workingdir

 getxpdf = Obj_New('GetXPDFData')

The pdfgetx2 commands below have been successfully run in IDL, where element is the name of a given
history file:

 getxpdf->loadhistory, element

 getxpdf->resetalldata

 getxpdf->readdetfile

 getxpdf->getiq

 getxpdf->calcsqcorrections

 getxpdf->getsq

 getxpdf->optimizesq

 getxpdf->getsq

 getxpdf->getgr

 getxpdf->setupvisualization, create_struct('datatype', 'GrData')

 getxpdf->plotdata

 WAIT, 5

 getxpdf->savedata, SQFILE=STRING(element)+'.sq',

GRFILE=STRING(element)+'.gr'

 getxpdf->savehistory, element

These can be embedded in a loop in IDL:

foreach element, elementlist do begin

IDL command

Another IDL command

endforeach

2. Python/IDL bridge
from idlpy import *

IDL.run("print, 'some string'", stdout=1) #print 'some string' to

standard output

IDL.variablename=variablename #pass variable from python to IDL

IDL.run("installdir = ' 'PDFgetX2_installation_directory'",

stdout=1) #directory where PDFgetx2 is installed

IDL.run("restore, installdir + 'pdfgetx2.sav'", stdout=1) # load

pdfgetx2 code into IDL

#IDL.run("pdfgetx2", stdout=1) #launch PDFgetx2 directly

IDL.run("workingdir = 'directory with files'", stdout=1) #set

working directory to directory with files

IDL.run("cd, workingdir", stdout=1) #move to file directory

IDL.run("getxpdf = Obj_New('GetXPDFData')", stdout=1) #create a new

object with pdfgetx2 functions, procedures, structures, etc.

IDL.element=element #pass history file name to IDL

IDL.run("getxpdf->loadhistory, element", stdout=1) #load history

file

 IDL.run("getxpdf->resetalldata", stdout=1) #reset data button in

pdfgetx2

 IDL.run("getxpdf->readdetfile", stdout=1) #read in data

 IDL.run("getxpdf->getiq", stdout=1) #calculate I(Q)

 IDL.run("getxpdf->calcsqcorrections", stdout=1) #calculate S(Q)

corrections

 IDL.run("getxpdf->getsq", stdout=1) #get S(Q)

 IDL.run("getxpdf->optimizesq", stdout=1) #optimize S(Q)

 IDL.run("getxpdf->getsq", stdout=1) #get S(Q) again

 IDL.run("getxpdf->getgr", stdout=1) #get G(r)--

crystallographers' G(r), glass community's D(r)

 IDL.run("getxpdf->setupvisualization, create_struct('datatype',

'GrData')", stdout=1) #prepare to plot G(r)

 IDL.run("getxpdf->plotdata", stdout=1) #plot G(r)

 IDL.run("WAIT, 5", stdout=1) #pause 5 seconds so the plot can be

viewed

 IDL.run("getxpdf->savedata, SQFILE=STRING(element)+'.sq',

GRFILE=STRING(element)+'.gr'", stdout=1) #export S(Q) and G(r)

 IDL.run("getxpdf->savehistory, element", stdout=1) #save history

file

References

1. Soper, A.K., GudrunN and GudrunX. Programs for correcting raw neutron and x-ray diffraction
data to differential scattering cross section, 2010.

2. Skinner, L.B., C.J. Benmore, and J.B. Parise, Area detector corrections for high quality synchrotron
X-ray structure factor measurements. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012. 662(1): p.
61-70.

3. Soper, A.K., Inelasticity corrections for time-of-flight and fixed wavelength neutron diffraction
experiments. Molecular Physics, 2009. 107(16): p. 1667-1684.

