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Abstract: Volunteered geographic information (VGI) has been heralded as a promising new data
source for urban planning and policymaking. However, there are also concerns surrounding uneven
levels of participation and spatial coverage, despite the promotion of VGI as a means to increase
access to geographic knowledge production. To begin addressing these concerns, this research
examines the spatial distribution and data richness of urban forest VGI in Philadelphia, Pennsylvania
and San Francisco, California. Using ordinary least squares (OLS), general linear models (GLM),
and spatial autoregressive models, our findings reveal that sociodemographic and environmental
indicators are strong predictors of both densities of attributed trees and data richness. Although recent
digital urban tree inventory applications present significant opportunities for collaborative data
gathering, innovative research, and improved policymaking, asymmetries in the quantity and quality
of the data may undermine their effectiveness. If these incomplete and uneven datasets are used in
policymaking, environmental justice issues may arise.

Keywords: data richness; digital divide; urban forests; urban public policy; volunteered geographic
information (VGI)

1. Introduction

Volunteered geographic information (VGI) has expanded rapidly in recent years [1]. Defined by
Elwood et al., as “geographic information acquired and made available to others through the
voluntary activity of individuals or groups” [2], (p. 575), VGI is an outgrowth of recent technological
trends. The early twenty-first century proliferation of Web-based collaborative and social media
tools has yielded new opportunities for research. Recent Web 2.0 applications enable participants
to take advantage of locative technologies such as global positioning systems to generate their
own georeferenced content and data. A number of recent innovative projects have emerged
to leverage participation in user-generated content to develop datasets that are reliable and
accurate enough to support knowledge development and potentially serve as a tool to influence
public policy decision-making processes [3]. As an example of this movement, Web-based VGI
applications that provide a collaborative platform for crowdsourced urban tree inventories have
been launched in a number of American cities through partnership efforts between government
entities, nonprofits, and businesses. These Web 2.0 technologies that allow user-generated content,
use by non-experts, and interoperability present significant opportunities for citizens and policy
practitioners to engage in collaborative data gathering activities, and the availability of data has
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spurred innovative new research [2]. This paper examines the spatial distribution of tree mapping
efforts and the richness of data contributed to VGI urban tree mapping applications in two study
areas, Philadelphia, Pennsylvania and San Francisco, California, USA. This research contributes to
recent interest in the implications of the democratization of data-gathering operations, and the use
of data-driven computational approaches to influence policy decisions [4,5]. We specifically address
how interpretations of urban forestry analysis and ecosystem services calculations may help to shape
decision-making processes and approaches to community engagement, especially surrounding urban
environmental amenities, and ultimately improve the environmental and social conditions of urban
residents. Equity concerns ground the paper, as both unequal participation in and representation by
urban forest VGI represent digital divide issues [2], and given the many benefits provided by urban
forests, if uneven representation results in uneven management, environmental injustice can ensue.

As a pressing matter of public policy, asymmetries in Internet access and the adoption of
digital technology have been known for quite some time, and recent work suggests that, perhaps
counterintuitively, significant portions of the urban population do not utilize the Internet at all,
let alone Web 2.0 technologies. Broadband adoption (and therefore broadband use) is strongly
correlated with socioeconomic markers and clusters of poverty [6,7], such as race, ethnicity,
education, age, and income [8–12]. Studies on the persistent inequality in broadband adoption
serve as the motivation for policy interventions such as the federal broadband initiatives of the
Obama Presidential Administration.

A prevailing assumption in any data model centered on public inputs is that the public be in a
position to provide them. An increase in data availability has the potential to improve upon traditional
sources of geographic information [2,13] and increase equitable participation [14]; however, some
caveats have been offered. In addition to issues raised about factors of data input, including the validity
of crowdsourced data [2,15–17], a growing body of literature addresses the potential digital divide
surrounding VGI technology [1,2,14,16,18], and similar concerns have emerged about the challenges
inherent in the adoption of VGI by policymakers [19]. We expand previous theoretical explorations of
the considerations influencing the quality and usefulness of VGI data for policymakers by empirically
addressing potential information asymmetries in crowdsourced urban spatial data.

This paper is concerned with a specific example of VGI, namely local efforts at mapping urban
forests in two major cities. A crucial aspect of evaluating VGI is their accuracy. How and whether
VGI comport to reality is, of course, an important concern in their future. This paper leaves aside the
question of whether VGI are providing an accurate representation of existing urban forests, and instead
focuses on where and how VGI is collected. We assess the observations made by volunteers in order
to probe where these observations are made and under what local conditions. For instance, to what
extent do the physical attributes of place influence whether or not data are collected and therefore
greater numbers of trees are mapped? In addition, in the case of tree maps, much of the information
comes from anonymous, private contributors. Little can be said about the motivations of participants.
That said, trees are rooted, as it were, in place. So it is possible to assess whether trees are more likely
to be mapped in areas with varying sociodemographic characteristics. Our starting points, then, are
the point locations of trees, how many of these are voluntarily provided to publicly accessible data
gathering sites by various unknown private users, and where the highest concentrations of detailed
data about species, size, and condition are located.

The paper begins by presenting an overview of tree point data in both study areas, then assesses
whether sociodemographic and environmental indicators predict characteristics of data richness and
densities of attributed trees. The results are used to explore theoretical challenges in the design
of geotechnology applications, potential causes in discrepancies in the process of data gathering,
and interpret quantitative modeling of urban environments. Given that one of the intended purposes
of VGI tree applications is to influence decision-making processes surrounding urban environmental
amenities, the conclusion discusses the potential for VGI to influence place-based policy decisions.
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2. Literature Review: VGI, Planning, and Urban Forests

Along with the exponential growth in academic research on VGI, practicing planners and public
officials have become interested in the potential to use VGI tools in attempts to make planning more
participatory [3,20–23], reflecting earlier and continuing interests in public participation geographic
information systems (GIS) (PPGIS) [22,23]. The hopes and concerns surrounding VGI in the planning
community are similar to those presented in academic discourse. Planners recognize that official data
often does not include information about marginalized citizens and neighborhoods, resulting in their
needs not being considered when making urban policy deliberations [4]. VGI is seen as a potential
remedy to this issue, but there remain concerns surrounding the barriers to participation in VGI
creation that may result in further exclusion [4,5,22,24,25].

The use of VGI applications to analyze the distribution of trees in urban areas by policy
practitioners would rely upon both coverage of trees and richness of data to inform decision-making
processes. Where tree representation is plentiful and data are rich, policy practitioners could
take a greater interest in these areas [1], so VGI has the potential to perpetuate and contribute to
existing inequalities in investment of public funds and resources. In the example of Philly TreeMap,
where empty tree pits are plotted separately, representation of tree pits may facilitate interest in future
tree plantings. Furthermore, data on problem/hazardous trees, tree pests, and diseases potentially
contribute to better tree management and care. On the other hand, policy practitioners’ inability to
assess urban tree coverage in areas where representation is lacking could contribute to less urban
greening activity and reduced quality of tree care in these neighborhoods. In both cities, the VGI tree
mapping efforts focus upon street and park trees that are publicly managed. These concerns over
uneven coverage and data richness influencing management decisions raise environmental justice
concerns, given the many social and ecological benefits of urban forests.

Akin to issues in participatory planning at large, there remain questions as to the level that
which VGI would be considered by actual decision-makers [20,21,24]. Johnson and Seiber [19] identify
cost of the technology, questionable accuracy, and formality of non-expert data, and jurisdictional
issues as three considerations for local governments to take into account. Despite these concerns,
successful pilot studies of VGI as a participatory planning tool have been conducted in Finland,
Norway [20], and Ecuador [21]. VGI urban forest inventories represent one of the many ways in which
the technology could be used as a participatory planning tool in the United States.

The San Francisco Urban Forest Map [26] is an interactive Web-based map database of trees in
San Francisco. The mission of the Urban Forest Map is “to build technology that improves information
sharing, communicates the value of the urban forest, and engages communities in creating greener,
more livable urban environments [26]”. Implemented by Autodesk, Inc. (San Rafael, CA, USA),
in May 2007, in partnership with local government entities and nonprofits, the project sets the ambitious
goal of mapping every tree in San Francisco. After creating free accounts, users are able to enter and
modify trees as points on a map with species, condition and planting site information. The option
of modifying the contributions of other users, similar to Wikipedia, helps to lend validity to the
contributions. The site allows for estimations of the monetary values of the environmental benefits of
trees in terms of storm water retention and filtration, air pollution reduction, energy conservation and
carbon dioxide removed from the atmosphere. PhillyTreeMap [27] was launched in 2010 by Azavea,
a Philadelphia-based software design and development firm, with funding from the United States
Department of Agriculture (USDA). PhillyTreeMap has similar properties to the San Francisco Urban
Forest Map, along with similar goals in documenting the City’s urban forest and publicizing the suite
of benefits it offers. Both cities’ VGI tree maps now utilize Azavea’s Opentreemap software, along with
more than thirty other cities, counties, and states, largely in the United States and Canada.

According to the San Francisco Urban Forest Map, the data gathered by the application can be
used to help urban foresters to better manage trees, allow climatologists to study the effects of urban
forests on climates, and allow researchers to learn about the role of trees in urban ecosystems, building
upon previous analyses of San Francisco’s urban forest [28]. Previous analyses of Philadelphia’s
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urban forest have been based on sampling performed in 1996 [29] and using remotely sensed imagery
to describe tree canopy cover [30]. Although both of these methods are valuable to urban forest
managers, VGI has the potential to improve urban forest managers’ ability to make informed decisions
to maximize benefits and evaluate programs and policies by increasing the amount of available
information [31]. This is essential because, like many other cities, Philadelphia and San Francisco are
pursuing aggressive tree planting campaigns.

3. Materials and Methods

3.1. Study Areas

The City and County of Philadelphia share boundaries, with a population of 1,560,297 residents,
making it the largest city in Pennsylvania [32]. In the mid- to late-twentieth century, Philadelphia
experienced decline and abandonment when, in the wake of deindustrialization and other economic
and social changes, businesses and middle class residents moved from urban areas to suburban
locales. As a result, the city experienced an erosion of the tax base [33]. While the trend of population
loss has more recently reversed, the legacy of these processes is seen in the high concentrations of
poverty in in the urban core of the city, and a high degree of economic inequality across the greater
metropolitan area [32,34]. Philadelphia County is also racially diverse, with an African American
population of approximately 44 percent, compared to the state of Pennsylvania average of 11 percent;
and a Hispanic population of approximately 13 percent, compared to a state average of nearly 6 percent.
Non-Hispanic whites make up approximately 37 percent of the population of Philadelphia County [32].
The most recent estimate of Philadelphia’s urban forest using high resolution remotely sensed imagery
found that 20 percent of the City was covered by tree canopy [30].

The City and County of San Francisco share boundaries, with a population of 825,863
residents [32]. Demographically, the area is very different to Philadelphia, with a much more affluent
population (median household income (all values in US Dollars) of $72,947 compared to $36,947
in Philadelphia in 2012) and a higher level of educational attainment (51.4 percent of residents
above the age of 25 with a bachelor’s degree or higher, compared to 22.6 percent in Philadelphia
in 2012). While San Francisco is also racially diverse, the diversity is distributed differently in a large
Asian population (32.6 percent), compared to the large African American population in Philadelphia.
The demise of industry and waves of suburbanization also greatly reduced the population of
San Francisco from the 1950s onward, but this trend reversed beginning in 1980, and San Francisco
together with New York, formed the only two major American cities that had rebounded to their
historic 1950 population levels by 2000 [35]. This demographic and economic growth was spurred by
San Francisco’s place at the leading edge of information technology and creativity, evidenced by its
number one ranking in Richard Florida’s first creativity index [35]. “The City” is also home to several
participatory urban planning digital applications [3] that might make residents more comfortable
with urban forest VGI technologies. The most recent estimate of San Francisco’s urban forest using
sampling plots found that 11.9 percent of the city was covered by tree canopy [28].

These differences make Philadelphia and San Francisco compelling case studies for comparison.
Namely, San Francisco County is fairly affluent and potentially not representative of the diversity found
in the greater Bay Area. On the other hand, many parts of Philadelphia County are far less affluent, and
more racially and ethnically diverse than the surrounding counties in the metropolitan area. Within the
larger economy-wide changes over the latter half of the twentieth century that have shaped urban
physical landscapes and human livelihoods—including the transition from manufacturing to a more
high-tech economy that is focused on professional services [36]—the two cities have fared differently.
Philadelphia has a history of industrial decline, and now is working towards renewal, with higher
education, healthcare and biotechnology, telecommunications, and financial services emerging as top
industries. Contrarily, while San Francisco was also subject to these same economy-wide changes,
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proximity to Silicon Valley and emphasis on innovation and technology ventures has allowed the
economy to revitalize much faster than in the case of Philadelphia.

3.2. Data

This analysis includes several types of data from multiple sources. Most important were the tree
map data for both study locations, which was downloaded on October 2013. Other than the point
location of the trees entered into the websites, several other important pieces of information were
included in this dataset. The first of these was the contributor of the data point for each tree, which was
used to determine the trees entered by individuals (considered VGI trees) and those entered by
organizations such as city government agencies or urban forest groups (consideredauthoritative
data and not VGI). Second, the different pieces of additional information entered for each tree
(species, diameter at breast height, height, canopy height, condition, pit width, pit length, type
of pit, canopy condition, presence or absence of power lines, presence or absence of sidewalk damage,
additional comments, and photos) could assist in management of the trees for which they were
provided. They were used here to create an index of the total number of additional data points per
tree which was averaged to give a measure of data richness at the block group level for both all
trees and VGI trees. It is important to note that the representation of VGI trees and the associated
attributes do not necessarily mean that local residents were involved in data collection. While the trees
entered by municipal agencies and community groups were removed from analysis, there are still
no assurances that the individual names associated with VGI trees belong to those who live nearby.
Unfortunately, the websites do not provide information on how the VGI data were collected, raising
the possibility that organized mapping events and other citizen science strategies such as “bioblitzes”
are driving the distribution of urban forest VGI. While we cannot be sure about where contributors
come from, we can be sure of the locations that are represented, and for that reason we compare
demographic and environmental variables to VGI data density and richness to assess the evenness
of representation.

Demographic data and boundaries were downloaded from the 2010 United States Census.
The choice of demographic variables for analysis is based on an existing precedent in environmental
justice and similar equity examinations, especially those regarding urban forest distribution and the
digital divide that have found race and class to be strong predictors of urban form and function [5,37,38].
It includes: income (median household income), education (percentage of the population age 25
or above with a high school diploma), age (percentage of population over age 65), and ethnicity
(percentage of African American, Latino, and Asian residents).

Environmental variables were also included in the model as predictors of VGI tree locations.
The most important of these environmental variables is the estimation of tree canopy from high
resolution remotely-sensed data for both locations, a 1-m land cover raster derived from Light
Detection and Ranging (LiDAR) data [30] for Philadelphia in 2008, and a combination of 3-m, 1-meter,
and 15.24-cm tree canopy rasters from 2010 derived from LiDAR data and aerial photography for
San Francisco (unfortunately the data set does not include the percentage of coverage from each
data source). Including the percentage of tree canopy per block group as an explanatory variable
helps to remove the possibility that there are simply more VGI trees where there are more physical
trees. This tree canopy coverage data, overlaid with the tree points downloaded from each location’s
urban forest map, are shown in Figures 1 and 2, for Philadelphia and San Francisco, respectively.
Building footprint data were also obtained from the County Planning Department for both study sites
(2007 data for Philadelphia and 2010 data for San Francisco) as an environmental variable, yielding the
highest building elevation per block group. The two measures provide a control for density of local
urban forests and for the density of the surrounding urban fabric. Other environmental variables such
as mean slope, percent impervious surface cover, and population density were considered, but in line
with previous research [38–40], they were found to be highly correlated with the percentage of tree
canopy and for this reason were not included in the analysis.
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3.3. Methods

This paper assessed whether asymmetries exist in data gathered through participatory urban
forest mapping. These effects are modeled in two ways. Firstly, using the point data for trees
mapped through the efforts described above, VGI trees are modeled in Philadelphia and San Francisco.
The points are aggregated to counts by United States Census Block Groups, which are the finest level
of spatial aggregation to which the measures we use are available. These models provide a gauge of
data density. Secondly, we assess whether there are asymmetries in data richness, measured by the
number of attributes entered for each tree, aggregated to a mean index of data richness for VGI trees
(VGI tree index) in each block group.

Our question is whether physical, environmental, and sociodemographic measures might predict
where VGI trees are contributed and/or the richness of data contributions (the VGI tree index).
Overall, the assumptions follow the aforementioned literature on technological adoption discussed
in the introduction. Specifically, the hypotheses are: trees will be better represented in areas that are
relatively affluent (using median household income as a measure), elderly residents (measured in
percentage of residents over 65 years old) and lower educational levels (measured as percentage of
block group residents over 25 without high a school diploma) will be negatively correlated with our
measures of VGI data density and richness, and the percentage of minority racial and ethnic status
(specifically of Latino, African American, and Asian populations) will have negative relationships with
our dependent variables as well. The local density of the urban forest is controlled for (by including the
percentage tree canopy by block group), which is hypothesized to have a positive effect on the density
of volunteered tree observations. We also control for the density of local urban fabric by including
maximum building height as a proxy measure, where a negative relationship with the density of
urban forest VGI is hypothesized. Finally, the block groups comprising the major parks in each study
location were omitted from the analyses, as these block groups contain a high percentage of tree canopy
that is not intended as the target for VGI tree mapping efforts, which instead focus upon street trees.
Removing major parks resulted in 1333 and 578 block groups in the analysis for Philadelphia and San
Francisco, respectively.

As is often the case with count data, the distribution of tree counts in both cities, and the derivative
measures calculated from them, were found to be dramatically skewed, with false truncations at
zero [41]. Typically count data have this pattern for which linear regression techniques are not
generally viable options for examining correlations between these distributions and demographic and
environmental neighborhood characteristics [42]. The two cities were not entirely similar, however.
In Philadelphia, general linear models were fit using Poisson distribution with log link, treating
the different dependent variables (count of VGI trees and average VGI tree index) as count data.
The independent variables (median household income, percentage of residents over 65 years old,
percentage of residents over 25 without a high school diploma, percentage of Latino, African American
and Asian residents, percentage tree canopy, and maximum building height) were also distributed in
a non-normal fashion, requiring square root transformations to make them suitable for inclusion in
regression analyses.

In San Francisco, the counts of VGI trees were modeled as above, fitting the data based on
log-linked Poisson distributions using general linear models. The VGI tree index’s distribution was
less skewed when root squared, allowing for ordinary least squares (OLS) regression analysis to
be performed.

Given the spatial nature of the data analyzed, the independence of observations and error terms
in the four regression models presented a concern. The spatial clustering expressed in Tobler’s
first law of geography, where increased proximity leads to increased relatedness [43], could lead to
incorrect interpretations of model outcomes. Due to these concerns, tests were performed to detect
spatial autocorrelation using the queen contiguity-based method to define the spatial weights matrix.
The Moran’s I statistic revealed the presence of statistically significant positive spatial autocorrelation
in three of four models, with the exception being the VGI tree index for San Francisco. This led to the
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construction of spatial autoregressive (SAR) models. Spatial error and spatial lag models are the two
main options for incorporating spatial autocorrelation into regression equations [37,43,44]. Spatial error
models associate the autocorrelation with the error term, while spatial lag models associate it with
the dependent variable. The choice between models was based upon the robust Lagrange multiplier
statistic [43], which was higher for the spatial lag in the three regression models exhibiting spatial
autocorrelation issues, leading to its use here.

4. Results

The VGI data density and richness measures developed are shown in Table 1. As of October 2013,
the Phillytreemap dataset contained 56,406 trees, of which 2947 were considered VGI trees. The VGI
tree index was higher for all trees than VGI trees (1.6 compared to 1.4). Out of 1333 block groups,
1031 had a tree entered and 680 had a VGI tree. This helps to explain the average percentage of all
trees that were VGI trees of 23.3 at the block group level.

At the same time, the San Francisco Open Tree Map consisted of 88,121 trees, of which 24,376
were considered VGI trees. The VGI tree index was higher for all trees than VGI trees (2.2 compared
to 1.8). Out of 578 block groups, only three contained no trees and only eight contained no VGI trees.
The mean percentage of VGI trees at the block group level was 31.8.

Table 1. Tree counts.

Raw Count Philadelphia San Francisco

All trees 56,406 88,121
VGI trees 2947 24,376
Percent VGI trees 5.2 2.8
All tree index 1.6 2.2
VGI tree index 1.4 1.8

The raw numbers for the two study sites reveal disparities between the amount and type of
contributions to each tree mapping website. San Francisco has a greater number of total trees and
proportion of trees considered to be VGI contributed by citizens. The VGI tree index was greater
for both all trees and VGI trees alone, revealing that San Francisco residents entered more trees and
more information about them. This could be the result of the San Francisco website being active
for three years longer than Philadelphia’s or it might be explained by other factors such as the level
of promotion of the websites or preferences for urban trees. Finally, as shown in Figures 3 and 4,
representing the average VGI tree index per block group for Philadelphia and San Francisco, the data
richness measure was also clustered spatially, suggesting that neighborhoods are contributing data
differently in both locations.

The descriptive statistics for the explanatory variables in both locations are shown in Table 2.
The differences highlighted between the two cities previously are evidenced by the differences in
income, education and ethnicity between them. Philadelphia’s tree canopy, at the block group level,
was 3.5 percent greater than San Francisco’s, which serves to invalidate the concern that more trees
were entered in San Francisco simply due to a greater number of trees. The greater variances in
the percentage of African American and Latino residents in Philadelphia and Asian residents in
San Francisco suggest that these demographic characteristics have bimodal distributions, evidencing a
high level of spatial segregation.
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Table 2. Descriptive statistics of covariates.

Measure Philadelphia
Mean

Philadelphia Standard
Deviation (SD)

San Francisco
Mean

San Francisco
SD

Percent No High School(HS) diploma 34.5 14.7 14.2 9.8
Median Househole Income(HHI) $43,607 $21,948 $83,438 $36,687
Percent 65+ 11.7 6.8 13.8 7.1
Percent Latino 12.9 19.2 15.1 13.2
Percent Black 47.3 36.8 5.6 8.9
Percent Asian 5.8 8.3 33.1 20.3
Tree canopy percent 13.1 9.7 9.6 6.7
Maximum building height (in feet) 183 99 99 51

The results from the Poisson regressions in Philadelphia are shown in Table 3. First, all of the
models were highly statistically significant, with extremely high chi squares. As the independent
variables have all undergone square root transformations to approach normality, the following
discussion will focus upon the signs that they carried in the regression rather than their magnitude.
All of the explanatory variables were significant at the p < 0.01 level for both models. The model
explaining the count of VGI trees per block group showed mostly expected results, with median
household income, percentage of residents over the age of 65, and maximum building elevation having
positive effects. Percentage over 25 without high school diplomas, percentage of African American,
Latino, and Asian residents, and tree canopy percentage all had negative effects. Finally, the model for
the VGI tree index shows that median household income and percentage of residents over the age of
65 had positive effects, and percentage over 25 without high school diplomas, the percentage of Latino,
African American, and Asian residents, the percentage of tree canopy, and the maximum building
elevation all had negative effects.

Table 3. Philadelphia analytical models.

Measure VGI Trees VGI Tree Index

Constant 0.753 3.359
Percent no HS diploma −0.081 −49
Median HHI 0.003 0.001
Percent 65+ 0.13 0.078
Percent Latino −0.05 −0.072
Percent Black −0.021 −0.04
Percent Asian −0.146 −0.035
Tree canopy percent −1.064 −0.207
Maximum building height (in feet) 0.019 −0.036
Model fit Chi-square (ChiSq) 434.859 1423.802
Goodness of fit (ChiSq) 9469.287 17,554.913
Moran‘s I 0.143177 0.317909
Deviance 6184.889 17,679.559
Robust Lagrange multiplier (RLM) (lag) 19.4099 293.4201
Robust Lagrange multiplier (error) 6.3048 2.0709
Aikake’s Information Criterion Corrected(AICc) 1870.04 10,239.6
N 1333

Note: all p < 0.01 except for RLM (error): VGI trees < 0.05, VGI index > 0.1.

Several patterns emerge when looking at these explanations of VGI urban forest contributions in
Philadelphia. First, median household income is a positive influence in both models; Secondly, the
percentage of tree canopy per block group is negative for all models, suggesting that Philadelphia
residents are not necessarily documenting trees where they are more prevalent in the city. Finally, the
results for the three minority population groups are negative across both models, suggesting that more
trees are being contributed with greater levels of data richness in areas with fewer racialized minorities.
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The results from the San Francisco regression models are shown in Table 4, revealing that
relationships between demographics and raw VGI tree count data are highly significant, with high
chi-square tests. As the independent variables have all undergone square root transformations to
normalize them, as was the case with the Philadelphia models above, their most salient aspects
are the signs that they carried in the regression rather than their magnitudes. In the predictive
model for the raw count of VGI trees, several hypothesized effects are evident. The density of
observations is positively predicted by income, percent tree canopy, and density of the urban fabric.
Additionally, the VGI count is negatively correlated with low levels of education, proportion of aged
residents, and percent Latino. Unhypothesized effects are also present. The raw count of VGI trees
is negatively correlated with percent Asian and positively correlated with percent black. The overall
goodness of fit is statistically significant.

Table 4. San Francisco analytical models.

Measure VGI Trees VGI Tree Index

Constant 3.7775 * 1.0664
Percent no HS diploma −0.0175 * −0.01
Median HHI 0.0008 * 0.0004 *
Percent 65+ −0.0490 * −0.0048
Percent Latino −0.0035 * 0.0273 *
Percent Black 0.0525 * 0.0152 *
Percent Asian −0.0930 * 0.0061 *
Tree canopy percent 0.0059 * 0.0018 *
Maximum building height (in feet) 0.9903 * 0.0232
F 3.17068 *
Standard Error (SE) 0.967
Model fit (ChiSq) 1768 *
Goodness of fit (ChiSq) 18,535 *
Moran‘s I 0.398663 * 0.037491
Deviance 14,119.045
Robust Lagrange multiplier (lag) 40.2516 0.546
Robust Lagrange multiplier (error) 5.6659 1.0107
AICc 5841.19 397.198
n 578

Note: * indicates p < 0.5.

The other model analyzing predictors of VGI data richness (VGI tree index)—that was fit using
OLS regression—is more ambiguous, with a very modest r2 score of 0.2. In both cases, a great deal of
variance in the dependent variables is unaccounted for by the model. Beyond this, the OLS model
testing data richness found more modest results. A positive relationship with income and tree canopy
percentage, and a negative relationship with all three racial/ethnic categories, where the explanatory
variables achieved statistical significance at p < 0.05, were revealed.

The general pattern among both models generated from the San Francisco dataset is that VGI has
a strong, positive relationship with income, tree canopy, and density of the urban fabric. Quite unlike
Philadelphia, percent African American is a positive predictor of VGI contributions and the richness
of their data. For raw VGI counts, VGI appears to have a negative relationship with education and
age, but the relationships lose their significance when predicting VGI data richness. The relationship
between VGI and either percent Asian and percent Latino is ambiguous.

The results of the SAR models are shown in Table 5. As discussed previously, all of the models
with the exception of the VGI tree index for San Francisco had positive and significant test statistics for
spatial autocorrelation (Moran’s I), which led to the construction of spatial lag models. In comparison
with the general linear models (GLM) models, the Aikake’s information criterion decreased for all
three models, suggesting that the SAR models improved results and incorrect interpretations might
be drawn from examining only the GLM results. The only explanatory variable that was significant
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across the three models was median household income, the positive sign associated with this predictor
suggests that environmental injustices may be present if more urban forest VGI data density and
richness is higher in more affluent areas. The percentage of Latino residents has a statistically significant
negative relationship with VGI data density in Philadelphia, once again suggesting the presence of
environmental injustice. Finally, as with the GLM models, the percentage of tree canopy per block
group in Philadelphia has a negative relationship with urban forest data density and richness.

Table 5. Spatial autoregressive models.

Measure Philadelphia
VGI Trees

Philadelphia VGI
Tree Index

San Francisco
VGI Trees

Weight 0.351944 * 0.506655 * 0.57514 *
Constant 0.27875 * 7.3821 * 4.68175
Percent no HS diploma 0.012815 −0.134049 −0.588474
Median HHI 0.001311 * 0.0135612 * 0.0379647 *
Percent 65+ 0.01282 0.538844 −0.361221
Percent Latino −0.01638 * −0.257161 0.63453
Percent Black −0.00493 −0.169201 1.77735
Percent Asian −0.01227 −0.125237 −1.0292
Tree canopy percent −0.28562 * −9.90599 * 23.4969
Maximum building height 0.001185 −0.115847 −0.353712
r2 0.137205 0.239742 0.321754
Log Likelihood −885.527 −5006.44 −2843.9
AICc 1791.05 10,032.9 5707.8

Note: * indicates p < 0.1.

5. Discussion

This research serves as an initial exploration of the potential strengths and weaknesses of
VGI as a collaborative urban planning tool. Through an examination of the spatial distribution
and the data richness of volunteered data generated by tree mapping efforts in Philadelphia and
San Francisco, our analyses conclude that sociodemographic and environmental indicators are
predictive of characteristics of both densities of attributed trees and data richness. Contributing to the
recent call for research on the implications of the democratization of data gathering operations through
crowdsourcing [5], these findings suggest potential differentials in digital literacy and citizenship by
neighborhood type, raising concerns about a potential digital divide in the utilization of VGI tree
mapping applications.

Minorities that were more spatially segregated (African Americans and Latinos in Philadelphia,
Asians in San Francisco) were less likely to have urban forest VGI contributed in their neighborhoods,
raising concerns about both the accessibility of this technology and possible negative implications if it
is used by policy practitioners to manage urban forests. When accounting for spatial autocorrelation,
median household income was still a positive predictor of urban forest VGI data density and richness,
even when controlling for urban tree canopy. Environmental justice researchers, arguing that access to
amenities such as urban forests is an integral component of environmental justice along with earlier
foci on hazards and disamenities, have documented the relationships between affluence, whiteness
and increased urban tree canopy coverage for many years [37,38,45–47]. A recent study of seven major
U.S. cities (including Philadelphia) [48] found a positive relationship between income and urban tree
canopy in each city. Such results suggest that less affluent neighborhoods have fewer trees both on the
ground and in VGI representations. In the extreme case, VGI has the potential to deepen rather than
ameliorate differentials in place-based resources devoted to certain locales through policy decisions
if neighborhoods where a large portion of trees are unrepresented are neglected due to their lack
of representation in urban forest VGI datasets. The uneven representation in VGI coverage extends
beyond urban forests [1,14,16], and may reinforce inequalities in representation from traditional data
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sources, where marginalized groups and areas are not always counted [1,2,4,21,49]. While there are
concerns around privacy and surveillance by both the state and capital with the growing amount
of digital traces generated through VGI and other sources [1,2,17], documenting the presence and
condition of urban trees seems to provide a positive increase in legibility. Despite the democratizing
rhetoric around VGI and other Web 2.0 technologies [14], this research highlights their potential to
reinforce rather than break down barriers in terms of representation and potential negative urban
environmental consequences.

While this research has highlighted potential strengths and weaknesses of VGI, limitations and
opportunities for further research include the following. The urban forest VGI data are a rich source of
often unavailable data for policy practitioners [31], and can reduce some of the costs [50] associated
with municipal field surveys, however, the question remains as to whether they actually being used.
Interviews with local governments and urban forest stewardship groups could help to answer this
important question. Furthermore, qualitative research could help in understanding the usefulness of
urban forest VGI to managers and practitioners, and incorporate practitioner priorities in the design of
future platforms to ensure that the most important data are being collected, allowing VGI to act as a
supplement or even a replacement for traditional field and remotely sensed data.

While the TreeMap data allow for the distinction between authoritative and VGI tree inputs to
the websites, who is actually entering the data, and why, is not yet fully understood. Qualitative
research with contributors could help in understanding the motivations behind VGI participation. In
light of this limitation, future research may examine VGI longitudinally to determine what type of
neighborhoods are early adopters, which lag, and what are the correlates of each. Furthermore, the
differences in both data distribution and the effects of demographic and environmental factors between
the two locations make clear the need to examine how and why VGI is generated differentially, rather
than drawing geographic generalizations. These heterogeneous results regarding urban forest VGI
which highlight the importance of local analysis are similar to those regarding London’s Open Street
Map found by Haklay et al. [51]. The many other cities that have implemented the Open Tree Map
platform should be investigated to see how patterns of urban forest VGI representation vary across
sites and how such spatial variations can be explained by local dynamics and histories. Additionally,
designers of geotechnology applications should seek to find ways to make technology accessible and
perhaps incentivize use.

Geospatial Web 2.0 applications will continue to proliferate in coming years, presenting substantial
opportunities for collaborative data gathering, innovative research, and improved policymaking;
however, asymmetries in the quantity and quality of the data may undermine their effectiveness. The
predictors of the uneven production of the spatial data in VGI applications appear to reflect previous
research on, and may be interpreted as yet another expression of, the digital divide. We hope that
this initial exploration of the potential of urban forest VGI as a collaborative urban planning tool will
help to increase digital citizenship, improve urban forest management, and promote awareness of this
powerful new technology. To be clear, despite the concerns expressed regarding the spatial distribution
of contributions to urban forest VGI maps and their richness in Philadelphia and San Francisco, this
paper is not a condemnation of tree mapping websites, their creators and contributors, or VGI in
general. Rather, attention is called to the need to ensure that these technologies are employed and
utilized in manners that increase equality. There is great potential to increase data richness and the
equity of coverage if care is taken. To borrow Eric Darier’s paraphrase of Foucault “not everything is
bad, but everything is dangerous [52] (p. 603).”
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