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1. Methodology 
1.1. Assigning census data to hexagonal grid cells 

In brief, the centroid of each cell was intersected with the DA polygons to determine spatial 

collocation, and the DA census data were assigned to their appropriate hexagonal cells. DA 

polygons were typically larger than the hexagonal cells in our case, so census data had to be 

shared or split (depending on data type) across multiple hexagonal cells. For averaged or 

proportional data (e.g. income, age), we assigned the same value to all cells from the same 

DA. For discrete data (e.g. population counts), we divided the value equally among constituent 

cells. This downscaling method is simple to implement and does not make assumptions about 

how populations are distributed according to land use. We acknowledge that heterogeneous 

population downscaling – which allows for more realistic spatial allocation of facilities and 

populations – could be achieved by integrating different scenarios with models of urban land 

use (e.g. Meiyappan et al., 2014), but this is beyond the scope of our study.  

 

1.2. Hospitals and walk-in clinics 

We define hospitals as medical institutions providing diagnostic and treatment services for 

people whose illnesses/injuries require bed occupation for at least one night, and walk-in 

clinics as providing treatment services for people with minor illnesses/injuries that do not 

require a visit to a hospital emergency department or urgent care facility. Apart from the two 

Surrey hospitals examined in this study, two other hospitals (in New Westminster to the 

northwest and Langley to the southeast) are potentially accessible to some of Surrey’s 

residents. However, we ignored these in the present study because they fall outside the city’s 

jurisdiction and investment strategy. We ran our catchment area analysis to calculate how 

many Surrey residents could reach each hospital and clinic in New Westminster and Langley 

within 30 minutes using public transport. In all cases, these external healthcare facilities could 

be reached by < 4% of Surrey’s population, so the marginal increase in theoretical accessibility 



to healthcare for residents near Surrey’s boundaries should not significantly impact our 

findings. 

 

1.3. Defining an upper bound for income distributions 

Income data are reported categorically by Statistics Canada, into 16 income groups defined 

by upper and lower income bounds. The highest income level (‘$250,000 and above’) is 

unbounded on one side. For the purposes of converting categorical census data to continuous 

data, a single value characterising the open-ended income category was estimated using 

Pareto’s Law of Income Distribution (Parker & Fenwick, 1983). The Pareto Curve can be 

linearly represented as: 

𝑙𝑜𝑔 𝑍 = 𝑙𝑜𝑔 𝐴 − 𝑣𝑙𝑜𝑔 𝑋  

Equation 1 

where 𝑍 is the number of units with incomes over a certain amount, 𝑋 is the amount of income, 

and 𝐴 and 𝑣 are equivalent, respectively, to the intercept and the unstandardized regression 

coefficient, and are parameters to be solved for. The Pareto Curve has been shown to be 

linear only at the upper tail of an income distribution, so we calculated 𝑣 as (Henson, 1967): 

𝑣 = 𝑙𝑜𝑔 𝐻 + 𝐻 − 𝑙𝑜𝑔 𝐻𝑙𝑜𝑔 𝑊 − 𝑙𝑜𝑔 𝑊  

Equation 2 

where 𝐻  is the number of households in the open-ended category, 𝐻  is the number of 

households in the category immediately preceding the open-ended one, 𝑊  is the lower limit 

of the open-ended category and 𝑊  is the lower limit of the category immediately preceding 

the open-ended one. Using this estimate of 𝑣, the mean income for the open-ended category 

(𝑦 ) was obtained by (Henson, 1967):  

𝑦 = 𝑊 𝑣𝑣 − 1  

Equation 3 

Using income data combined from all DAs in 2016, the value of 𝑦  (i.e. the midpoint of the 

last, open-ended income category) was calculated as $266,950.  



1.4. Accessibility analysis 

We calculated travel-time estimates (for an optimal combination of public transportation and 

walking) between every pair of grid cells – an ‘origin’ and a ‘destination’ (O-D) – using 

OpenTripPlanner (OTP, 2017). To account for fluctuations in service availability throughout 

the day, we averaged travel-time estimates across 36 O-D matrices for a typical working day 

(Tuesday, 19th September 2017), with departures every 20 minutes between 7am and 7pm. 

The OTP routing engine used in this study does not account for traffic congestion levels, which 

can slow travel times; instead, we consider accessibility via public transportation based on 

current service timetabling in the GTFS dataset. Higher resolution estimates of travel-time can 

be acquired from vehicle GPS data (e.g. Wessel et al., 2017), although this is beyond the 

scope of our paper.  

We applied a modified version of the isochronic or cumulative-opportunity measure (Wachs & 

Kumagai, 1973; Pereira, 2018) to estimate the number of residents who could theoretically 

access healthcare facilities. Accessibility was evaluated only from the perspective of the origin 

(i.e. the ‘active’ accessibility of a population towards a facility) rather than the destination (i.e. 

the ‘passive’ accessibility of the facilities with respect to the population) (Papa & Coppola, 

2012). Active accessibility for each origin grid cell (for a total 𝑛 grid cells) was calculated as:  

𝐹 , = 𝐹 𝑓 𝑡  

𝑓 𝑡 = 1𝑖𝑓𝑡 ≤ 𝑇0𝑖𝑓𝑡 > 𝑇 

Equation 4 

where 𝐹 ,  is the number of facilities 𝐹 that can be reached from origin 𝑜 within time threshold 𝑇, 𝐹  is the number of facilities in destination cell 𝑑, and 𝑓 𝑡  is a time threshold function 

whose value (either zero or one) depends on whether travel-time 𝑡  is greater or smaller 

than time threshold 𝑇. 

There is much discussion as to the appropriate time thresholds that should be used for 

cumulative opportunity measures (Neutens, 2015). Acceptable travel-times are known to vary 

according to travel mode, as well as demographic, socioeconomic and lifestyle factors 

(Guagliardo, 2004; Milakis et al., 2015). We set our travel-time threshold 𝑇 to 30 minutes, 

based on sensitivity testing reported in Mayaud et al. (2018). Whilst results were somewhat 

sensitive to the choice of threshold, and the appropriateness of different thresholds has been 

much discussed in this field, the majority of metropolitan transport plans use time thresholds 



of 30–40 minutes when considering accessibility to hospitals via public transit (Boisjoly & El-

Geneidy, 2017).  

Limitations of the cumulative opportunity measure include the fact that it does not account for 

the size (or ‘attractiveness’) of the destination, nor the impedance (or ‘friction’) of travel time, 

cost and effort beyond the threshold variable. Numerous other accessibility measures exist in 

the literature, including gravity-based (Hansen, 1959) and place rank measures (El-Geneidy 

& Levinson, 2011), some of which address these limitations. Nevertheless, in comparison with 

these other methods, the cumulative-opportunity measure makes few assumptions about user 

behaviour and preference, and is most easily interpreted (Geurs & van Wee, 2004; Neutens 

et al., 2010). 

Incorporating the explicit cost of travel is also not an objective of our study. The public 

transportation system in Metro Vancouver is run by a single operator, Translink. Surrey lies 

within a single ‘travel zone’ as defined by Translink, the regional transit operator meaning that 

all transit journeys starting and finishing in Surrey cost the same price, including any transfers 

made within a 90-minute window from the start of the first journey (Translink, 2018). Since our 

catchment analyses are based on travel-time cut-offs of 30 minutes, the price of using public 

transport is essentially fixed for an individual user. However, affordability of public transport 

has been shown to influence individuals’ usage (El-Geneidy et al., 2016), so this should be 

more carefully considered in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 



2. Results 

 

 

Figure S1 Spatial distribution of principal components (PCs, i.e. weightings) associated with each of the three 
main modes of the 2016 dataset. 

 

 

 

 

 

 

 

 

 



 

Figure S2 Spatially mapped SOM topology, coloured according to clustering, for (a) 2016, and (b) 2022. The 
2016 data were used to train the SOM algorithm, and this was used to classify both the 2016 and 2022 data. 
White cells show no data; (c) Frequency distributions for each SOM cluster, showing in bold the frequency that 
they occur in the 2016 and 2022 maps. The y-axis on these plots varies about zero because the inputs are 
demeaned and normalised using their standard deviations; (d) Proportion of total city population belonging to 
each cluster, for 2016 and 2022; (e) Median age of population belonging to each cluster, for 2016 and 2022. 



 

Figure S3 Spatially mapped SOM topology, coloured according to clustering, for (a) 2016, and (b) 2022. The 
2022 data were used to train the SOM algorithm, and this was used to classify both the 2016 and 2022 data. 
White cells show no data; (c) Frequency distributions for each SOM cluster, showing in bold the frequency that 
they occur in the 2016 and 2022 maps. The y-axis on these plots varies about zero because the inputs are 
demeaned and normalised using their standard deviations. 

 

 

 



 

Figure S4 Cumulative frequency distributions of travel-time to closest facility for each cell, grouped by cluster 
for both 2016 and 2022. Plots show distributions for: all clusters to hospitals in (a) 2016 and (c) 2022; all clusters 
to walk-in clinics in (b) 2016 and (d) 2022; individual clusters comparing 2016 and 2022 for (e) hospitals and (f) 
walk-in clinics.  

 

 

 

 

 



 

Figure S5 Comparison of cluster results when using k-means clustering and hierarchical clustering.    
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