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Abstract: Urban science research and the research on megaregions share a common interest in the
system of cities and its implications for world urbanization and sustainability. The two lines of
inquiry currently remain largely separate efforts. This study aims to bridge urban science and
megaregion research by applying network science’s community detection algorithm to explore the
spatial pattern of megaregions in the contiguous United States. A network file was constructed
consisting of county centroids as nodes, the direct links between each pair of counties as edges, and
inter-county commuting flows as the weight to capture spatial interactions. Analyses were carried
out at two levels, one at the national level using Gephi and the other for the State of Texas involving
NetworkX, an open-source Python programming package to implement a weighted community
detection algorithm. Results show the detected communities largely conforming to the qualitative
knowledge on megaregions. Despite a number of limitations, the study indicates the great potential of
applying network science analytics to improve understanding of the spatial process of megaregions.

Keywords: megaregions; commuting flows; network science; community detection; the Texas Triangle

1. Introduction

The last two decades have seen strong momentum in scientific research on how cities
and regions are spatially structured and ordered, while also functionally evolving and
transforming. These research efforts under the domain of urban science renewed the interest
in the science of cities that initially flourished in the mid-20th century and have been rapidly
advancing lately as high computing capacities and fine spatial data become available [1–7].
More importantly, the progress of urban science research has been driven by the recognition
of the critical role that urbanization plays in shaping global sustainability [8].

One particular urbanization form, megaregion, has gained worldwide attention,
mostly from urban planners and policy analysts. Different terms have been used to de-
scribe this urbanization form, including ‘megaregion’ or ‘megalopolis’ in the United States,
‘mega-city region’ in Europe, and ‘city-cluster region’ in China [9–13]. This paper uses
“megaregion” for reference convenience. A megaregion refers to the geography consisting
of multiple metropolitan areas, cities of different sizes as well as the rural areas between
them. Megaregions currently concentrate more than two thirds of the total global pop-
ulation and wealth and are projected to be the foci of future population and economic
growth [14]. Understanding the spatiality of megaregional processes and dynamics is
essential to develop an urban agenda for achieving sustainability [15].

The two lines of inquiry on urban science and megaregions continue to move forward,
but currently remain largely as separate efforts. Both of them view cities or urban areas
from a single system’s perspective. Urban scaling analysis treats the city as the unit of
analysis and examines the scale-free, systemic properties of cities relating city size to their
urban attributes. Megaregion study analysis considers cities as connected entities that form
an integrated system of systems. An ongoing debate concerning megaregions is how the
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connectedness is defined and measured, which is essential in delineating megaregions
for planning or policy implementation purposes [16]. Existing studies on identifying
megaregions primarily follow the conventional approaches that examine the morphological
and/or functional connectivity of cities and urbanized areas [10,17].

This paper presents an exploratory analysis that aims to bridge urban science and
megaregion research. Specifically, the study applies network science analytics to detect
megaregions as communities (in network analysis terms) considering both the graph
properties of the network and the spatial interaction between network nodes (i.e., the third
law of urban scaling). In this U.S. case study, a network is constructed for the contiguous
48 states with county centroids being the nodes and the direct links between each pair
of counties as edges. Interactions are measured with county-to-county commuting flows.
Two levels of network analysis are carried out. One is for the conterminous United States
using Gephi, a freeware network analysis package. The other zooms into Texas, involving
NetworkX, an open-source Python programming package, to implement a community
detection algorithm.

A brief review of the literature on urban science (urban scaling, specially) and megare-
gions follows. The paper then introduces study methods, presents analysis results, and
ends with discussion and conclusions.

2. Literature Review

Cities or urbanized areas exist in varying sizes measured by the number of inhabitants,
the land areas they occupy, or their economic masses. A long interest of urban science is
to explore the structural regularities embedded in the system of cities. Urban scaling is
one regularity that has been examined extensively lately. Urban scaling refers to the scale-
invariance characteristics shared by systems of cities over space and time. Batty highlights
three scaling laws of cities [2]. The first pertains to the frequency distribution of different
sized cities. A known regularity of city system distribution is Zipf’s Law, or the rank-size
rule, which characterizes a power-law relationship between the size of a city (typically
measured by population) and its rank in the system of cities in a given geography (country
or region). The second scaling law also displays a power function of city size, but relating
to the attributes of the city, for example, GDP, total wages, total road length, housing stock,
and household water consumption. A scaling factor given by the empirically estimated
exponent of the power function indicates a relationship being allometry or isometry when
the factor is unequal or equal to 1, respectively. Finally, the third law of scaling describes the
gravitational interaction between any pair of cities or entities; the intensity of interactions
is determined by city sizes and the scaled friction between them, where friction takes a
distance- or cost-decay function with a scaling parameter.

Existing empirical studies have largely confirmed the urban scaling regularities, but
with deviations from the expected distributions when data on different city attributes
or study areas are used [18,19]. Berry and Okulicz-Kozaryn show that the U.S. urban
regional growth conforms to Gibrat’s Law and the rank-size distribution in general; but
the distribution curves underpredict the size of the nation’s five largest urban regions [20].
When these largest urban regions are aggregated to the megaregional scale, a well fitted
rank-size distribution is obtained for the U.S. urban system. This finding suggests the
relevance of recognizing megaregion as a spatial entity to urban science research.

While there is a consensus on the existence or emergence of super large agglomerations
around the world, there has been considerable debate over how and where a megaregion
should be defined and spatially delineated. In the United States, megaregion research in
the new century was initiated by a group of planners and researchers from the University
of Pennsylvania, the Lincoln Institute of Land Policy and New York City-based Regional
Plan Association (RPA) [21]. Their work identified 11 megaregions in the contiguous U.S.
states as a rediscovery of and extension to Jean Gottmann’s megalopolis reported more
than half a century ago [22]. Other U.S. scholars have also explored the phenomena of
megaregions. Applying a variety of methods and criteria, they have delineated the number
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of U.S. megaregions as ranging from 10 to 23 (Figure 1) [11,17,23,24]. The definition of the
Texas Triangle has invited arguably the most debate in the U.S. megaregion discourse. There
are different versions of defining one or more megaregions in or around Texas [25]. Aside
from the triangle version proposed by RPA, Lang and Dhavale proposed two corridor
megaregions, one following Interstate highway 35 going from San Antonio, Texas to
Kansas City, Missouri and the other along the Gulf of Mexico stemming from Brownsville,
Texas to Mobile, Alabama [23]. Bright questions the very existence of the Texas Triangle
megaregion [26].
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Megaregion studies for the rest of the world show a research landscape as diverse
as that in the United States. Florida et al. utilized nighttime light data and identified
40 megaregions around the world, 11 out of which come from the contiguous United
States [27]. These megaregions not only produced ‘mega’ economic output, but also are
agglomerating places of innovations measured by the number of patents and scientific
publications. Taubenböck et al. also utilized multi-source and multi-year satellite images to
analyze changes in urban footprints and then to identify the formation of mega-regions in
Europe, Asia and America [28–30]. A subsequent study by Taubenböck and Wiesner ex-
plored an alternative way to define and delimit megaregions [29]. Using Earth O data, they
assessed the magnitude of connectivity between urban centers in a qualitatively identified
polycentric urban territories. The authors measured the magnitude of connectivity with two
parameters, the average settlement density and the urban continuity, which is quantified as
the percentage of pixels with a settlement density higher than 10% between two particular
urban hubs. The proposed method was then applied to analyze four potential megaregions
from four continents. Findings from this study reveal diverse spatial settlement patterns
and varying spatial processes in megaregions across different continental geographies. Hall
and Pain defined European megaregions based on the functional connectivity between
clustered cities and towns that are either contiguous or physically separated [10]. Func-
tional connectivity in their study was measured by daily commuting, similar to the method
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used by the U.S. Census Bureau for defining metropolitan areas. In addition, Hall and
Pain emphasize these mega-city regions’ international connectivity to regional economic
processes, especially in the sectors of advanced producer services (APS). Similarly, Glocker
characterized megaregions based on the external and internal functional linkages between
their constituent communities [31].

Whether using population density statistics, satellite images, or APS linkages, these
efforts reviewed above share a common feature by focusing mostly on the morphological
or functional processes of urbanization. A third approach is to apply network theory
and analytics to understand the new urban form of megaregions. Few prior studies have
taken this approach. Marull et al. [32] applied network theory and metrics to analyze
Europe’s 12 megaregions and address the question concerning the (un)sustainability of
the increased mass and complexity of mega-agglomerations. The authors characterized
the urban networks in megaregions as graphs where graph elements include cities as
nodes and transportation infrastructures (roadways and railways) as edges. Four graph
indicators were created, including complexity, polycentricity, efficiency and stability, to
measure megaregional performance and dynamics. The study confirmed empirically the
small-world network properties in megaregions’ urban systems. Furthermore, the authors
observed that the increase in the system complexity of megaregions induced superlinear
increase of information, which leads to increased efficiency and stability of megaregion’s
urban network. While the study is informative to understanding megaregional evolution
and performance in Europe, the authors assume the pre-defined geography of European
mega-city regions. The main interest of this paper centers on how a megaregion is detected
and defined in the first place. He et al. applied community detection methods to demarcate
metropolitan and megaregions in the contiguous U.S. states [33]. The authors utilized
the U.S. Census Bureau’s Local Origin Destination Employment Statistics and performed
weighted network analysis with a particular emphasis on intra-county commuting as
self-looping weights. Their analysis resulted in the detection of 182 region communities.
The results, however, offer limited insights into megaregional patterns because the authors
excluded those commutes longer than 100 km (~62 miles). Conceptually, a megaregion
consists of multiple metropolitan areas and the rural areas between them. Megaregional
travel, therefore, includes trips between metropolitan areas that are usually longer than
100 km. Nelson and Rae also applied a community detection algorithm to identify regions
based on census track level commuting data [34]. The study produced a vivid image of
commuting regions resembling U.S. metropolitan areas.

This study explores the third approach, applying network science analytics, specifically,
the community detection analysis, to examine explicitly the networkedness of megare-
gional components.

3. Methods

This study’s method included three parts. Part 1 involved visualization of commuting
flows through desired-line mapping. The mapping exercise illustrated the intensity of
county-to-county interactions and enabled qualitative assessment of county clusters that
potentially form regions or megaregions. In Part 2, the study utilized Gephi, a freeware
network analysis package to carry out community detection analysis using commuting
flow data for the contiguous U.S. states. Finally, in Part 3, the study zoomed into Texas
and identified communities or strongly connected counties by implementing a modularity
optimization program written with Python scripts by NetworkX.

3.1. Data Sources

The primary data source for this study was the commuting flows data from the
American Community Survey (ACS) published by the U.S. Census Bureau [35]. Commuting
is a key indicator used by most existing studies reviewed above to measure economic ties
between locational entities. The U.S. Office of Management and Budget (OMB) also uses
commuting data as the primary criteria to define metropolitan and micropolitan areas [36].
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Using ACS commuting data for this study allowed for assessment of the study results
compared to those of the existing research. ACS asks survey respondents about their
residence and workplace locations and generates flow records for the coupled residence-
workplace locations of the commuters. While most standard ACS products are released
annually, commuting flow data tables are produced irregularly, mostly in a five-year period,
to serve for Census Bureau’s research and product development purposes. This study uses
the latest ACS commuting flow data available from the Census Bureau’s website for the
period of 2011–2015 at the spatial scale of counties or minor civil divisions (MCDs) [35]. For
each pair of counties or MCDs, the ACS flow data report the total number of commuters.
Commuting flow data provide essential information for OMB to delineate and update the
boundaries of metropolitan and micropolitan areas.

3.2. Analytical Methods

This study applies the concept of community (also termed module or cluster) in
network science to analyze the inter-connectedness between counties towards the formation
of regions. By definition, a network community is formed in which its member nodes
are strongly or densely connected with each other but weakly or sparsely connected
with the nodes in the rest of the network [37]. Community detection techniques help
identify partitions of the node sets in a network and discern important structural patterns
of the network. Hence, community detection analysis serves well the purpose of this
study. Modularity provides a metric to evaluate the goodness of results from community
detection analysis [38]. From a statistical standpoint, achieving the maximum modularity
index indicates the best quality of a community detection. Many algorithms are available for
community detection in network analysis. This study uses the built-in clustering algorithm
and modularity statistic in Gephi 0.9.2 for nationwide analysis [39]. For the Texas-focused
analysis, the study applies the algorithm and modularity method developed by Newman
and Girvan [38].

Modularity computes the difference between the number of edges within communities
and the expected number in a random graph or a network, as shown in Equation (1):

Q =
k

∑
i=1

(
eii − ai

2
)

(1)

where eii is the fraction of edges in the given network connecting nodes in the same
community i and ai is the fraction of edges with one end node in communities i and
the other nodes on other communities. When expressed in the adjacency matrix form,
Equation (1) can be rewritten as follows:

Q =
1

2m
× ∑

vw

[
AVW − kvkw

2m

]
× δ(Cv, Cw) (2)

where m is the number of edges; Avw is the element of the A adjacency matrix in row v and
column w; kv is the degree of node v, the number of connections attached to the v-th node;
kw is the degree of node w, the number of connections attached to the w-th node; Cv and Cw
are the communities containing v and w, respectively; Kronecker delta δ(x, y) is 1, if x = y,
or 0 otherwise.

Equations (1) and (2) calculate modularity based on the graph’s topology only and
produce unweighted community detection results. In practical applications, community
detection and modularity analysis should take considerations of nodal and edge attributes.
This study incorporates inter-county commuting flows as weights into the analysis. The
edge weight, denoted as Wij, is calculated as shown below:

Wij = Tij/
(
Ti + Tj − Tij

)
(3)
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where Wij is the linkage coefficient between counties i and j; Tij denotes the number
of commuters between two counties i and j; and Ti and Tj denotes the total number of
commuters flowing into and out of county i and j, respectively. Accordingly, Equation (2) is
rewritten as shown in Equation (4) below:

Q =
1

2m
× ∑

ij

[
Wij −

kik j

2m

]
× δ

(
Ci, Cj

)
(4)

To carry out the community detection analysis, the study applies two analytical tools,
Gephi and NetworkX. The choice of applying two different tools to national and Texas-
focused analysis was driven largely by computing efficiency. Gephi is an open-source and
powerful tool designed for network exploration, analysis and visualization. Community
detection analysis with Gephi requires user input for parameter setting, for instance, the
scale of weight to be used and the number of clusters or communities to be identified.
Python programming offers the flexibility to perform iterative analysis to search for optimal
solutions without requiring input parameters to be provided by the user manually. This
study adopts an open-source Python package, NetworkX, written for network analysis [40].
Results obtained from applying NetworkX include the number of communities detected
and the identifier for each community that a node (county) belongs to. The authors
attempted to apply the adopted NetworkX module to analyze the national dataset but it
took too long to converge. Hence, for this exploratory study, Gephi and NetworkX offer
complementary capacities to serve the study’s purposes. Finally, the results were imported
into and visualized in ArcGIS. The detected communities or clusters of counties offer hints
to identify megaregions.

4. Results
4.1. Visualizing Commuting Flows

The census data table for the 2011–2015 5-Year ACS Commuting Flows contains
139,433 records of commuting between residence counties and workplace counties in the
United States and Puerto Rico. The data was imported into a matrix file for counties in the
contiguous 48 States, which contains 3108 × 3108 cells; many of which show zero flows. In
GIS the matrix flows were visualized (Figure 2) as desire lines with the line width indicating
the flow volumes. Each line combines flows in both directions between the origin and
destination counties. For effective viewing, the lines with flow volumes less than 1000
are suppressed.

Figure 2 exhibits a spatial pattern of commuting flows conforming to the spatial
distribution of megaregions identified by RPA [9]. County clusters with high flow volumes
appear in the Northeast, within and between Northern and Southern California, in the
Texas Triangle, along the Seattle-Portland and Miami-Orlando corridor and the Gulf Coast,
and around Atlanta. Multiple clusters centered at Chicago, Minneapolis, Cleveland and
St. Louis create a morphology of what Banerjee calls a “network-galaxy” (p. 93) in the Great
Lakes [41]. Three major metros in Texas, specifically Dallas, Houston and San Antonio, with
Austin in between, form a triangular geometry delineated by relatively high commuting
volumes on each edge. The Dallas-Houston edge had the highest volume despite that the
two cities are distant relative to other pairs of the Triangle metros. The mapping exercise
provides the empirical evidence of qualitative nature concerning the third urban scaling
law: larger masses of two objects, or populations of two metros in this case, produce
a greater intensity of interactions between them, while their spatial separation plays a
discounting role.



Urban Sci. 2022, 6, 12 7 of 14Urban Sci. 2022, 6, x FOR PEER REVIEW 7 of 16 
 

 
Figure 2. County-to-County Commute Flows in the Contiguous United States. 

Figure 2 exhibits a spatial pattern of commuting flows conforming to the spatial dis-
tribution of megaregions identified by RPA [9]. County clusters with high flow volumes 
appear in the Northeast, within and between Northern and Southern California, in the 
Texas Triangle, along the Seattle-Portland and Miami-Orlando corridor and the Gulf 
Coast, and around Atlanta. Multiple clusters centered at Chicago, Minneapolis, Cleveland 
and St. Louis create a morphology of what Banerjee calls a “network-galaxy” (p. 93) in the 
Great Lakes [41]. Three major metros in Texas, specifically Dallas, Houston and San An-
tonio, with Austin in between, form a triangular geometry delineated by relatively high 
commuting volumes on each edge. The Dallas-Houston edge had the highest volume de-
spite that the two cities are distant relative to other pairs of the Triangle metros. The map-
ping exercise provides the empirical evidence of qualitative nature concerning the third 
urban scaling law: larger masses of two objects, or populations of two metros in this case, 
produce a greater intensity of interactions between them, while their spatial separation 
plays a discounting role. 

4.2. Gephi Analysis Results 
The network file containing county centroids as nodes and the direct lines for each 

pair of centroids as edges was imported into Gephi for graph analysis and display. Gephi 
provides a variety of layout algorithms to visualize networks. This study selected Geo-
Layout, a plug-in available for free installation. GeoLayout reads in the longitudes and 
latitudes of nodes (county centroids) and displays the spatial network graph in standard 
map projections. 

Gephi’s built-in procedure for community detection applies a hierarchical clustering 
algorithm known as the Louvain method [42]. When performing analysis, Gephi provides 
a parameter, Resolution, for the user to specify and adjust. A higher value of Resolution 
(default being 1) detects a lower number of communities, and vice versa. A modularity 
score is generated for each run of community detection analysis at a given level of Reso-
lution. The modularity analysis in Gephi also offers the user an option to apply weight. 
When no weight is specified, the analysis is performed based purely on the topological 

Figure 2. County-to-County Commute Flows in the Contiguous United States.

4.2. Gephi Analysis Results

The network file containing county centroids as nodes and the direct lines for each
pair of centroids as edges was imported into Gephi for graph analysis and display. Gephi
provides a variety of layout algorithms to visualize networks. This study selected Geo-
Layout, a plug-in available for free installation. GeoLayout reads in the longitudes and
latitudes of nodes (county centroids) and displays the spatial network graph in standard
map projections.

Gephi’s built-in procedure for community detection applies a hierarchical clustering
algorithm known as the Louvain method [42]. When performing analysis, Gephi provides
a parameter, Resolution, for the user to specify and adjust. A higher value of Resolution
(default being 1) detects a lower number of communities, and vice versa. A modularity
score is generated for each run of community detection analysis at a given level of Reso-
lution. The modularity analysis in Gephi also offers the user an option to apply weight.
When no weight is specified, the analysis is performed based purely on the topological
relationship of nodes. This study chose weighted analysis, using commuting flows as done
by other studies for edge weights [33,34]. The analysis outputs of this study can thus be
assessed in comparison to those from similar studies. For Texas-focused analysis, a refined
weighting method, as described above in Equations (3) and (4), was used to better capture
intercounty interactions.

There have been no consensuses on what makes the optimal solution to a community
detection for network analysis because optimality can vary depending on the nature of
issues being studied. From an algorithmic perspective, the setting that generates the highest
modularity value is considered as the optimal solution [38,43]. Alternatively, if the analyst
has a priori knowledge on the number of communities for the network, the optimal solution
would be the one that generates the number of communities closely or exactly matching the
expected. For megaregion studies, as described previously, there is a general understanding
of the distribution of the new urbanization form but no agreement on how many there are
across the Lower States. This study applies Gephi’s built-in procedures to explore solutions.
The analyses were carried out by examining community detection outputs visualized in
the Gephi interface.

Figure 3 shows two outputs selected from numerous modularity runs for this study.
The top graph exhibits the communities detected by Gephi with the highest modularity
value (0.556) at the default resolution of 1.00. Three spatial features are evident, presenting
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several analytical and policy interests. First, the nine color-coded communities match fairly
closely to the geography of four census regions, including West (one community in lime
color), Midwest (three communities in north central), Northeast (one community), and
South (four communities). Except for the West region, communities detected also follow
fairly closely to the geography of census divisions. Is it just a coincidence that the detected
communities at the highest modularity resemble the census geographies of regions and
divisions or there are some underlying mechanisms? The question was not explored in this
study but warrants future research.
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Second, the algorithmically optimal result coincides with some but not all megare-
gional geography identified by the existing literature. For instance, the Northeast and
Florida (shown in light purple) communities resemble the two megaregions in RPA, Ross
and FHWA [9,17,24]. Two communities to the north of Florida (in olive and jade tone)
correspond approximately to the Piedmont megaregion. The Great Lakes megaregion
includes three communities shown in blue, bright blue and brown. The community in
orange covers an area extended from RPA’s Texas Triangle. For the megaregions located on
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the west coast and in the Mountain division, this Gephi modularity run detected a single
community, not distinguishable for megaregions within it.

Third, the Northeast and Florida were detected by the Gephi analysis as a single
networked community despite the more than 1000 miles separating the two locations. The
use of commuting flows as weight for the analysis may explain the seemingly counter-
intuitive result. Reports have shown continuing trends of migration from the Northeast
to Florida [44]. Some of them may maintain their jobs in the Northeast cities while com-
muting monthly or seasonally in combination with telecommuting. While this speculative
explanation needs further empirical verifications, the analysis result of identifying the
Northeast and Florida in one community indicates an important topic for megaregion
research: understanding the connections and linkages between cities and metropolitan
areas should go beyond spatial proximity and consider the extent to which these cities and
metropolitan areas are networked in economic, social and/or environmental dimensions.

The bottom graph of Figure 3 shows the result of Gephi analysis with a large number
of communities detected when the Resolution parameter was set at a low value of 0.05.
One obvious improvement from previous analysis shown in the top graph of Figure 3 is
the identification of megaregions in the U.S. West region. The detected communities of
clustered counties resemble the megaregions defined by other studies, including Cascadia
(anchored by cities of Seattle and Portland), Northern and Southern California, Arizona
Sun Corridor and Front Range. For other census regions and divisions, however, the
analysis reports a large number of small communities; most of them center at individual
metropolitan areas. This pattern of communities looks similar to that identified by Nelson
and Rae [34].

The Gephi analysis results presented above confirm a general observation: community
detection output is sensitive to the definition of study area. Given the spatial heterogeneity
of the U.S. counties and settlements across the United States, it is thus understandable to
see the significant differences in results shown in Figure 3. The following section presents
the analysis zoomed into Texas.

4.3. The Texas Analysis

The nation-wide analysis presented above used the original volume of commuters as
weight. For the Texas-based analysis, a modified edge weight, the linkage coefficient as
shown in Equation (3), was applied. This weight coefficient captures the relative intensity
of interactions between each pair of counties. Figure 4 displays the modularity runs
programmed with Python scripts. The horizontal axis shows the number of clusters or
communities detected for each run and its corresponding modularity score shown on
the vertical axis. The highest modularity score (0.29) was obtained for the output with
35 communities detected.

Figure 5 displays the optimal result of community detection. A total of 254 counties
in Texas are grouped into 35 communities coded with different color tones. The two
largest communities, coded in orange and light purple, stand out vividly on the east half
of Texas. The super-sized community in orange contains mostly metropolitan counties,
including those from Texas’ four largest metropolitan areas of Houston, Dallas-Fort Worth,
San Antonio and Austin-Round Rock, and their adjacent, secondary (in size) metropolitan
areas of Killeen-Temple and Waco to the north of Austin, Tyler-Longview to the east of
Dallas and Beaumont-Port Arthur to the east of Houston (refer to Figure 6 for the locations
of these geographic entities). The metropolitan counties form a nearly continuous corridor
along Interstate Highway-35, with a gap of one county between Waco and Fort-Worth.
The west-most county of the Houston area almost touches the east-most county of from
the Austin area. The counties in light purple largely fill the space between the intensely
clustered orange counties. For the rest of the state, counties scatter across the space, most
of them are one- or two-county communities as detected by the algorithm. Four county
pairs located by the state borders to the west and south were detected to be in the same
community as the super-sized orange clusters. They include county pairs in the Amarillo,
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Lubbock and Midland-Odessa areas to the west and the McAllen and Brownsville areas by
the U.S.-Mexican border to the south.
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The analysis output shown in Figure 5 displays a pattern of county clustering con-
forming to that visualized in Figure 2. While the analysis was preliminary and only one
type of network analysis (modularity) was involved, the Texas case study indicates the
great potential of applying network science analytics to improve understanding the spatial
process of megaregions.

5. Discussion and Conclusions

The megaregional phenomenon continues to evolve to produce a prominent urban
form in the increasingly urbanized world. Understanding the spatial process and forma-
tional structures of megaregions is essential to develop plans and policies for garnering
momentum and at the same time taming the diseconomies of the vast agglomerations for
sustainability. Existing studies have focused primarily on the morphological or functional
connectivity between the cities and urbanized areas in predefined territories. This study
explores a third approach, applying network science analytics to detect megaregions as
network communities consisting of clustered counties. A weighted community detection
algorithm was used, for which inter-county commuting flows entered as weights. The
study results are informative, but varying between different geographical levels of analysis;
some of which conform to the expected, whereas others call for further research.

At the level of the 48 contiguous states, the Gephi-based analysis produced an algo-
rithmic optimum (i.e., the highest modularity score) in which, except for the U.S. West
region, county clusters corresponded closely to the megaregions identified by other schol-
ars in the past studies. Interestingly, the optimal result delineated the geography of large
communities highly consistent with the census regions and divisions. Explanations to
this coincidence require further research. When the Resolution parameter was set at a low
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value in Gephi, megaregions in the U.S. West region were well identified. However, the
megaregions identified previously in other U.S. regions became illegible. In the zoomed-in
analysis of the Texas county network, a Python-programmed procedure involving Net-
workX identified county clusters highly consistent with the Texas Triangle megaregion
referred to by prior research.

The analysis also detected county clusters with strong connectivity, for example, between
the Northeast and Florida and between the metropolitan areas of Dallas and Houston, despite
them being hundreds of miles apart. Whether considering the Northeast and Florida, and the
Dallas and Houston areas, as integrated regions depends on study purposes and thus requires
the researcher’s qualitative assessment. Region or megaregion definition and delineation
should also consider other socioeconomic and environmental factors beyond commuting
statistics [46]. An insight gained from the results is that urban places (cities, counties or
metropolitan areas) can become networked beyond proximity constraints.

One criticism to the present megaregion research concerns the exclusion of rural
counties from analysis [47]. This issue is embedded in the built-morphology or urban
function-based megaregion demarcation for which minimal thresholds of development
density and continuity have to be pre-defined. The network approach does not require pre-
specification of thresholds for chosen factors. As a result, rural counties are also included
in the analysis over the rural–urban continuum. The network approach offers an analytical
strength to carry out the much-needed research on the rural–urban interdependence in the
United States.

Several cautionary notes are worth mentioning. As described before, results of com-
munity detection analysis are sensitive to the selection of study areas. Accordingly, whether
a result is optimal should be decided not solely based on the computed statistics. It is
important that the analyst exercises qualitative knowledge and prior empirical findings
when assessing the analysis output. Network science analytics when applied to social
networks typically deal with nonspatial data. When the phenomenon under study presents
a spatial dimension, such as megaregions, it is essential to take into consideration the
spatial effects. This study did not consider spatial factors such as the distance between
counties. Adding spatial factors into the analysis can help better understand megaregional
phenomenon. The complexity of incorporating the effects of spatial separation and spatial
dependence into the application of network science to megaregion analysis makes it a
challenging task, which warrants future research efforts. Lastly, a megaregion consists of
multiple, complex systems. It is essential, while challenging, to integrate multi-dimensional
analysis over infrastructural, ecological, social, cultural and economic networks.

Megaregions present important properties pertaining to urban network externali-
ties [48,49]. Such properties have been explored, but rather inadequately. Network science
offers a great potential to uncover megaregional network externalities and their implications
for sustainable urbanization and development.
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