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Abstract: Research on the detection of informal settlements has increased in the past three decades
owing to the availability of high- to very-high-spatial-resolution satellite imagery. The achievement
of development goals, such as the Sustainable Development Goals, requires access to up-to-date
information on informal settlements. This review provides an overview of studies that used object-
based image analysis (OBIA) techniques to detect informal settlements using remotely sensed data.
This paper focuses on three main aspects: image processing steps followed when detecting informal
settlements using OBIA; informal settlement indicators and image-based proxies used to detect
informal settlements; and a review of studies that extracted and analyzed informal settlement land
use objects. The success of OBIA in detecting informal settlements depends on the understanding and
selection of informal settlement indicators and image-based proxies used during image classification.
To meet the local ontology of informal settlements, the transfer of OBIA mapping techniques requires
the fine-tuning of the rulesets. Machine learning OBIA techniques using image proxies derived
from multiple sensors increase the opportunities for detecting informal settlements on the city or
national level.

Keywords: OBIA; informal settlements; high-spatial-resolution images

1. Introduction

The world is experiencing alarming urbanization growth. In 1900, only 15% of the
world’s population lived in urban areas [1]. This picture changed drastically during the
20th century. During the sixty years from 1950 to 2010, the world experienced rapid
urbanization, leading to more than 50% of the world’s population living in urban areas [2].
Eight years later, more than 58% of the world’s population were living in urban areas [3].
The current projections indicate that approximately 75% of the world’s population will live
in urban areas by 2050 [3], with most urban development expected to occur in the towns
and cities of developing countries [4]. Unfortunately, urbanization in these countries is
not always linked to economic development [5], and population influx often surpasses
the formal housing supply. This is already evident from the development of informal
settlements or slums and informal dwelling structures, including backyard shacks around
the cities and towns of developing countries. Many countries and international bodies have
initiated policies and strategies that set targets to provide adequate housing and improve
the living conditions of people living in informal dwellings.

Informal settlements are illegal and lack access to improved water sources, sanitation
facilities, good living areas, housing durability or security of tenure [6] and are usually
homes for new migrants and unemployed or unskilled people [7]. In addition to the
increased health, social and environmental vulnerability of people living in informal
structures, the development of such dwellings can lead to environmental degradation.
Even though the development of other forms of informal housing takes place on surveyed
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traditional land, the development of such structures is illegal, and the people living in such
dwelling structures may lack security of tenure and direct access to basic services, leading
to settlement informality. Effective urban planning requires access to consistent, reliable
and up-to-date information on informal settlements and settlement informality.

In many countries, data on informal settlements are traditionally collected during
ground surveys, including censuses. Censuses are usually conducted every ten years owing
to the substantial financial resources required to conduct these surveys [8]. In addition,
such censuses primarily capture headcount information rather than the spatial dimensions
of informal settlements [8]. Even though the population census is the most comprehensive
source of demographic data, information on informal settlements is usually underestimated
compared to other settlement geographies [9]. The temporal gap of census data poses many
challenges in planning services, as the fiscal transfer of services is based on headcounts. In
addition, development agendas such as the Sustainable Development Goals (SDGs) use
headcounts to assess progress toward the achievement of sustainable cities.

Understanding the spatial-temporal dynamics of informality in terms of demographic
information, areal extent, morphology and environmental conditions can assist in the
development of sustainable solutions to better manage urbanization. This paper reviews
the published research on object-based image analysis (OBIA) methods for detecting
informal settlements using remote sensing data, focusing on the indicators used to detect
informal settlements. The paper also reviews the published research on the extraction
of informal settlement land use features. The paper concludes by providing a summary
and recommendations for potential future studies applying remote sensing in informal
settlement mapping.

2. Origins and Characteristics of Informal Housing

Informal settlements existed in the 16th century in Europe, Australia and North
America, serving to provide housing solutions in now-developed countries for those with
little or no income [6]. Rapid urbanization during the Industrial Revolution led to the rapid
increase in the number of slums during the last two decades of the 19th century [6]. These
settlements were usually located within the cities in old buildings. They lacked access
to essential services and were not included in the planning of the cities, leading to these
areas having poor living standards and being sources of social ills such as crime and drug
abuse [6].

Sub-Saharan African and South American urban areas were limited in number and
extent during the pre-colonial era [6]. Examples include Jenne-Jeno in Mali and Aksum
in Ethiopia. The urban settlements and towns were not formally planned but rather had
settlements patterns, structures and land use systems dictated by their traditional and
religious leaders. The dwelling structures in informal settlements differed from country
to country and sometimes varied per ethnic group. Nevertheless, there was recognition
of what constituted an acceptable settlement pattern, specifically one that provided for
all necessary land uses, such as transportation, education and shops [10]. During the
last few decades of the 19th century and early 20th century in sub-Saharan Africa, the
European colonizers established and settled in new settlements and generally changed or
expanded the existing urban areas so as to be situated closer to natural resources, leading
to more people moving from rural areas to urban areas in search of employment with the
established industries [10].

The colonizers also established coastal cities such as Cape Town, Lagos and Accra to
facilitate the transportation and trading of resources [10]. The spatial plans of colonial cities
were created using racial segregation policies resulting in underserviced or unserviced
black areas, mostly informal settlements, located far from the commercial and desirable
residential areas separated with buffers such as railway lines [11]. To this day, most informal
settlements in developing countries are home to unskilled or semi-skilled workers who
have become the labor pool for industries particularly affected by economic instabilities.
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Hence, most of these workers are laid off during recessions, making it difficult for them to
change or improve their living conditions [12].

Nowadays, informal housing can be found in informal settlements where free-standing
informal structures are built on illegal land [6]. The second scenario of informality in
countries like South Africa takes place through the building of informal structures on
formal surveyed land [13]. The third scenario is where people live in old buildings that lack
city services. These settlements are mostly found within cities, such as the urban villages
in some cities in China that were rural villages but are now rented out to create income
(since agricultural land has been consumed by urbanization) [14]. The mapping of informal
settlements or informal housing using remote sensing data requires a context-/country-
specific understanding and definition of informality.

The terms informal settlement and slum are currently used interchangeably in United
Nations documents [4]. Other terms are used to describe informal settlements in different
countries, including fevals (Brazil), bidovilles (Francophone), villa miseria (Argentina) and
kampungs (Indonesia and Malaysia) [6].

3. Mapping and Monitoring Informal Settlements Using Remote Sensing Technologies

Remote sensing technologies provide the capabilities to map and monitor informal set-
tlement developments. The analysis of publications performed using the Scopus database
in May 2023 shows that the number of studies using satellite imagery to map and moni-
tor informal settlements or slums has increased since 2015, with fewer studies recorded
between 1996 and 2008. Approximately 50% of the publications were published between
2019 and 2022, with the highest number of publications in 2019 (see Figure 1).
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Figure 1. Number of publications per year based on the Scopus database.

The increased interest in the studies on informal settlements in 2015 may be related to
increased interest in informal settlements during and after the establishment of the SDGs.
Even though informal settlements are mainly prevalent in Africa and Asia (where 80% of
people live in informal settlements), most studies on formal settlements or slums have been
conducted in Europe and the United States (see Figure 2).

South Africa is the only country in Africa that is among the top ten countries conduct-
ing research on informal settlements. Other African countries whose research has been
published in the Scopus database include Kenya, Ghana, Zambia and Nigeria. India and
China are the only countries researching informal settlements in Asia.

The proportion of studies in the different regions may be influenced by the funding
opportunities to support research on informal settlements. Europe is the leading funder of
research on informal settlement mapping (see Figure 3).
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Figure 3. Top funders of research on informal settlement mapping.

In addition, most of the published research on informal settlements is conducted by
European academic institutions, as compared to research institutions or governments.

The methodologies used to detect informal settlements include manual digitization,
pixel-based classification, OBIA, machine learning, and texture-based and statistical-based
techniques. Even though visual image interpretation is time-consuming and resource
intensive, it is still used today, as it produces more accurate results when performed by
people with skills and experience in image interpretation [15].

The complexity of the roof materials of structures and the heterogeneity of land use
in urban areas make it challenging to distinguish informal settlements from other land
use types using spectral information based on high-spatial-resolution imagery alone [16].
The use of machine learning techniques for informal settlement mapping has been slowly
increasing in recent years. Machine learning techniques have proven to perform better than
survey-based mapping methods. These techniques depend on the settlements’ spectral,
morphological or structural properties [17]. This leads to confusion between informal
settlements versus formal settlements with small buildings [18]. The methodologies that
have been tested in the detection of informal settlements include Random Forest (RF),
Support Vector Machines (SVM) and Linear Regression. The SVM provides more accurate
results with fewer errors of commission and omission [18,19]. Deep learning techniques
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such as Convolutional Neural Network (CNN) can potentially improve the accuracy of
informal settlement classification [19,20]. Unlike pixel-based machine learning techniques,
deep learning techniques use image patches during model training [20].

Additionally, known as Geographic Object-Based Image Analysis (GEOBIA), OBIA
techniques have received increased attention in the past two decades as solutions for
informad4l settlement detection [21,22]. Unlike pixel-based classification techniques, OBIA
classification techniques use the spectral, spatial and contextual characteristics of image
objects for classification [23].

Table 1 summarizes the differences between the mapping methodologies used to
detect informal settlements.

Table 1. Description of informal settlement detection methods.

Method Description

This method is time-consuming and resource-intensive;
Manual digitization however, it yields more accurate results compared to other
informal settlement detection methodologies [15].

This method results in high confusion between informal

Pixel- lassificati e .
ixel-based classification settlements and features with similar spectral signatures [24].

This method can be used with other image classification

Machine learning techniques, such as OBIA, and texture [17,18].

This methodology can easily be transferred to other areas with

Texture-based classification .. 7
sed classihicatio similar characteristics [25].

This methodology classifies image objects using contextual,

OBIA spatial and spectral features [21].

The OBIA technique has been the most common method for informal settlement
detection in the past two decades, as compared to other image-processing methods [15].
Compared to pixel-based classification, OBIA is beneficial for the classification of slums
because the segmentation process generates segments that have additional spectral, ge-
ometric and textural information that is essential for differentiating slums [26,27]. The
image segments contain descriptive statistics such as mean, median, minimum and maxi-
mum values per band and the mean ratios and variances of the images’ spectral, spatial
and textural characteristics [26-30]. Multiresolution segmentation has been implemented
successfully in GEOBIA to delineate buildings and uses scale, shape and compactness to
segment objects [30].

The use of machine learning techniques and OBIA techniques to detect informal
settlements is attracting interest from researchers. The settlement-based indicators and RF
classifier successfully detected informal settlements with increased accuracy [31]. The use
of the OBIA technique and RF classifier in the detection of informal settlements applying
optical sensors and Synthetic Aperture Radar (SAR) images has the potential to produce
more accurate results [32]. The OBIA technique (which uses settlement-level image features
derived from high-spatial-resolution imagery) and RF (derived from high-spatial-resolution
satellite imagery) have been used to detect informal settlement growth from Landsat
temporal images with high accuracy [33].

3.1. OBIA Processing Steps

The first step in OBIA is image segmentation. This process partitions the image
into meaningful objects used in classification or interpretation. OBIA was introduced
around 2000 and implemented using software like Trimble eCognition. The multiresolution
segmentation process is the most common image segmentation technique used in informal
settlement detection [15]. One of the time-consuming tasks in image segmentation is the
determination of the scale parameters that will produce image objects that represent the
desired classes [24]. The scale parameter is an essential variable in image segmentation,
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as it determines the heterogeneity and size of the segmented objects [28]. The higher the
scale parameter is, the higher the degree of heterogeneity of the object will be, resulting
in larger image objects. Most studies have used a trial-and-error process to determine the
scale parameter that would provide the required objects [21,26,34,35]. This supervised
segmentation method requires the user to inspect the segmentation results using reference
data or local knowledge. The parameters are then fine-tuned until the desired image objects
are achieved.

The scale parameter remains a notable problem in the transferability of OBIA classi-
fication techniques. The transfer of image segmentation parameters from one sensor to
another requires the parameters to be fine-tuned [27]. Reference data such as road or rail
data have been used during the segmentation process to improve the boundaries of the
resulting image object [35]. Some researchers have employed the Estimation of the Scale
Parameter [30] to determine the scale parameter in order to segment informal settlement
objects [32,36]. Several studies have used two segmentation levels to detect informal settle-
ments [21,34,35]. This usually involves the segmentation of larger image objects to represent
non-built-up versus built-up areas. In contrast, the second level uses higher scale values
to create informal and formal land use objects used as sub-objects to distinguish informal
settlements from formal settlements. The use of one segmentation level is observed when
spectral-based features alone are used for the classification of informal settlements [35].

The availability of image-processing platforms such as Google Earth Engine provides
opportunities to implement other segmentation methods, such as Simple Non-Iterative
Clustering, which has been successful in segmenting informal settlement image objects
from medium-spatial-resolution optical images and SAR [37]. Grid-based segmentation
approaches are also used to create images in informal settlement detection [38,39].

Image classification in OBIA is usually performed using rulesets. Expert knowledge is
required to generate these rulesets. The most challenging task during the mapping of informal
settlements using OBIA is the translation of the characteristics of informal settlements into
robust indicators that can be used across the globe during classification [31,40]. A Generic
Slum Ontology (GSO) was developed to define generic indicators of informal settlements
that can be used globally to detect informal settlements using remotely sensed data [40].
The GSO is based on the built morphology of informal settlements on three spatial levels,
i.e., environment, settlement and object. The following subsections evaluate informal
settlement indicators and OBIA techniques on these three spatial levels.

3.2. Detection of Informal Settlements Using Object-Level Indicators

Several studies have investigated using OBIA techniques to detect informal settle-
ments [15,21,22,27]. The rulesets used for detecting informal settlements vary in terms of
complexity from one area to another, depending on the ontology of the informal settlements.
The object-level indicators tested or used to detect informal settlements include the tone
and shape characteristics of dwelling structures [21,36]. The shape characteristics that are
used serve to detect informal settlements’ size and the simplicity of their roof structures.
The dwelling structures in informal settlements are usually smaller [31,36,41] and more
irregular in shape [36] than formal structures.

The roofs of dwelling structures in informal settlements can be constructed from a
wide range of materials, such as iron, plastic sheets, wooden boards or asbestos [36] and
a combination of clothes, wood and straw [42,43]. Image features have been investigated
to distinguish the tone and brightness of dwelling structures in formal settlements. Tone
measures the intensity of the bands of the image. The use of measurements for the tone
of the roofs of dwelling structures in informal settlements using high-spatial-resolution
imagery alone is insufficient in detecting informal settlements [24]. This is due to spectral
confusion between the dwelling roofs and the surrounding surfaces [24]. The studies
investigating the use of shape characteristics of dwelling structures have achieved poor
accuracies of around 2-65% [21,31,36].
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3.3. Detection of Informal Settlement Using Settlement-Level Indicators

Settlement-level indicators are physical characteristics of informal settlements that
describe the overall shape, form or density of the respective settlement [40]. These indicators
include the relative density of building structures and the absence of regular road networks
and vegetation. Further indicators are the lacunarity and orientation of built structures [40].
The density of structures in unformal settlements can vary from one settlement to another. In
addition, the density of the structures can vary depending on the developmental stage of
the informal settlement, i.e., in infancy, consolidation or maturity [43]. Several studies in the
literature have been conducted on medium- to high-density informal settlements [21,22,27,35].
At the time of the writing of this paper, no studies had yet been published that focused
on the use of remote sensing to detect informal settlements with low-density building
structures. The image proxies used in the detection of informal settlements using settlement
indicators include the grey-level co-occurrence matrix (GLCM), lacunarity of building
structures to open spaces, and built-up and vegetation indices.

The measurement of the GLCM is used to analyze the occurrence of pairs of pixels with
specific values and a specific spatial relationship [44]. The GLCM textural measurements
are the image features commonly explored, investigated or used for informal settlement
detection in areas with medium- to high-density building structures, from high- to very-
high-spatial-resolution imagery [26,34,35,39,45]. The window size used during the texture
analysis and the spatial relationship analysis can affect the detection of informal settle-
ments [26,34]. The success of these GLCM features in detecting settlements varies from one
area to another depending on the morphology of the settlement, the surrounding land use
features and the developmental stage of the settlements [34,35]. The integration of GLCM
and other features, such as vegetation indices, has been proven to increase the quality of
the results [26].

Several studies have attempted to detect informal settlements by analyzing the pres-
ence or morphology of land use features. A lack of vegetation is one of the characteristics
of informal settlements that have been investigated [15]. This indicator is assessed us-
ing vegetation indices such as the Normalized Differential Vegetation Index (NDVI). The
NDVI quantifies vegetation cover and has been used to classify land use and land cover
features [46]. Informal settlements typically have lower vegetation cover than formal
settlements [21,26,35,47]. This indicator is mainly used with other indicators, such as high
building density, to detect informal settlements. Even though lack of vegetation could be
used as an indicator during informal settlement detection, studies that assess vegetation
cover and the biophysical characteristics of informal settlements have not been conducted.
Understanding the biophysical characteristics and environmental conditions could help
to manage the development of a measure aiming to improve the resilience and health of
people living in informal settlements.

The use of lacunarity to detect informal settlements has been investigated in several
studies [25,48,49]. Lacunarity is a measure of the deviation of geometric objects which
quantifies the spatial heterogeneity of an object [48]. Formal settlements are expected to
have higher lacunarity values, whereas informal settlements have lower values [25]. The
lacunarity values of informal settlements depend on the developmental stage and density
of the settlements [49].

Line detection algorithms such as Canny edge have been used to measure lacunarity
in the detection of informal settlements [25,49,50]. In OBIA, lacunarity is also calculated by
assessing the relative distance of building structures from vacant land [35]. The effectiveness
of lacunarity in detecting informal settlements requires highly accurate informal settlement
land use features. The integration of ancillary data available from platforms such as
OpenStreetMap can potentially improve the detection of informal settlements.

Informal settlements are characterized by organic and irregular road networks or
paths [51]. Only a limited number of studies have integrated the detection of road networks
in distinguishing informal from formal settlements [26,52,53]. The geometric characteristics
of informal settlement land use features have been investigated using the asymmetry of
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sub-objects [21,38]. Informal settlements tend to have a lower asymmetry of sub-object
values owing to the complex nature of land use features in informal settlements. The
asymmetry of sub-objects perform better in detecting informal settlements than the use of
the area or density of sub-objects [38]. This may be attributed to the fact that the assessment
of the area and density of sub-objects depends on the accuracy of the segmentation results
of building structures and land use features in informal settlements [54].

3.4. Detection of Informal Settlement Using Environment-Level Indicators

The detection of informal settlements using environment-level characteristics has not
been thoroughly investigated. Informal settlements are primarily developed on vacant land
in undesirable locations close to rivers or services, in low-lying areas or on steep slopes.
Areas prone to environmental disasters may also be used for informal settlements [36,40].
Some studies have investigated the location characteristics of informal settlements using
ancillary data [55-59]. The integration of location characteristics such as proximity to rivers,
roads or railway lines in the OBIA classification process has been proven to enhance the
detection of informal settlements [36,60].

3.5. Temporal Analysis of Informal Settlement Extent

Understanding informal settlements can help authorities to better manage the devel-
opment of informal settlements and urbanization in general. Even though several studies
have investigated the detection of informal settlements using satellite images, limited
studies have focused on analyzing informal settlement growth [33,36,38,59,61-63]. The
accuracy of post-classification-based change detection greatly depends on the accuracy
of the classification results. In OBIA, the detection process’s or ruleset’s transferability
remains challenging [36]. Machine-learning-based change detection offers a better solution
for informal settlement detection [63]. The information assessed in change detection studies
has mainly focused on the extent of settlements. The availability of Unmanned Aerial
Vehicles (UAV) provides an opportunity to assess building structure growth or changes in
informal settlements [64].

3.6. Informal Settlement Mapping Using UAVs

The use of 3D information for detecting building structures in informal settlements
using UAVs, unmanned aerial systems or drones has been an area of interest among re-
searchers in recent years. UAV technology can acquire ultra-high-spatial-resolution images,
3D point clouds, detailed Digital Surface Models and Digital Elevation Models [65]. This
technology also provides flexibility in the selection of spatial and revisit times based on
the information requirements of the project [66]. The integration of 2D and 3D informa-
tion heights generated from UAV products has been proven to provide more accurate
results than pixel-based classification [67]. The mapping of land use features in informal
settlements (including building structures through integrating 2D and 3D information
provided by UAV technology) produces the detailed information required to support many
applications, including planning for the upgrading of slums [67].

UAV products have also been used to classify roofs according to the roof materials and
building heights, providing valuable information that can be used during spatial planning
and as an indicator for classifying informal versus formal settlements [68]. The assessment
of land use features in informal settlements using UAV image products is limited to smaller
geographic areas [69]; for city-wide informal settlement mapping, high-spatial-resolution
images are required. In contrast, UAV technology is suitable for the localized assessment of
features in informal settlements to support specific projects, such as upgrade projects [70].

The capacity of UAVs to assess the morphology of building structures for determining
fire disaster risk in informal settlements has been demonstrated [71]. Point cloud data used
to create a 3D model of the building structure have been investigated to support several
applications, including informal settlement upgrades [72]. Furthermore, multitemporal
UAV products have successfully identified upgraded dwelling structures in informal



Urban Sci. 2023, 7, 98

90f13

settlements [64]. It has been shown that using UAV products to detect features in informal
settlements provides classification accuracies of 90% or higher [64].

3.7. Studying the Morphology of Informal Settlements Using Landscape Metrics

The research aiming to distinguish informal settlements from formal settlements
using landscape metrics is new. A recent study in China successfully distinguished urban
villages from formal areas with higher accuracy in two cities using patch and landscape
metrics [73]. The study of the spatial patterns of informal settlement structures using
landscape patterns has also received limited attention [58,71]. Study of the spatial patterns
of informal settlements can provide information with which to better understand the
configurations of settlements and, hence, aid in planning services. Furthermore, integrating
spatial patterns with other information types, such as disaster occurrence, can help to
identify areas at risk of such events [71].

3.8. Mapping of Informal Settlement Land Use Features

Understanding the built environments of informal settlements is essential for provid-
ing primary and emergency services. Research on the high- to very-high-spatial-resolution
extraction of building structures in informal settlements has been an area of interest for
many scholars and researchers in the past two decades [74,75]. This was made possible by
the launch of satellites such as IKONOS, QuickBird and Worldview. The quantification of
building structures provides information required to estimate population size and facilitates
the provision of health and other essential services, such as emergency response services
(including fire and disaster management). The extraction of building structures from high-
spatial-resolution imagery is a complex process owing to the size and heterogeneity of the
surrounding land use features, such as roads and open spaces.

Limited studies have investigated the extraction of roads in informal settlements, yet
these are essential infrastructure, as they provide transportation and emergency service
access. The detection of road features in informal settlements is challenging, as roads
in informal settlements have similar physical characteristics compared to other land use
features when using high-spatial-resolution satellite imagery [76].

4. Conclusions and Recommendations

This study shows that remote sensing has been widely used to detect informality
where free-standing shacks or dwelling structures were built on land that was not ap-
proved for habitation. The literature search indicates that there are no studies using remote
sensing to detect informality in formal areas. Even though some studies have investigated
the use of remote sensing in informal detection, the adaption of the investigated method-
ologies in different areas remains a challenge. While the use of OBIA techniques to detect
informal settlements has been thoroughly investigated, for the detection methodologies to
be transferable to more than one city, fine-tuning of the segmentation parameters and the
thresholds used during the classification process will be required.

This review shows that settlement-level indicators have been thoroughly investigated
and have been more successful in detecting informal settlements than object-level and
environment-level indicators have. Furthermore, object- and environment-level indica-
tors have produced lower-quality results than settlement-level indicators. As shown in
this review, informal settlements are characterized by high-density structures in sparsely
vegetated areas. Thus, many studies have investigated the use of GLCM and NDVI for
detecting informal settlements. The success of the settlement indicators investigated in the
respective studies is shown in the literature to strongly depend on the characteristics of
informal settlements. Therefore, there is a need to investigate and test the robustness of
methodologies that integrate different detection techniques.

To detect informal settlements, it is crucial to understand the local typology of infor-
mal settlements when developing rulesets. Studies have shown that informal settlements
around cities may have different physical characteristics (specifically, density and veg-
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etation coverage). The use of OBIA combined with machine learning techniques may
yield a better accuracy in detecting informal settlements compared to the use of traditional
ruleset-based OBIA techniques alone. The combination of OBIA and machine learning
techniques also offers a means of detecting informal settlement land use features such as
roads and vegetation. The studies reviewed in the literature have demonstrated that the
use of UAVs provides researchers with height information that can be used to improve the
outlining of object-level features and assess other forms of informality. This is especially
the case in areas with both formal and informal settlements. The use of different sensors,
e.g., SAR and optical sensors, for detecting informal settlements increases image proxies
that can improve classification accuracy. In addition to informal settlements” extent, other
research has focused on parameters such as the height of building structures and roads. The
availability of UAVs provides the opportunity to extract and analyze informal settlements
on a larger scale, which is necessary for the effective planning of infrastructure and services.
Limited studies have mapped and assessed land use features in informal settlements. Little
is known about the environmental conditions of informal settlements.

Future studies should develop local ontologies of informal settlements and develop
robust methodologies to detect informal settlements over a larger geographic area. Secondly,
there is a need to investigate the use of image proxies with optical and active sensors over a
larger area or different cities. When mapping other forms of informality, such as backyard
shacks, OBIA techniques should be prioritized. Furthermore, studies should examine the
spatial patterns of formal and informal settlements based on very-high-spatial-resolution
data provided by UAVs and aerial photography. The use of more object-level information
to detect informal settlements and use of UAVs to assess the environmental conditions of
informal settlements will provide crucial insights into the mapping of informal settlements.
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