
Multimodal Technologies 
and Interaction

Article

MatMouse: A Mouse Movements Tracking and
Analysis Toolbox for Visual Search Experiments

Vassilios Krassanakis * and Anastasios L. Kesidis

Department of Surveying and Geoinformatics Engineering, School of Engineering, University of West Attica,
28 Agiou Spyridonos Str., 12243 Egaleo, Greece; akesidis@uniwa.gr
* Correspondence: krasvas@uniwa.gr

Received: 3 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 ����������
�������

Abstract: The present study introduces a new MATLAB toolbox, called MatMouse, suitable for the
performance of experimental studies based on mouse movements tracking and analysis. MatMouse
supports the implementation of task-based visual search experiments. The proposed toolbox provides
specific functions which can be utilized for the experimental building and mouse tracking processes,
the analysis of the recorded data in specific metrics, the production of related visualizations, as well
as for the generation of statistical grayscale heatmaps which could serve as an objective ground truth
product. MatMouse can be executed as a standalone package or integrated in existing MATLAB
scripts and/or toolboxes. In order to highlight the functionalities of the introduced toolbox, a complete
case study example is presented. MatMouse is freely distributed to the scientific community under
the third version of GNU General Public License (GPL v3) on GitHub platform.

Keywords: mouse tracking; mouse movement analysis; mouse movement visualization; MATLAB
toolbox; ground truth generation

1. Introduction

The examination of visual behavior and reaction requires the performance of scientific
experimentation using different types of visual stimuli. Experimental stimuli might include simple
symbols with specific topological or geometric attributes [1], natural (e.g., [2]) or artificial images
(e.g., cartographic backgrounds [3]), and virtual reality representations (see e.g., the study presented
by [4]). Over the last few years, several technical approaches have been established towards the
implementation of visual attention experiments and analyses including simple or more sophisticated
methods. Simple experimental techniques are usually based on reaction time measures [5] while more
sophisticated ones involve the analysis of eye movements (i.e., eye tracking method), methods used for
testing brain activity (i.e., functional magnetic resonance imaging—fMRI), or combinations of several
technical approaches (e.g., the study presented by [6]) where information collected by eye tracking,
pupil dilation, and EEG analysis are fuzzed in order to investigate user behavior and preferences on a
web site.

Among the existing experimental techniques, mouse tracking constitutes one of the simplest
methods implemented for the exploration of visual perception and cognition. The technique involves
processes related to the recording and analyzing of the trajectories produced by computer mouse
movements [7]. Despite the simplicity of the method, it can produce critical results related to
the study of cognitive processes [8,9] and decision making [10], while the development of relative
advanced metrics could substantially enhance novel psychological hypothesis testing [11,12]. Moreover,
mouse movements analysis could also be applied for assessing emotional responses [13], the evaluation
of the effectiveness of alternative design choices (e.g., in a graphical user interface of a software or in a

Multimodal Technol. Interact. 2020, 4, 83; doi:10.3390/mti4040083 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
https://orcid.org/0000-0002-3030-4203
http://dx.doi.org/10.3390/mti4040083
http://www.mdpi.com/journal/mti
https://www.mdpi.com/2414-4088/4/4/83?type=check_update&version=3


Multimodal Technol. Interact. 2020, 4, 83 2 of 17

web page [14]), user satisfaction [15], possible response differences [16], as well as for the prediction of
the produced visual attention patterns [17,18].

Over the last decade, various software tools have been proposed and delivered to the scientific
community for the analysis of mouse movements trajectories produced during the observation of visual
stimuli on a computer monitor. Freeman and Ambady [19] presented MouseTracker software suitable
for the production and the implementation of mouse-tracking experiments as well as for processing
and visualizing mouse movement trajectories. The reliability of MouseTracker was tested through
the direct comparison to traditional reaction time measures. MouseTracker works as a standalone
package and it has an interactive graphical user interface. Although the aforementioned tool is freely
distributed, it does not offer the option to directly integrate it with existing platforms and toolboxes,
such as PTB-Psychtoolbox [20] for example. The integration possibility in existing architectures is
offered by another open source package called Mousetrap provided by Kieslich and Henninger [21].
Mousetrap is a cross-platform package which works as a plug-in to the well-established experiment
builder OpenSesame [22]. This toolbox is additionally distributed as an R package available on
CRAN [23,24]. Recently, Mathur and Reichling [25] also proposed another mouse-tracking JavaScript
software tool (working along R code) which is adapted to Qualtrics platform and could be used in
category-competition experiments.

The main metrics implemented in mouse-tracking tools are based on the analysis of individual
mouse trajectories during the reaction of a participant in an experimental trial. Existing tools compute
basic and derived (e.g., minimum, maximum, or standard deviations) values connected to mouse
trajectories. Specifically, these metrics involve values related to mouse positions (including the
extraction of mouse positions without mouse movements), reaction time, directional changes, velocity,
and acceleration [7]. Moreover, mouse tracking analysis examines the deviation of the produced
trajectories from the theoretical optimal ones which correspond to straight lines. This deviation can be
illustrated by computing metrics such as maximum absolute deviation (MAD), area under curve (AUC),
and maximum deviation (MD) [9,10,26]. The behavior examination of experimental participants (or
users for the case of usability studies) could be also enhanced by the visual exploration of different
visualizations of the produced trajectories on the visual stimuli. Despite the existing software solutions
implementing and supporting specific and advanced metrics to reveal visual behavior, the relative
techniques for data visualization can be improved. Moreover, the development of ‘cumulative’ metrics
that indicate the overall visual behavior could help towards modeling this behavior as well as for
training models towards predicting participant/user reaction.

Furthermore, raw data produced by mouse tracking techniques meet several similarities with
eye tracking data considering both their spatiotemporal distribution and their connection with the
perceptual and cognitive processes. Scientific literature shows that there is a strong correlation between
mouse and eye movements (e.g., [27–29]) while there are also research studies trying to predict the
gaze behavior using mouse movements (e.g., [30]). Hence, the development of scientific software for
mouse tracking and analysis could also follow approaches implemented in eye movement analysis
producing critical outcomes for both studying and modeling visual reaction in different types of visual
stimuli. For example, the generation of grayscale statistical heatmaps based on the collected data
could directly reveal participants’ behavior. In accordance to the terminology applied to eye tracking
research (e.g., the recent study presented by Perrin et al. [31]), such products could serve as objective
ground truths of the human behavior revealed by mouse reaction.

In the present study, a new toolbox, called MatMouse (see Supplementary Materials), is introduced.
The toolbox is appropriate for building and analysis of experimental studies based on mouse movements
tracking. MatMouse constitutes a MATLAB (Mathworks®) toolbox that is designed to support
task-based experiments of visual search. The proposed toolbox consists of three main components
which give the opportunity to build simple task-based experimental studies and capture mouse
coordinates on selected visual stimuli, to analyze the captured mouse movements, and to produce
mouse movement visualizations. MatMouse provides functions that can be easily incorporated in



Multimodal Technol. Interact. 2020, 4, 83 3 of 17

existing scripts or can be used in conjunction with other toolboxes. MatMouse will be freely distributed
to the scientific community.

In the sections below, analytical descriptions for both experimental building and data analysis are
provided. Specifically, Material and Methods section provides specific examples and demos (through
an example case study in the field of map perception) in order to highlight all the functionalities of the
introduced toolbox including metrics analysis, data visualizations, as well as the generation of objective
data ground truth (grayscale statistical heatmap). Sample data visualizations and ground truth demo
based on the collected data are also demonstrated in the Results section. Finally, the contribution of
the proposed toolbox in experimental development are summarized and discussed in Discussion and
Conclusions section.

2. Materials and Methods

The principle idea behind the development of MatMouse toolbox is to deliver a practical tool
that can be directly utilized to build visual search experiments as well as to analyze the produced
experimental mouse movement data. The toolbox is implemented in MATLAB and the functions
provided aim to support three main components. The first component is used to build an experimental
study and capture the mouse movements performed by the experimental participants. The second
component computes basic and advanced metrics based on the spatiotemporal analysis of the produced
trajectories, while the third component involves functionalities that produce individual visualizations of
the collected raw data referred to each experimental visual stimulus. The aforementioned components
are supported by five core functions. There is not direct connection to each function to a specific
component since some of the functions contribute to different components (see Sections 2.1–2.3
for further details). As mentioned above, MatMouse supports the execution of typical task-based
experimentations which require the visual reaction of the participant in a visual stimulus or in a
sequence of visual stimuli. Hence, the information provided extends the results produced by simply
capturing the reaction time. In the following sections the functionalities of the provided components
are presented while illustrative examples and a case study are also provided in order to facilitate
potential toolbox users to easily integrate MatMouse in their research studies.

2.1. Mouse Movements Tracking

A typical visual search task includes the indication (to the participants of the experiment) of a
specific “target” object or symbol which has to be detected among several “distractors” [32]. Hence,
a visual stimulus or a sequence of visual stimuli serves as the main input to an experiments building
(software) environment. The fundamental export (raw data) of a mouse tracking process during
a visual search includes the generated spatiotemporal information, namely, the spatial coordinates
of the recorded mouse movements along with the corresponding time stamps. The collection of
the corresponding mouse movement raw data is based on the execution of two main functions of
MatMouse. More precisely, MatMouse function “movement_track” is executed in order to collect raw
mouse movement data using one simple visual stimulus while the function “movement_track_seq”
used for the cases that a specific sequence of visual stimuli must be presented to the participants of the
experiment. Practically, the second mentioned function could be used for building any experimental
trial since the toolbox user is able to define the sequence of selected visual stimuli. The transition to the
next image (of the pre-selected sequence) is made after the simple reaction of the participant revealed
by a simple mouse click. All the well-known image file formats (e.g., png, jpeg, etc.) are supported
and could be imported in order to create a sequence of images.

MatMouse is designed to work with two monitor screens connected to the same computer which
is used in order to concurrently track the mouse movement coordinates and to display the visual
stimuli during the experimental process. The two monitor screens have to be set in the extended mode.
By default, the toolbox uses the secondary (extended) monitor for visual stimuli presentation while the
primary monitor is utilized by the experimental operator in order to run the corresponding MATLAB



Multimodal Technol. Interact. 2020, 4, 83 4 of 17

scripts. In case where only one monitor is available then both tasks, namely presentation and operation,
are performed in the same display. The process of raw data collection is independent from the spatial
resolution of the display monitor screen. Both functions capture the spatiotemporal coordinates of
mouse movements (t, x, y) collected during the observation of visual stimuli. The parameter of time
corresponds to the relative values measured using typical MATLAB functions. A pause time equal to 1
ms has been selected as default value in order to give MATLAB the opportunity to display images and
capture coordinates (a similar approach is followed in Eyelink toolbox [33] integrated in Psychtoolbox).
The exported mouse movement spatiotemporal coordinates are computed in image coordinates for
both horizontal and vertical dimension and in seconds for the temporal direction. The origin of the
coordinate system corresponds to the upper left corner of the image.

2.2. Movement Metrics Analysis

Taking into consideration that the analysis of individual mouse movement trajectories should be
adapted to the selected research questions, the metrics computed by the toolbox are mainly oriented
to the calculation of representative indices which aim to highlight the overall searching behavior,
extending the typical measurements of reaction time. Metrics computation is performed by the
functions “calc_metrics”.

Function “calc_metrics” uses the captured mouse movement coordinates as input and extracts
basic metrics related to the produced trajectory on each visual stimulus. The toolbox user has also the
option to select as input a subset of the recorded data using typical MATLAB operations. The exported
metrics involve the total reaction time (in seconds), the total trajectory length (in pixels) calculated
using the Euclidean distance, as well as some basic statistics (average, standard deviation, minimum,
maximum, and range of values) regarding the direction angle of the line segments that compose the
individual trajectory. Moreover, extending the idea of typical AUC and MD measures used in other
mouse tracking and analysis toolboxes, MatMouse calculates the aforementioned statistics also on the
Euclidean distances from each captured mouse point to the corresponding optimal trajectory, that is,
the straight line connecting the first and the last captured mouse point (an example in presented in
Figure 1).

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 4 of 17 

 

parameter of time corresponds to the relative values measured using typical MATLAB functions. A 
pause time equal to 1 ms has been selected as default value in order to give MATLAB the opportunity 
to display images and capture coordinates (a similar approach is followed in Eyelink toolbox [33] 
integrated in Psychtoolbox). The exported mouse movement spatiotemporal coordinates are 
computed in image coordinates for both horizontal and vertical dimension and in seconds for the 
temporal direction. The origin of the coordinate system corresponds to the upper left corner of the 
image. 

2.2. Movement Metrics Analysis 

Taking into consideration that the analysis of individual mouse movement trajectories should 
be adapted to the selected research questions, the metrics computed by the toolbox are mainly 
oriented to the calculation of representative indices which aim to highlight the overall searching 
behavior, extending the typical measurements of reaction time. Metrics computation is performed by 
the functions “calc_metrics”. 

Function “calc_metrics” uses the captured mouse movement coordinates as input and extracts 
basic metrics related to the produced trajectory on each visual stimulus. The toolbox user has also the 
option to select as input a subset of the recorded data using typical MATLAB operations. The 
exported metrics involve the total reaction time (in seconds), the total trajectory length (in pixels) 
calculated using the Euclidean distance, as well as some basic statistics (average, standard deviation, 
minimum, maximum, and range of values) regarding the direction angle of the line segments that 
compose the individual trajectory. Moreover, extending the idea of typical AUC and MD measures 
used in other mouse tracking and analysis toolboxes, MatMouse calculates the aforementioned 
statistics also on the Euclidean distances from each captured mouse point to the corresponding 
optimal trajectory, that is, the straight line connecting the first and the last captured mouse point (an 
example in presented in Figure 1). 

 
Figure 1. Optimal (red line) vs. real mouse (blue line) trajectory. Mouse records are presented as blue 
circles on the generated trajectory. 

These statistics highlight the overall deviation of the visual search behavior. The parameters of 
the optimal trajectory are computed considering the first and the last point of the trajectory and the 
typical form of the line equation (ax + by + c = 0). Furthermore, in order to indicate the overall spatial 
dispersion of the recorded mouse movement points, the corresponding convex hull area is also 
computed (in pixels). The convex hull area highlights the percentage of the searched area in 

Figure 1. Optimal (red line) vs. real mouse (blue line) trajectory. Mouse records are presented as blue
circles on the generated trajectory.



Multimodal Technol. Interact. 2020, 4, 83 5 of 17

These statistics highlight the overall deviation of the visual search behavior. The parameters
of the optimal trajectory are computed considering the first and the last point of the trajectory and
the typical form of the line equation (ax + by + c = 0). Furthermore, in order to indicate the overall
spatial dispersion of the recorded mouse movement points, the corresponding convex hull area is also
computed (in pixels). The convex hull area highlights the percentage of the searched area in comparison
with the area that corresponds to the monitor used for visual stimuli presentation. It should be noted
that, in order to have meaningful statistics, the trajectory should consist of at least three points.

Following the approach implemented in eye movement analysis where an eye tracking protocol is
analyzed in fixation events before the implementation of any other next level of analysis, the function
“calc_metrics” extracts also the unique mouse movement positions which are generated during visual
search process. The positions where there are temporarily no mouse movements are analog to the
fixation points calculated to eye tracking analysis. The main difference between a fixation point and a
mouse position without movements is that in the first case the fixation center corresponds to a cluster
which consists of several points within a specific spatial range, rather than the single mouse point of the
latter case. Indeed, during a fixation event eyes remain relative stationary [34] while a typical range for
the fixation points is approximately equal to 1◦ of visual angle (see e.g., the study presented by Ooms
& Krassanakis [35] for further details on spatial thresholds used in fixation identification algorithms).
Additionally, in comparison to mouse movements, fixation events have a minimum duration (the value
of 80 msec is reported as the minimum duration threshold according to the literature [36]). For the case
of mouse movements, the spatial threshold corresponds to 0◦ of visual angle, while there is not any
limit in minimum value for the duration of a stationary mouse cursor position.

The recorded raw data might be very dense, especially considering the high recording frequency
as well as experimental cases where the possible duration of visual search process could be quite
extensive. Therefore, the analysis of the collected mouse movement data in order to extract unique
mouse movement positions could improve the exploration and any further manipulation of the
experimental raw data.

2.3. Visualizations and Heatmap Ground Truth Generation

Although the computation of specific metrics helps directly to the analysis of experimental results
as well as to the comparison of different trials among the participants and the examined visual stimuli,
data visualization could substantially contribute to the visual exploration of the experimental raw data
and the illustration of the produced mouse movements patterns. MatMouse provides a variety of data
visualizations. As already mentioned, the toolbox user can apply the corresponding functions for data
visualization either on the whole collected data set or on a particular subset of the collected data that
is extracted using typical MATLAB operations. Function “show_visualizations” exports 2D plots of
mouse movement trajectories that demonstrate the spatial dispersion of the individual visual search
and illustrate the deviations of both horizontal and vertical mouse coordinates in time. Moreover,
the curvature of the path is calculated at each trajectory point and is depicted on a 2D plot as a line with
varying colors that depend on the curvature’s level. For this purpose, the Savitzky & Golay method is
used for data smoothing that is based on local least-squares polynomial approximation [37].

Another 2D plot demonstrates the duration at each mouse point as a circle whose radius depends on
the corresponding duration. A label is also generated that denotes the point with the longest duration.

Apart from the aforementioned visualizations, MatMouse supports also the generation of heatmap
visualizations. Heatmaps are created using function “show_heatmap” and are represented either as a
typical 2D plot or as a 2.5D isolines surface which is based on the spatial distribution of the collected
mouse movement points. The same function is also used for the generation of grayscale (statistical)
heatmaps that could serve as subjective ground truths since they indicate the overall visual behavior
of the participants who take part in a research study. Grayscale heatmaps are created based on the
approach followed by Krassanakis et al. [38]. More specifically, the grayscale heatmap constitutes of
an image where each pixel’s value represents the corresponding frequencies of the existing mouse



Multimodal Technol. Interact. 2020, 4, 83 6 of 17

points. The values of the frequencies are normalized in the range 0–255 (8 bit image). The production
of grayscale heatmaps is based on the values of the selected parameters which include the standard
deviation and the kernel size of the performed Gaussian filtering.

2.4. MatMouse Functions

The functionality of all MatMouse functions is summarized in Table 1. The toolbox is implemented
and tested in MATLAB R2020b running on a PC with Windows 10. For each function, a short description
and its syntax is given accompanied with a detailed description of its input and output parameters.
Comments are also provided, followed by an example showing how to use the function.

Table 1. MatMouse functions and example parameters

Function name
movement_track
Description
Captures mouse movement data and provides the recorded mouse movements along with the corresponding
time stamps.
Syntax
A = movement_track(InpImage,ScreenNum,TxtFilename)
Input parameters
InpImage: The visual stimulus image filename (e.g., “map.jpg”). All the main image file formats are supported.
ScreenNum: The monitor where the stimulus image will be shown. A value of 1 uses the current monitor
while a value of 2 (or higher) uses the corresponding extended monitor. If omitted, the default value is 1.
TxtFilename: Optional parameter that defines a .TXT filename to save the tracked mouse movements. The text
file has the following format
[Filename]
[Number of points]
[time_stamp(1) x(1) y(1)]
[time_stamp(2) x(2) y(2)]
. . .
[time_stamp(n) x(n) y(n)]
Output parameters
A: An array that contains the tracked mouse movements. Array A is a structure with 3 fields:
A.t: time stamps (in seconds)
A.x: points x coordinates (in image pixels)
A.y: points y coordinates (in image pixels)
Comments
The origin of the coordinate system is on the top left corner of the input image.
Example
A = movement_track(‘map.jpg’,1,’data.txt’)
In this example, the image “map.jpg” is shown in the current monitor in order to calculate array A that
contains the tracked mouse movements of the trajectory.

Function name
movement_track_seq
Description
Captures mouse movement data in a set of stimuli images. For each image it provides the recorded mouse
movements along with the corresponding time stamps.
Syntax
A = movement_track_seq(ImagesList,ScreenNum,TxtFilename)
Input parameters
ImagesList: A text file containing the filenames of the stimuli images. For instance,
map1.jpg
map2.jpg
map3.jpg
All the main image file formats are supported.
ScreenNum: The monitor where the stimulus image will be shown. A value of 1 uses the current monitor
while a value of 2 (or higher) uses the corresponding extended monitor. If omitted, the default value is 1.



Multimodal Technol. Interact. 2020, 4, 83 7 of 17

Table 1. Cont.

Input parameters
TxtFilename: Optional parameter that defines a .TXT filename to save the tracked mouse movements. The text
file contains the tracked information sequentially for all the stimuli images. The format is
[Filename 1]
[Number of points]

[time_stamp(1) x(1) y(1)]
[time_stamp(2) x(2) y(2)]
. . .
[time_stamp(n) x(n) y(n)]
[Filename 2]
[Number of points]
[time_stamp(1) x(1) y(1)]
[time_stamp(2) x(2) y(2)]
. . .
[time_stamp(n) x(n) y(n)]
and so on.
Output parameters
A: An array that contains the tracked mouse movements for all the stimuli images. Array A(i) is a structure
with 3 fields containing the tracked movements for the i-th stimulus image, with 1 ≤ I ≤N where N denotes the
number of images in the ImagesList text file.
A(i).t: time stamp (in seconds) for the i-th image
A(i).x: point’s x coordinate (in image pixels) for the i-th image
A(i).y: point’s y coordinate (in image pixels) for the i-th image
Comments
The origin of the coordinate system is on the top left corner of the input images.
Example
A = movement_track_seq(‘images_list.txt’,1)
In this example, the images whose filenames are given in text file “images_list.txt” are used in the current
monitor. As a result, an array A is created that contains the tracked mouse movements for all the stimuli
images.

Function name
calc_metrics
Description
Provides statistics regarding the recorder trajectory as well as its comparison to the optimal trajectory.
Syntax
[react,len,uniq,lineq,dstat,charea,curv] = calc_metrics(A);
Input parameters
An array A containing the tracked mouse movements of a trajectory. It can be provided by functions
movement_track or movement_track_seq.
Output parameters
react: total reaction time in sec
len: total trajectory length in pixels
uniq: structure of unique points. The structure fields are:
uniq.d: duration (in seconds)
uniq.x: point’s x coordinate (in image pixels)
uniq.y: point’s y coordinate (in image pixels)
lineq: structure with the coefficients (a, b and c) of the line equation ax + by + c = 0 describing the optimal
trajectory. The line is calculated from the starting and ending trajectory points. The structure fields are:
lineq.a: line parameter a
lineq.b: line parameter b
lineq.c: line parameter c
dstat: structure of distance-based statistics relevant to the optimal trajectory. The structure fields are:
dstat.avg: average
dstat.std: standard deviation
dstat.min: min value
dstat.max: max value
dstat.range: range of values
charea: convex hull area (in pixels) generated by the recorder trajectory.
curv: curvature at each unique trajectory point.



Multimodal Technol. Interact. 2020, 4, 83 8 of 17

Table 1. Cont.

Example
[react,~,uniq,lineq,dstat,~,curv] = calc_metrics(A)
In this example, various statistics are calculated based on the tracked mouse movements array A. Specifically,
the calculated values are: the total reaction time react, the unique trajectory points uniq, the parameters lineq
of the linear that describes the optimal trajectory, the distance-based statistics dstat as well as the curvature
curv at each unique trajectory point. The output parameters len and charea are ignored.

Function name
show_visualizations
Description
Exports 2D plots of the mouse movement trajectory, the deviations of both horizontal and vertical mouse
coordinates over time, the curvature values across the trajectory and the duration of each coordinate point.
Syntax
function
show_visualizations(A,InpImage,StimulusFigName,XYCoordsFigName,CurvatureFigName,DurationFigName,
SaveToImage,SaveToFigure)
Input parameters
A: An array containing the tracked mouse movements of a trajectory. It can be given by functions
movement_track or movement_track_seq.
InpImage: The visual stimulus image filename (e.g., “map.jpg”). All the main image file formats are supported.
StimulusFigName: Filename used to save the mouse movement trajectories as .fig and .png files.
XYCoordsFigName: Filename used to save the horizontal and vertical mouse coordinates over time as .fig and
.png files.
CurvatureFigName: Filename used to save the horizontal and vertical mouse coordinates over time as .fig and
.png files.
DurationFigName: Filename used to save the spatiotemporal distribution of the collected data as .fig and .png
files.
SaveToImage: Flag indicating whether the figure(s) will be saved as .png image file(s) or not.
SaveToImage: Flag indicating whether the figure(s) will be saved as .fig MATLAB file(s) or not.
Output parameters
None.
Comments
The figures are created if a valid filename is provided. In order to omit a particular figure use symbols []
instead of a filename.
Example
show_visualizations(A,‘map.jpg’,‘StimFig’,[],‘CurvFig’,‘DurFig’,1,0);
In this example, the tracked mouse movements variable A is used, that corresponds to image “map.jpg”.
Three figures are created as follows:

- A stimulus figure named “StimFig” that depicts on the stimulis image the mouse trace (as a blue line) as
well as the unique captured mouse points (as red circles)

- A curvature figure named “CurvFig” that demonstrates the curvature at all the captured mouse points.
By convention, low curvature values are depicted in green color while higher values are shown in
red color.

- A duration figure named “DurFig” that visualizes the duration time at each mouse point. Durations are
depicted as circles where larger circle radii correspond to higher durations and vice versa.

The coordinates figure is omitted in this example, due to the empty filename parameter []. Finally, the figures
are saved as .png files but not as .fig MATLAB files.

Function name
show_heatmap
Description
Create heatmap images of the mouse movement trajectory.
Syntax
function Heatmap = show_heatmap(A,InpImage,GaussStdDev,GaussScale,HeatmapFilename,
HeatmapFigName,HeatIsolinesFigName,SaveToImage,SaveToFigure)



Multimodal Technol. Interact. 2020, 4, 83 9 of 17

Table 1. Cont.

Input parameters
A: An array containing the tracked mouse movements of a trajectory. It can be given by functions
movement_track or movement_track_seq.
InpImage: The visual stimulus image filename (e.g., “map.jpg”). All the main image file formats are supported.
GaussStdDev: Standard deviation of Gaussian filter.
GaussScale: Integer multiplication factor applied to GaussStdDev parameter that defines the kernel size.
HeatmapFilename: Filename used to save the source heatmap values as an image.
HeatmapFigName: Filename used to save the heatmap superimposed on the original image as .fig and
.png files.
HeatIsolinesFigName: Filename used to save the 2.5D isolines surface of the mouse points’ spatial distribution
as .fig and .png files.
SaveToImage: Flag indicating whether the figure(s) will be saved as .png image file(s) or not.
SaveToImage: Flag indicating whether the figure(s) will be saved as .fig MATLAB file(s) or not.
Output parameters
Heatmap: A 2D array containing the heatmap values.
Comments
The figures are created if a valid filename is provided. In order to omit a particular figure use symbols []
instead of a filename.
Example
HeatMap = show_heatmap(A,‘map.jpg’,32,6,‘heatmap.png’,”Heatmap2D’,‘HeatIsolines’,1,1);
In this example, the tracked mouse movements variable A is used, that corresponds to image map.jpg.
The standard deviation of the Gaussian filter is set to 32 while a multiplication factor of 6 is used for the
calculation of the kernel size. The function returns an array HeatMap that contains the calculated heatmap
values. The heatmap is also saved as heatmap.png image file. A figure named Heatmap2D is created that
depicts the heatmap superimposed on the original image. Additionally, another figure is created, titled
HeatIsolines, that shows the spatial distribution of raw data using isolines. Finally, the figures are saved as
.png files and as .fig MATLAB files.

2.5. Case Study Example

In this section, a demo case study is presented that demonstrates the use of the functions provided
by the MatMouse toolbox. For this purpose, a simple visual search experiment in the field of map
perception is designed. Three demo participants are asked to search for a specific pictorial symbol (red
point symbol with a white cross) and click once they find it on three different cartographic backgrounds.
Similar experiments can be found in the literature, based either in reaction time measurements (e.g., [39])
or eye movement analysis (e.g., [40]). The experimental visual stimuli (image files: DemoExpMap1.png,
DemoExpMap2.png and DemoExpMap3.png) are adopted from the online Open Street Map (Figure 2).

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 9 of 17 

 

GaussScale: Integer multiplication factor applied to GaussStdDev parameter that defines the kernel size. 
HeatmapFilename: Filename used to save the source heatmap values as an image. 
HeatmapFigName: Filename used to save the heatmap superimposed on the original image as .fig and .png 
files. 
HeatIsolinesFigName: Filename used to save the 2.5D isolines surface of the mouse points’ spatial distribution 
as .fig and .png files. 
SaveToImage: Flag indicating whether the figure(s) will be saved as .png image file(s) or not. 
SaveToImage: Flag indicating whether the figure(s) will be saved as .fig MATLAB file(s) or not. 
Output parameters 
Heatmap: A 2D array containing the heatmap values. 
Comments 
The figures are created if a valid filename is provided. In order to omit a particular figure use symbols [] 
instead of a filename. 
Example 
HeatMap = show_heatmap(A,‘map.jpg’,32,6,‘heatmap.png’,”Heatmap2D’,‘HeatIsolines’,1,1); 
In this example, the tracked mouse movements variable A is used, that corresponds to image map.jpg. The 
standard deviation of the Gaussian filter is set to 32 while a multiplication factor of 6 is used for the calculation 
of the kernel size. The function returns an array HeatMap that contains the calculated heatmap values. The 
heatmap is also saved as heatmap.png image file. A figure named Heatmap2D is created that depicts the 
heatmap superimposed on the original image. Additionally, another figure is created, titled HeatIsolines, that 
shows the spatial distribution of raw data using isolines. Finally, the figures are saved as .png files and as .fig 
MATLAB files. 

2.5. Case Study Example 

In this section, a demo case study is presented that demonstrates the use of the functions 
provided by the MatMouse toolbox. For this purpose, a simple visual search experiment in the field 
of map perception is designed. Three demo participants are asked to search for a specific pictorial 
symbol (red point symbol with a white cross) and click once they find it on three different 
cartographic backgrounds. Similar experiments can be found in the literature, based either in reaction 
time measurements (e.g., [39]) or eye movement analysis (e.g., [40]). The experimental visual stimuli 
(image files: DemoExpMap1.png, DemoExpMap2.png and DemoExpMap3.png) are adopted from 
the online Open Street Map (Figure 2). 

 
Figure 2. Visual stimuli used for the demo experiment. 

In the following paragraphs, a step-by-step guide is presented to describe how an experiment is 
built and how the collected data are analyzed. 

2.5.1. Tracking Data Collection 

Initially, the toolbox functions and the images files are placed in the same directory. If only one 
image is used (e.g., image file “DemoExpMap1.png”), the function “movement_track” is utilized as 
follows: 

Data_DemoExpMap1=movement_track(ImageFilename,1,‘Data_DemoExpMap1.txt’); 

If more than one images are involved then a simple text file is created that contains the sequence 
of the experimental stimuli images. In this example, the text file is titled “DemoExpMapSeq.txt” and 
contains the following three lines: 

Figure 2. Visual stimuli used for the demo experiment.

In the following paragraphs, a step-by-step guide is presented to describe how an experiment is
built and how the collected data are analyzed.

2.5.1. Tracking Data Collection

Initially, the toolbox functions and the images files are placed in the same directory. If only one
image is used (e.g., image file “DemoExpMap1.png”), the function “movement_track” is utilized
as follows:



Multimodal Technol. Interact. 2020, 4, 83 10 of 17

Data_DemoExpMap1=movement_track(ImageFilename,1,‘Data_DemoExpMap1.txt’);

If more than one images are involved then a simple text file is created that contains the sequence
of the experimental stimuli images. In this example, the text file is titled “DemoExpMapSeq.txt” and
contains the following three lines:

DemoExpMap1.png
DemoExpMap2.png
DemoExpMap3.png

There is no limit in the number of images that can be used. Moreover, an image can be imported
multiple times if it is a requirement of a research study. This might be very helpful in cases where a
symbol or a specific instruction is given to the participant (e.g., for searching the same target in different
visual scenes). In order to collect data for a specific participant, the following command is used:

Data_p1=movement_track_seq(‘DemoExpMapSeq.txt’,1, ‘Data_p1.txt’);

Hence, in case where multiple runs of the same experiment must be integrated in the same script,
the previous command can be executed repeatedly with different input and output variables.

The example command above is related only to the experimental data collection process and not
to the analysis of the collected data. The exported text file “Data_p1.txt” contains the time stamps and
coordinates of all the collected points using a structure described in the movement_track_seq section
of Table 1.

2.5.2. Analysis and Visualization

The next step involves the analysis and the visualization of the collected data. Once the subsets of
the raw data have been collected, there are commands that allow the toolbox’s user to:

• calculate the supported mouse movement metrics, e.g.,:
[react,len,uniq,lineq,dstat,charea,curv]=calc_metrics(Data_DemoExpMap1);

• produce mouse data visualizations, e.g.,:
show_visualizations(Data_DemoExpMap1,‘DemoExpMap1.png’,‘StimulusFig’,‘CoordinatesFig’,
‘CurvatureFig’,‘DurationFig’,1,1);

• produce the grayscale heatmap ground truth and related heatmap visualizations, e.g.,:
HeatMap=show_heatmap(Data_DemoExpMap1,‘DemoExpMap1.png’,32,6,‘heatmap.png’,
‘Heatmap2D’,‘HeatIsolines’,1,1);

Typical MATLAB operations can be applied when heatmap-based visualizations and ground
truth need to be produced considering data collected by different participants. For instance, suppose
that the collected data produced by three participants are stored in the variables Data_p1, Data_p2,
Data_p3 correspondingly and we want to analyze the data of the second used stimulus image. In this
case, the first input variable in “show_visualizations” is generated using the following commands:

Data.t = [Data_p1(2).t; Data_p2(2).t; Data_p3(2).t];
Data.x = [Data_p1(2).x; Data_p2(2).x; Data_p3(2).x];
Data.y = [Data_p1(2).y; Data_p2(2).y; Data_p3(2).y];

Thus, function “show_visualizations” is executed as follows:
HeatMap=show_heatmap(Data,‘DemoExpMap2.png’,32,6,‘heatmap_Map2.png’,

‘Heatmap2D_Map2’,‘HeatIsolines_Map2’,1,1);



Multimodal Technol. Interact. 2020, 4, 83 11 of 17

3. Results

In the previous sections, the functions provided by the MatMouse Toolbox were presented in
accordance with a case study example. Full examples are also available in MatMouse repository.
In order to demonstrate the potential of MatMouse, Figures 3–10 provide sample visualizations which
are based on the collected data of the case study and the visualization commands reported in Section 2.5.

Figure 3 demonstrates the tracked mouse trajectory generated by participants’ reaction on the
experimental stimulus. The mouse trace is presented as a continuous blue line while captured mouse
points are highlighted with red circles. Taking into account that tracking frequency can be considered
constant, denser spatial distributions indicate regions with smaller mouse transitions.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 11 of 17 

 

points are highlighted with red circles. Taking into account that tracking frequency can be considered 
constant, denser spatial distributions indicate regions with smaller mouse transitions. 

 
Figure 3. Visualization of the generated mouse trajectory during visual search on experimental 
stimulus: Mouse trace is presented as a continuous blue line while captured mouse points are 
highlighted with red circles. 

The spatiotemporal horizontal and vertical coordinates of the produced trajectories can be 
visualized in the stimulus image coordinate system, as shown in Figure 4. Considering that horizontal 
and vertical dimensions are indicated by different curves along passing time, their spatial variations 
could point out the mouse transitions on the experimental visual stimulus. Hence, bigger curvature 
changes in the horizontal axis indicate larger horizontal or vertical mouse transitions. 

 
Figure 4. Mouse coordinates (in pixels) vs. elapsed time (in seconds). 

Figure 5 demonstrated the curvature values on the generated mouse trajectory using a typical 
color bar. Lower curvature values are highlighted with green color while higher values are shown in 
red color. 

Figure 3. Visualization of the generated mouse trajectory during visual search on experimental stimulus:
Mouse trace is presented as a continuous blue line while captured mouse points are highlighted with
red circles.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 11 of 17 

 

points are highlighted with red circles. Taking into account that tracking frequency can be considered 
constant, denser spatial distributions indicate regions with smaller mouse transitions. 

 
Figure 3. Visualization of the generated mouse trajectory during visual search on experimental 
stimulus: Mouse trace is presented as a continuous blue line while captured mouse points are 
highlighted with red circles. 

The spatiotemporal horizontal and vertical coordinates of the produced trajectories can be 
visualized in the stimulus image coordinate system, as shown in Figure 4. Considering that horizontal 
and vertical dimensions are indicated by different curves along passing time, their spatial variations 
could point out the mouse transitions on the experimental visual stimulus. Hence, bigger curvature 
changes in the horizontal axis indicate larger horizontal or vertical mouse transitions. 

 
Figure 4. Mouse coordinates (in pixels) vs. elapsed time (in seconds). 

Figure 5 demonstrated the curvature values on the generated mouse trajectory using a typical 
color bar. Lower curvature values are highlighted with green color while higher values are shown in 
red color. 

Figure 4. Mouse coordinates (in pixels) vs. elapsed time (in seconds).



Multimodal Technol. Interact. 2020, 4, 83 12 of 17

The spatiotemporal horizontal and vertical coordinates of the produced trajectories can be
visualized in the stimulus image coordinate system, as shown in Figure 4. Considering that horizontal
and vertical dimensions are indicated by different curves along passing time, their spatial variations
could point out the mouse transitions on the experimental visual stimulus. Hence, bigger curvature
changes in the horizontal axis indicate larger horizontal or vertical mouse transitions.

Figure 5 demonstrated the curvature values on the generated mouse trajectory using a typical
color bar. Lower curvature values are highlighted with green color while higher values are shown in
red color.

In Figure 6, the duration time at each unique mouse point is depicted using a scanpath-like (in
comparison with eye movements) visualization. Durations are depicted as circles where larger circle
radii correspond to higher durations and vice versa. In addition, the point with the highest duration
value is explicitly labeled.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 12 of 17 

 

 
Figure 5. Curvature values on the mouse trajectory. Green values generated during visual search on 
experimental stimulus. 

In Figure 6, the duration time at each unique mouse point is depicted using a scanpath-like (in 
comparison with eye movements) visualization. Durations are depicted as circles where larger circle 
radii correspond to higher durations and vice versa. In addition, the point with the highest duration 
value is explicitly labeled. 

 
Figure 6. Duration diagram. Durations are depicted as circles where larger circle radii correspond to 
higher durations and vice versa. 

Figure 7 shows the cumulative participants’ behavior is figured using the heatmap visualization 
technique. In a heatmap diagram, white areas represent regions with mouse point records clusters; 
higher frequencies indicate denser spatial point distributions. The presented values are normalized 
in the range 0 to 255 (28 different intensities). 

Figure 5. Curvature values on the mouse trajectory. Green values generated during visual search on
experimental stimulus.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 12 of 17 

 

 
Figure 5. Curvature values on the mouse trajectory. Green values generated during visual search on 
experimental stimulus. 

In Figure 6, the duration time at each unique mouse point is depicted using a scanpath-like (in 
comparison with eye movements) visualization. Durations are depicted as circles where larger circle 
radii correspond to higher durations and vice versa. In addition, the point with the highest duration 
value is explicitly labeled. 

 
Figure 6. Duration diagram. Durations are depicted as circles where larger circle radii correspond to 
higher durations and vice versa. 

Figure 7 shows the cumulative participants’ behavior is figured using the heatmap visualization 
technique. In a heatmap diagram, white areas represent regions with mouse point records clusters; 
higher frequencies indicate denser spatial point distributions. The presented values are normalized 
in the range 0 to 255 (28 different intensities). 

Figure 6. Duration diagram. Durations are depicted as circles where larger circle radii correspond to
higher durations and vice versa.



Multimodal Technol. Interact. 2020, 4, 83 13 of 17
Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 13 of 17 

 

 
Figure 7. Heatmap visualization. 

Alternatively, the cumulative behavior can also be highlighted using a 2.5D isolines 
visualization, as shown in Figure 8. In both Figures 7 and 8, the generated clusters are clearly 
illustrated indicating the allocation of overall participants’ behavior during the execution of the 
requested task. 

 
Figure 8. 2.5D isolines visualization. 

It is important to mention that the titles of the produced visualizations (Figures 3–8) are 
automatically produced by MatMouse toolbox considering the inputs defined by the user in the 
corresponding function. Additionally, the exported figures can be manipulated using the interactive 
tools available in MATLAB software either for data exploration or for further editing. 

Besides the aforementioned visualizations illustrated in Figures 3–8, MatMouse exports 
grayscale statistical heatmaps, as shown in Figure 9. Such visualizations can serve as an objective 
ground truth of the performed experiment. More specifically, the grayscale statistical heatmap 
depicted in Figure 9 is produced by implementing the corresponding function of MatMouse for the 

Figure 7. Heatmap visualization.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 13 of 17 

 

 
Figure 7. Heatmap visualization. 

Alternatively, the cumulative behavior can also be highlighted using a 2.5D isolines 
visualization, as shown in Figure 8. In both Figures 7 and 8, the generated clusters are clearly 
illustrated indicating the allocation of overall participants’ behavior during the execution of the 
requested task. 

 
Figure 8. 2.5D isolines visualization. 

It is important to mention that the titles of the produced visualizations (Figures 3–8) are 
automatically produced by MatMouse toolbox considering the inputs defined by the user in the 
corresponding function. Additionally, the exported figures can be manipulated using the interactive 
tools available in MATLAB software either for data exploration or for further editing. 

Besides the aforementioned visualizations illustrated in Figures 3–8, MatMouse exports 
grayscale statistical heatmaps, as shown in Figure 9. Such visualizations can serve as an objective 
ground truth of the performed experiment. More specifically, the grayscale statistical heatmap 
depicted in Figure 9 is produced by implementing the corresponding function of MatMouse for the 

Figure 8. 2.5D isolines visualization.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 14 of 17 

 

second visual stimuli and is based on the raw data collected from the three experimental trials. Hence, 
it represents the visual cumulative mouse reaction behavior of all participants. 

 
Figure 9. Grayscale statistical heatmap output (center) referred to all mouse movement data produced 
during the visual search process in the second visual stimulus (left). On the right the produced ground 
truth is superimposed on top of the viewed stimulus. 

In Figure 10, the generated mouse trajectories for the three participants of the demo case study 
are illustrated on top of the calculated grayscale statistical heatmap. The ground truth produced after 
considering the collected data from all participants reveals (through a statistical image) possible 
stimulus positions that correspond to mouse movements. It is evident that regions corresponding to 
higher frequencies match to denser mouse points clusters. 

 
Figure 10. Generated mouse trajectories for the three participants case study superimposed on top of 
the calculated grayscale statistical heatmap. 

4. Discussion and Conclusions 

In this study, a new toolbox, titled MatMouse, is introduced that provides mouse tracking and 
analysis functionality. Several aspects of the proposed toolbox are highlighted that are related to 
visual search experiments. Moreover, a complete case study is presented that elaborates further the 
toolbox features and functionality in order to apply it on both experimental building and data 
capturing as well as for mouse movement data analysis and visualization. Since MatMouse is 
developed in MATLAB environment, it constitutes a cross-platform package which can be executed 
in every operating system (MS Windows, Mac OS, and Linux) where MATLAB software is pre-
installed. In practice, the toolbox can be used either as a standalone package or by integrating it in 
existing scripts or toolboxes, e.g., for experimental building (e.g., Psychtoolbox), eye movement (e.g., 
ILAB [41], GazeAlyze [42], EyeMMV [38], EALab [43], LandRate [44] etc.), and/or EEG (e.g., EEGLAB 
[45], DETECT [46], etc.) analysis. 

Figure 9. Grayscale statistical heatmap output (center) referred to all mouse movement data produced
during the visual search process in the second visual stimulus (left). On the right the produced ground
truth is superimposed on top of the viewed stimulus.



Multimodal Technol. Interact. 2020, 4, 83 14 of 17

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 14 of 17 

 

second visual stimuli and is based on the raw data collected from the three experimental trials. Hence, 
it represents the visual cumulative mouse reaction behavior of all participants. 

 
Figure 9. Grayscale statistical heatmap output (center) referred to all mouse movement data produced 
during the visual search process in the second visual stimulus (left). On the right the produced ground 
truth is superimposed on top of the viewed stimulus. 

In Figure 10, the generated mouse trajectories for the three participants of the demo case study 
are illustrated on top of the calculated grayscale statistical heatmap. The ground truth produced after 
considering the collected data from all participants reveals (through a statistical image) possible 
stimulus positions that correspond to mouse movements. It is evident that regions corresponding to 
higher frequencies match to denser mouse points clusters. 

 
Figure 10. Generated mouse trajectories for the three participants case study superimposed on top of 
the calculated grayscale statistical heatmap. 

4. Discussion and Conclusions 

In this study, a new toolbox, titled MatMouse, is introduced that provides mouse tracking and 
analysis functionality. Several aspects of the proposed toolbox are highlighted that are related to 
visual search experiments. Moreover, a complete case study is presented that elaborates further the 
toolbox features and functionality in order to apply it on both experimental building and data 
capturing as well as for mouse movement data analysis and visualization. Since MatMouse is 
developed in MATLAB environment, it constitutes a cross-platform package which can be executed 
in every operating system (MS Windows, Mac OS, and Linux) where MATLAB software is pre-
installed. In practice, the toolbox can be used either as a standalone package or by integrating it in 
existing scripts or toolboxes, e.g., for experimental building (e.g., Psychtoolbox), eye movement (e.g., 
ILAB [41], GazeAlyze [42], EyeMMV [38], EALab [43], LandRate [44] etc.), and/or EEG (e.g., EEGLAB 
[45], DETECT [46], etc.) analysis. 

Figure 10. Generated mouse trajectories for the three participants case study superimposed on top of
the calculated grayscale statistical heatmap.

Figure 7 shows the cumulative participants’ behavior is figured using the heatmap visualization
technique. In a heatmap diagram, white areas represent regions with mouse point records clusters;
higher frequencies indicate denser spatial point distributions. The presented values are normalized in
the range 0 to 255 (28 different intensities).

Alternatively, the cumulative behavior can also be highlighted using a 2.5D isolines visualization,
as shown in Figure 8. In both Figures 7 and 8, the generated clusters are clearly illustrated indicating
the allocation of overall participants’ behavior during the execution of the requested task.

It is important to mention that the titles of the produced visualizations (Figures 3–8) are
automatically produced by MatMouse toolbox considering the inputs defined by the user in the
corresponding function. Additionally, the exported figures can be manipulated using the interactive
tools available in MATLAB software either for data exploration or for further editing.

Besides the aforementioned visualizations illustrated in Figures 3–8, MatMouse exports grayscale
statistical heatmaps, as shown in Figure 9. Such visualizations can serve as an objective ground truth
of the performed experiment. More specifically, the grayscale statistical heatmap depicted in Figure 9
is produced by implementing the corresponding function of MatMouse for the second visual stimuli
and is based on the raw data collected from the three experimental trials. Hence, it represents the
visual cumulative mouse reaction behavior of all participants.

In Figure 10, the generated mouse trajectories for the three participants of the demo case study
are illustrated on top of the calculated grayscale statistical heatmap. The ground truth produced
after considering the collected data from all participants reveals (through a statistical image) possible
stimulus positions that correspond to mouse movements. It is evident that regions corresponding to
higher frequencies match to denser mouse points clusters.

4. Discussion and Conclusions

In this study, a new toolbox, titled MatMouse, is introduced that provides mouse tracking and
analysis functionality. Several aspects of the proposed toolbox are highlighted that are related to visual
search experiments. Moreover, a complete case study is presented that elaborates further the toolbox
features and functionality in order to apply it on both experimental building and data capturing
as well as for mouse movement data analysis and visualization. Since MatMouse is developed
in MATLAB environment, it constitutes a cross-platform package which can be executed in every
operating system (MS Windows, Mac OS, and Linux) where MATLAB software is pre-installed.
In practice, the toolbox can be used either as a standalone package or by integrating it in existing



Multimodal Technol. Interact. 2020, 4, 83 15 of 17

scripts or toolboxes, e.g., for experimental building (e.g., Psychtoolbox), eye movement (e.g., ILAB [41],
GazeAlyze [42], EyeMMV [38], EALab [43], LandRate [44] etc.), and/or EEG (e.g., EEGLAB [45],
DETECT [46], etc.) analysis.

Although the majority of the analyzed metrics is also implemented by existing toolboxes
(e.g., the package provided by Kieslich et al. [24]), the presented study aims to deliver an easy-to-use
toolbox in order to additionally produce interactive visualizations as well as subjective ground truths
based on collected raw data. More specifically, the generated grayscale statistical heatmaps can be
directly compared with relative ground truth produced by eye tracking recordings (see, e.g., the eye
tracking datasets recently described and provided by Krassanakis et al. [47] and by Perrin et al. [31]).
Indeed, considering the correlation between eye movements and mouse movements, the appropriate
parameters for heatmap generation, including the standard deviation and the kernel size of the
performed Gaussian filtering, could be selected following approaches similar to the eye movement
analysis. Building such ground truth contributes to the development of corresponding datasets that
can serve as robust basis for both examining and modeling the process of visual behavior. Therefore,
the exported products can be used directly as the main input for the performance of machine learning
techniques (e.g., for predicting the visual search behavior during the performance of typical visual
search tasks such as target identification processes).

Moreover, the produced (successive) mouse movement records have a temporal interval distance
that approximately corresponds to 1 ms. Despite the produced records having not been validated with
existing tools, this value can be achieved using the powerful build-in functions of MATLAB software
while it can be considered more than adequate for data collection, especially taking into account the
recording frequencies implemented in existing software.

The provided toolbox follows a different approach towards clustering mouse trajectories process
comparing to methods reported in existing packages, such as Mousetrap. Here, the generated clusters
are highlighted using a normalized grayscale statistical heatmap. Although this method is quite suitable
for the description of the spatial behavior allocation, it lacks to report the dynamic change in mouse
coordinates during visual search on a specific visual stimulus. However, this limitation could be easily
overtaken considering the supported metrics and visualization provided by the proposed toolbox.

The performance of visual search experiments constitutes an essential process in several research
fields which aim to study and model visual behavior. Such experiments are based on theories related to
vision and visual attention. For example, the case study presented here can be based on the hypothesis
that pre-attentive features (e.g., specific shape topological properties, such as holes or line termination)
can guide visual attention during visual search behavior. Similar hypotheses could be tested through
visual task-based experimentation, while they can involve different types of examinations (e.g., ranking
the performance of observers during the observation of different types of visual stimuli). Hence,
the MatMouse toolbox could serve as a complete platform in this direction, providing subjective data
and analysis metrics produced by capturing the reaction of observers.

Supplementary Materials: MatMouse is freely available at https://github.com/krasvas/MatMouse under the third
version of GNU General Public License (GPL v3). Additionally, example variables (including raw and analyzed
data) are also provided in the same repository.

Author Contributions: Conceptualization: V.K. and A.L.K.; Software development: A.L.K. and V.K.; Demo case
study implementation and analysis: V.K.; Writing and editing: V.K. and A.L.K. All authors have read and agreed
to the published version of the manuscript.

Funding: Article processing charges are covered by the University of West Attica.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolfe, J.M. Visual Attention: The Multiple Ways in which History Shapes Selection. Curr. Biol. 2019, 29,
R155–R156. [CrossRef]

https://github.com/krasvas/MatMouse
http://dx.doi.org/10.1016/j.cub.2019.01.032


Multimodal Technol. Interact. 2020, 4, 83 16 of 17

2. Mochizuki, I.; Toyoura, M.; Mao, X. Visual attention prediction for images with leading line structure.
Vis. Comput. 2018, 34, 1031–1041. [CrossRef]

3. Krassanakis, V.; Filippakopoulou, V.; Nakos, B. Detection of moving point symbols on cartographic
backgrounds. J. Eye Mov. Res. 2016, 9. [CrossRef]

4. Hu, Z.; Li, S.; Gai, M. Temporal continuity of visual attention for future gaze prediction in immersive virtual
reality. Virtual Real. Intell. Hardw. 2020, 2, 142–152. [CrossRef]

5. Wolfe, J.M.; Horowitz, T.S. Five factors that guide attention in visual search. Nat. Hum. Behav. 2017, 1, 0058.
[CrossRef]

6. Slanzi, G.; Balazs, J.A.; Velásquez, J.D. Combining eye tracking, pupil dilation and EEG analysis for predicting
web users click intention. Inf. Fusion 2017, 35, 51–57. [CrossRef]

7. Kieslich, P.J.; Schoemann, M.; Grage, T.; Hepp, J.; Scherbaum, S. Design factors in mouse-tracking: What
makes a difference? Behav. Res. Methods 2020, 52, 317–341. [CrossRef]

8. Rheem, H.; Verma, V.; Becker, D.V. Use of Mouse-tracking Method to Measure Cognitive Load. Proc. Hum.
Factors Ergon. Soc. Annu. Meet. 2018, 62, 1982–1986. [CrossRef]

9. Yamauchi, T.; Leontyev, A.; Razavi, M. Mouse Tracking Measures Reveal Cognitive Conflicts Better than
Response Time and Accuracy Measures. In Proceedings of the CogSci, Montreal, QC, Canada, 24–27 July
2019; pp. 3150–3156.

10. Stillman, P.E.; Shen, X.; Ferguson, M.J. How Mouse-tracking Can Advance Social Cognitive Theory.
Trends Cogn. Sci. 2018, 22, 531–543. [CrossRef]

11. Hehman, E.; Stolier, R.M.; Freeman, J.B. Advanced mouse-tracking analytic techniques for enhancing
psychological science. Gr. Process. Intergr. Relat. 2015, 18, 384–401. [CrossRef]

12. Maldonado, M.; Dunbar, E.; Chemla, E. Mouse tracking as a window into decision making. Behav. Res.
Methods 2019, 51, 1085–1101. [CrossRef] [PubMed]

13. Yamauchi, T.; Leontyev, A.; Razavi, M. Assessing Emotion by Mouse-cursor Tracking: Theoretical and
Empirical Rationales. In Proceedings of the 2019 8th International Conference on Affective Computing and
Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; pp. 89–95.

14. Diego-Mas, J.A.; Garzon-Leal, D.; Poveda-Bautista, R.; Alcaide-Marzal, J. User-interfaces layout optimization
using eye-tracking, mouse movements and genetic algorithms. Appl. Ergon. 2019, 78, 197–209. [CrossRef]
[PubMed]

15. Chen, Y.; Liu, Y.; Zhang, M.; Ma, S. User Satisfaction Prediction with Mouse Movement Information in
Heterogeneous Search Environment. IEEE Trans. Knowl. Data Eng. 2017, 29, 2470–2483. [CrossRef]

16. Horwitz, R.; Kreuter, F.; Conrad, F. Using Mouse Movements to Predict Web Survey Response Difficulty.
Soc. Sci. Comput. Rev. 2017, 35, 388–405. [CrossRef]

17. Navalpakkam, V.; Churchill, E. Mouse tracking. In Proceedings of the 2012 ACM Annual Conference on
Human Factors in Computing Systems—CHI ’12, Austin, TX, USA, 5–10 May 2012; p. 2963.

18. Souza, K.E.S.; Seruffo, M.C.R.; De Mello, H.D.; Souza, D.D.S.; Vellasco, M.M.B.R. User Experience Evaluation
Using Mouse Tracking and Artificial Intelligence. IEEE Access 2019, 7, 96506–96515. [CrossRef]

19. Freeman, J.B.; Ambady, N. MouseTracker: Software for studying real-time mental processing using a
computer mouse-tracking method. Behav. Res. Methods 2010, 42, 226–241. [CrossRef] [PubMed]

20. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [CrossRef] [PubMed]
21. Kieslich, P.J.; Henninger, F. Mousetrap: An integrated, open-source mouse-tracking package. Behav. Res.

Methods 2017, 49, 1652–1667. [CrossRef] [PubMed]
22. Mathôt, S.; Schreij, D.; Theeuwes, J. OpenSesame: An open-source, graphical experiment builder for the

social sciences. Behav. Res. Methods 2012, 44, 314–324. [CrossRef]
23. Kieslich, P.J.; Wulff, D.U.; Henninger, F.; Haslbeck, J.M.B.; Schulte-Mecklenbeck, M. Mousetrap: An R package

for processing and analyzing mouse-tracking data. Retrieved From 2016. [CrossRef]
24. Kieslich, P.J.; Henninger, F.; Wulff, D.U.; Haslbeck, J.M.B.; Schulte-Mecklenbeck, M. Mouse-Tracking.

In A Handbook of Process Tracing Methods; Routledge: Abingdon, UK, 2019; pp. 111–130.
25. Mathur, M.B.; Reichling, D.B. Open-source software for mouse-tracking in Qualtrics to measure category

competition. Behav. Res. Methods 2019, 51, 1987–1997. [CrossRef] [PubMed]
26. Tian, G.; Wu, W. A Review of Mouse-Tracking Applications in Economic Studies. J. Econ. Behav. Stud. 2020,

11, 1–9. [CrossRef]

http://dx.doi.org/10.1007/s00371-018-1518-6
http://dx.doi.org/10.16910/jemr.9.2.2
http://dx.doi.org/10.1016/j.vrih.2020.01.002
http://dx.doi.org/10.1038/s41562-017-0058
http://dx.doi.org/10.1016/j.inffus.2016.09.003
http://dx.doi.org/10.3758/s13428-019-01228-y
http://dx.doi.org/10.1177/1541931218621449
http://dx.doi.org/10.1016/j.tics.2018.03.012
http://dx.doi.org/10.1177/1368430214538325
http://dx.doi.org/10.3758/s13428-018-01194-x
http://www.ncbi.nlm.nih.gov/pubmed/30756261
http://dx.doi.org/10.1016/j.apergo.2019.03.004
http://www.ncbi.nlm.nih.gov/pubmed/31046951
http://dx.doi.org/10.1109/TKDE.2017.2739151
http://dx.doi.org/10.1177/0894439315626360
http://dx.doi.org/10.1109/ACCESS.2019.2927860
http://dx.doi.org/10.3758/BRM.42.1.226
http://www.ncbi.nlm.nih.gov/pubmed/20160302
http://dx.doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
http://dx.doi.org/10.3758/s13428-017-0900-z
http://www.ncbi.nlm.nih.gov/pubmed/28646399
http://dx.doi.org/10.3758/s13428-011-0168-7
http://dx.doi.org/10.5281/zenodo.596640
http://dx.doi.org/10.3758/s13428-019-01258-6
http://www.ncbi.nlm.nih.gov/pubmed/31197629
http://dx.doi.org/10.22610/jebs.v11i6(J).3000


Multimodal Technol. Interact. 2020, 4, 83 17 of 17

27. Chen, M.C.; Anderson, J.R.; Sohn, M.H. What can a mouse cursor tell us more? In Proceedings of the CHI ’01
Extended Abstracts on Human Factors in Computing Systems—CHI ’01, Toronto, ON, Canada, 26 April–1
May 2001; p. 281.

28. Cooke, L. Is the Mouse a “Poor Man’s Eye Tracker”? In Proceedings of the Annual Conference-Society for
Technical Communication, Las Vegas, NV, USA, 7–10 May 2006; Volume 53, p. 252.

29. Johnson, A.; Mulder, B.; Sijbinga, A.; Hulsebos, L. Action as a Window to Perception: Measuring Attention
with Mouse Movements. Appl. Cogn. Psychol. 2012, 26, 802–809. [CrossRef]

30. Guo, Q.; Agichtein, E. Towards predicting web searcher gaze position from mouse movements. In Proceedings
of the 28th International Conference Extended Abstracts on Human Factors in Computing Systems—CHI
EA ’10, Atlanta, GA, USA, 10–15 April 2010; p. 3601.

31. Perrin, A.-F.; Krassanakis, V.; Zhang, L.; Ricordel, V.; Perreira Da Silva, M.; Le Meur, O. EyeTrackUAV2:
A Large-Scale Binocular Eye-Tracking Dataset for UAV Videos. Drones 2020, 4, 2. [CrossRef]

32. Wolfe, J.M. Visual attention. In Seeing; Elsevier: Amsterdam, The Netherlands, 2000; pp. 335–386.
33. Cornelissen, F.W.; Peters, E.M.; Palmer, J. The Eyelink Toolbox: Eye tracking with MATLAB and the

Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput. 2002, 34, 613–617. [CrossRef]
34. Poole, A.; Ball, L.J. Eye Tracking in HCI and Usability Research. In Encyclopedia of Human Computer Interaction;

IGI Global: Hershey, PA, USA, 2006; pp. 211–219.
35. Ooms, K.; Krassanakis, V. Measuring the Spatial Noise of a Low-Cost Eye Tracker to Enhance Fixation

Detection. J. Imaging 2018, 4, 96. [CrossRef]
36. Wass, S.V.; Smith, T.J.; Johnson, M.H. Parsing eye-tracking data of variable quality to provide accurate

fixation duration estimates in infants and adults. Behav. Res. Methods 2013, 45, 229–250. [CrossRef]
37. Schafer, R.W. What is a savitzky-golay filter? IEEE Signal Process. Mag. 2011, 28, 111–117. [CrossRef]
38. Krassanakis, V.; Filippakopoulou, V.; Nakos, B. EyeMMV toolbox: An eye movement post-analysis tool based

on a two-step spatial dispersion threshold for fixation identification. J. Eye Mov. Res. 2014, 7. [CrossRef]
39. Michaelidou, E.; Filippakopoulou, V.; Nakos, B.; Petropoulou, A. Designing point map symbols: The effect

of preattentive attributes of shape. In Proceedings of the 22th International Cartographic Association
Conference, Coruña, Spain, 9–16 July 2005.

40. Krassanakis, V. Exploring the map reading process with eye movement analysis. In Proceedings of the
International Workshop on Eye Tracking for Spatial Research, Scarborough, UK, 2 September 2013; pp. 2–5.

41. Gitelman, D.R. ILAB: A program for postexperimental eye movement analysis. Behav. Res. Methods Instrum.
Comput. 2002, 34, 605–612. [CrossRef]

42. Berger, C.; Winkels, M.; Lischke, A.; Höppner, J. GazeAlyze: A MATLAB toolbox for the analysis of eye
movement data. Behav. Res. Methods 2012, 44, 404–419. [CrossRef] [PubMed]

43. Andreu-Perez, J.; Solnais, C.; Sriskandarajah, K. EALab (Eye Activity Lab): A MATLAB Toolbox for Variable
Extraction, Multivariate Analysis and Classification of Eye-Movement Data. Neuroinformatics 2016, 14, 51–67.
[CrossRef] [PubMed]

44. Krassanakis, V.; Menegaki, M.; Misthos, L.-M. LandRate toolbox: An adaptable tool for eye movement
analysis and landscape rating. In Proceedings of the ETH Zurich, Zurich, Switzerland, 26–29 June 2018.

45. Brunner, C.; Delorme, A.; Makeig, S. Eeglab—An Open Source Matlab Toolbox for Electrophysiological
Research. Biomed. Eng. Biomed. Tech. 2013, 58. [CrossRef] [PubMed]

46. Lawhern, V.; Hairston, W.D.; Robbins, K. DETECT: A MATLAB Toolbox for Event Detection and Identification
in Time Series, with Applications to Artifact Detection in EEG Signals. PLoS ONE 2013, 8, e62944. [CrossRef]

47. Krassanakis, V.; Da Silva, M.P.; Ricordel, V. Monitoring Human Visual Behavior during the Observation of
Unmanned Aerial Vehicles (UAVs) Videos. Drones 2018, 2, 36. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/acp.2862
http://dx.doi.org/10.3390/drones4010002
http://dx.doi.org/10.3758/BF03195489
http://dx.doi.org/10.3390/jimaging4080096
http://dx.doi.org/10.3758/s13428-012-0245-6
http://dx.doi.org/10.1109/MSP.2011.941097
http://dx.doi.org/10.16910/jemr.7.1.1
http://dx.doi.org/10.3758/BF03195488
http://dx.doi.org/10.3758/s13428-011-0149-x
http://www.ncbi.nlm.nih.gov/pubmed/21898158
http://dx.doi.org/10.1007/s12021-015-9275-4
http://www.ncbi.nlm.nih.gov/pubmed/26358034
http://dx.doi.org/10.1515/bmt-2013-4182
http://www.ncbi.nlm.nih.gov/pubmed/24042816
http://dx.doi.org/10.1371/journal.pone.0062944
http://dx.doi.org/10.3390/drones2040036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Mouse Movements Tracking 
	Movement Metrics Analysis 
	Visualizations and Heatmap Ground Truth Generation 
	MatMouse Functions 
	Case Study Example 
	Tracking Data Collection 
	Analysis and Visualization 


	Results 
	Discussion and Conclusions 
	References

