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Abstract: This paper presents results of strain gauge measurements, which have been carried out on
a full-scale turbocharger test rig. Rotational speed of the turbocharger was ramped up and down
through four preliminary anticipated rotor-blade resonances, with a known combination of main
order of excitation and corresponding nodal diameter. An analysis of the transient data is presented.
An investigation of spectra with high frequency resolutions, centered on individual blade resonance
points in time, is presented. In contrast to former research, all blades resonate at the same point in
time and thus at the same resonance frequency, if the excitation corresponds to a nodal diameter of
zero. Strain data from the shaft is used to support findings, which, in other publications, often solely
rely on strain data from individual blades.
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1. Introduction

As already theoretically described in Refs. [1,2], the potential effect as a result of the passing rotor
blades, as well as the stator blade wake are the two causes for transient blade forces and hence the
two main excitation mechanisms for rotor-blade vibrations in stator-rotor assemblies in axial turbines.
Ref. [3] demonstrated the applicability of those theoretical assumptions on a radial turbine wheel, using
only two strain gauges on opposite blades. A deeper investigation of a larger number of blades, with a
direct measurement system like strain gauges, during resonance operation is not yet present in the
literature. Furthermore, detailed studies of the shaft vibrations during resonance occurrence in rotor
blades, using direct vibrational measurement systems, has not been published yet. Ref. [4] describes
the most common experimental measurement techniques for measuring blade vibrations in rotating
machinery. They emphasize the use of—however intrusive—strain gauges on blades, to get a full
picture of their vibrational behavior. Regarding the influence of strain gauge application on resonance
frequencies and maximum displacements, Ref. [5] investigated two axial turbine BLISKSs (stages 1
and 6) of a test-compressor. An influence of the manner of strain gauge application is experimentally
shown. High-temperature strain gauges, typically applied using temperature resistant ceramic cement,
have a more significant influence on the vibrational behavior of the blades, compared to standard
foil strain gauges. The ceramic cement stiffens the respective blade on which the strain gauge is
applied, increasing its so-called bladealone frequency up to (2.5%) compared to its frequency prior
to the application. Furthermore, the forced response resonance frequencies of all blades, not only
blades with a gauge, are affected by the application. While the maximum displacements are not
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significantly influenced, displacement ratios between instrumented and non-instrumented blades
shifted. Due to the stiffening of the structure, deflections of instrumented blades shifted towards local
minima, while non-instrumented ones showed larger deflections. Refs. [6,7] investigated flow-induced
blade vibrations in radial turbines without guide vanes, using newly developed numerical approaches
and different experimental measurement techniques.

This paper presents the results of strain gauge measurements on the rotor blades of a radial
turbine wheel in a turbocharger. Six high-temperature strain gauges were placed at the same
relative position on the rotor blades, evenly distributed in circumferential direction over all 12 blades.
The rotational speed of the turbocharger was ramped through four preliminary anticipated resonance
points, with a known order of main excitation through the stator blade count of 24. Excitability of
the four individual modes through excitation order 24 (EO24) was theoretically verified using the
well-known interrelationship between excitation order, number of blades and resulting nodal diameters
derived in Ref. [8]. In this paper, blade responses during excitation of vibratory modes M5, M6, M8
and M9 with the help of strain data from both the shaft and the blades is presented. As mentioned
above and with the slight exception of M8, the excitation of vibration patterns in nodal diameters
of zero (NDO) is proven. Here, in contrast to reports from the literature, no frequency mistuning
could be observed at all. As long as the nodal diameter of zero is strongly pronounced, hence all
blades oscillate in phase, all maximum blade deflections and strains occur at the same respective rotor
speed. Thereafter investigations of two additionally present excitation orders (EO17 and EO16), which
appeared during the measurements, are presented. These excitation mechanisms appeared at rotor
speeds below M8EO24 and above M9EO24.

2. Experimental Investigations

The test turbocharger, provided by Kompressorenbau Bannewitz GmbH (KBB), is designed for
usage in marine engine applications. It was implemented into the test stand at the testing facility
of the Institute for Power Plant Technology, Steam and Gas Turbine and powered by a six-stage
high pressure radial air compressor. The turbine inlet temperature, which was held steadily at
500 °C, was achieved by a natural gas operated air preheater. For details on the general setup of the
turbocharger, used performance measurement technologies and the implementation at the testing
facility of the institute, see Ref. [9]. Table 1 lists the test rig geometry and boundary conditions.

Table 1. Test rig geometry and measurement boundary conditions.

Turbine hub to tip ratio 0.29
Maximum rotational speed 40,000 RPM
Turbine inlet temperature 500°C
Maximum compressor volumetric flow rate 42m3/s
Maximum compressor pressure ratio 5.6

The test object, a radial inflow turbine with 12 blades, was equipped with a total of eight strain
gauges (due to limitations of the telemetry system), six of them being high-temperature (HT) strain
gauges (SG) and two standard foil strain gauges. All six HT gauges have been applied to the same
relative blade position on every other blade (on the respective suction side), as illustrated in Figure 1a.
Two opposite blades have also been applied with high-temperature strain gauges on the pressure side.
Unfortunately, data from those gauges could not be evaluated thoroughly, as connection to them was
lost in early stages of the measurements. Relative positions were chosen in a way to cover high surface
strains and coincidentally low strain gradients for all vibratory modes to be investigated.

In Ref. [10], the effect of transient sweeps through blade resonances on their resulting vibration
amplitudes was investigated. They derived a limit for rotational acceleration without influencing
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During all measurements, sweep accelerations were performed well below this limit.
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Figure 1. Positioning and temperature sensitivity drift of high-temperature strain gauges. (a) Relative
blade position of a high-temperature strain gauge (SG) on the suction side of one blade; (b) Nominal
sensitivity and sensitivity uncertainty (specified by the manufacturer) over temperature.

Additionally, as mentioned above, two standard foil strain gauges have been applied to the shaft,
at a centered position between the bearings. The principal axes of both SGs are twisted 45° to the
rotational axis of the shaft, thus enabling the differentiation of bending- and torsional vibrations.
A bending vibration of the shaft results in a phase lag between these gauges of A®g = 180°, whereas
torsional vibrations result in in-phase signals. The phase lag between two strain signals y; and v, is:

A®y, — atan IM(F (y1)/ F(y2))

RE(F (1) /F(v2))’ @

where F denotes the Fourier transform of y and IM and RE denote the imaginary and real part of
the resulting complex number vector. A commercial telemetry system, consisting of a total of ten SG
channels with a sampling rate of 50 kHz was used. Due to sensitivity (see Figure 1b, the displayed
wall temperature range was numerically calculated) drifts, uncertainties in the SG supply current and
the given maximum signal to noise ratio of 39 dB = 98.878%, measured strain amplitudes are prone to
an error of +5%. Electrical resistance of all gauges was measured using the telemetry system, which
can modulate the supply current with a defined frequency and amplitude. Resistances increased up to
10.8% during warm up of the turbine.

All main results of the corresponding FVV research project are presented in Ref. [9]. This project
focused mainly on the comparison of maximum strains and blade deflections between the also
implemented blade tip timing measurements, strain gauge measurements and numerical aeroelastic
calculations during resonance. A more detailed analysis of the strain data—including data from the
shaft—is presented here.

2.1. Experimental Results NDO Vibrations

In this section, strain results of all mainly excited vibratory modes are presented. The excitation
order 24 is equal to the number of stator blades. Hence, nodal diameters of all main blade responses are
NDO in an ideal system, at least at the numerically anticipated resonance points with an excitation order
of 24. The rotational speed of the turbocharger was ramped through the numerically calculated points
of blade resonance, with ~2000 RPM between the first and the last measurement of each resonance
point. Numerical models, which were used to calculate resonance frequencies are described in Ref. [11]
(CFD) and in Ref. [12] (FEM).
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2.2. Blade Vibration Analysis

During the measurements, several vibratory modes were excited due to EOs unequal to 24,
with comparatively small resulting excitation forces, leading to more or less minor blade reactions.
Table 2 shows an overview of theoretically expected, measurable blade phase lags in a tuned rotor with
12 blades. ¢f, and ¢y, are forward and backward rotating nodal diameters (in the rotating coordinate
system), A®D; ;15 ¢, and AD; ;1 »1,, are the respective measured phases on the blades. An overview
of all expected points of resonance is shown in numerically calculated ZZENF diagrams, which are
displayed below. For a detailed explanation of ZZENF, or SAFE-diagrams refer to Ref. [13].

Table 2. Forward and backward inter blade phase angle ¢ and measurable blade phase angle between
SG-applied blades A®; ;. 1.

ND @ [°] @uow[®] AD;ii260 [°]  AD;iiopw [°]

1 30 -30 60 —60
2 60 —60 120 —120
3 90 —-90 180 —180
4 120 —120 —120 120
5 150 —150 —60 60
6 180 —180 0 0

Figure 2a,b mark the mainly excited Modes at NDO in the ZZENF diagram, with their
corresponding rotational speed lines. Since the main excitation mechanism is of order 24 and
the number of rotor blades is 12, the excitation of NDO vibrations (excited modes are encircled
in red) becomes apparent. Both ZZENF diagrams contain the computed resonance frequencies of
the corresponding mode families. Furthermore, Figure 2b displays the interference of the rotational
speeds exciting M8 and M9 with mode family 5 at nodal diameters 4 and 5. Both of those resonance
occurrences, could be verified experimentally and a more detailed analysis of EO17 will be shown later
in this paper.

Figure 2. Numerical ZZENF Diagrams. (a) ZZENF diagram with rotational speeds of M5 and M6
(excitation at EO24 and NDO); (b) ZZENF diagram with rotational speeds of M8 and M9 (excitation at
EO24 and NDO).

2.2.1. M5, M6, M9

Figure 3a displays normalized strains of all SG-applied blades during one resonance crossing
of vibratory mode 5 in the normalized frequency domain. FFTs were computed using a window
of two seconds, centered around the maximum strain amplitude in the time domain. Strains are
normalized by the maximum measured strain value for all blades and in the displayed frequency



Int. J. Turbomach. Propuls. Power 2020, 5, 18 50f 13

range. Frequencies are normalized by the excitation frequency of EO24 at maximum rotor rotational
speed. The corresponding phase lag of all blades with respect to their next SG-applied respective
neighbor, A®; ;. ,, is additionally displayed in Figure 3b. As is shown, resonance occurs at the same
frequency on all blades. This frequency corresponds to EO24 and hence NDO, which is in line with the
measured phase lags of A®; ;,, ~ 0° (Figure 3b). Vibrational modes 6 and 9 show an equal behavior
to M5. All blade resonance points lie at the same resonance frequency (Figure 4) and an assignment of
NDO is possible, since A®; ;. , ~ 0°. Maximum phase lags differ about +1.7° (M6) and +3.8° (M9).
Additionally, a higher amplitude mistuning in mode 6 can be observed. Mode 9 does not show a
resonance peak as dominant as the other modes, which may one the one hand be a consequence of the
relatively large time window of two seconds, which was used to compute this frequency spectrum and
on the other hand be an inherent feature of mode 9.
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Figure 3. Vibratory Mode 5: Frequency domain and phase lag. (a) Normalized amplitude of all
SG-applied blades during resonance M5; (b) Phase lag of all SG-applied blades during resonance M5 in
the frequency domain.
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Figure 4. Vibratory Modes 6 and 9: Frequency domain. (a) Normalized amplitude of all SG-applied
blades during resonance M6; (b) Normalized amplitude of all SG-applied blades during resonance M9.
2.2.2. Mode 8

Mode 8 showed a somewhat different behavior, compared to M5, M6 and M9. In Figure 5,
normalized strains of EO24 blade responses during resonance were extracted from short time Fourier
transformations with Hanning windows of 76 ms and 50% overlap in time. A clear distinction of the
resonance rotational speeds of blades 1, 3, 11 and blades 5, 7 and 9 is possible (see Figure 5, encircled in
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red). Also, the resonance frequency of all blades differs (dashed lines in Figure 5) slightly. In M8, blades
generally responded with the highest absolute strains and deflections compared to the other vibratory
modes. Figures 6 and 7 display frequency and phase lag distributions in a two seconds time window,
centered at both maxima, () = 0.8744 and () = 0.8783, respectively. Due to the maximum frequency
resolution of 0.5Hz in Figures 6 and 7, some spectral leakage is visible in both frequency spectra.
Nonetheless, differences to previously described modes M5, M6 and M9 are apparent. The occurrence
of M8 is split into two distinct rotational speeds, at which the SG-applied blades resonate. Furthermore,
strains throughout the resonance are less uniform compared to M5 and M6 and multiple local maxima
occur in all blades. Considering the phase lags, blade 5 shows an interesting behavior (Figure 6b).
It does not show a local maximum at () = 0.8744, but rather oscillates with a phase lag of A®s57 = 180°
or AP35 = —180° compared to its direct neighbors. In contrast to this, blade 5 shows the highest
strains compared to all other blades at () = 0.8783. At that point, all blades oscillate in phase (see
Figure 7b — NDO).
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Figure 5. Normalized strain over normalized rotational speed during M8 excitation for all SG-applied blades.
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Figure 6. Vibratory Mode 8-1: Frequency domain and phase lag. (a) Normalized amplitude of all

SG-applied blades during resonance M8-1; (b) Phase lag of all SG-applied blades during resonance
MS8-1 in the frequency domain.

This distribution, or rather split of resonance frequencies has also been observed in Ref. [14].
Neighboring blades with the same or very similar resonance frequencies tended towards the same
rotational resonance speed, which in this case holds true as well, since the described blades with
almost equal points of resonance lie physically closest to each other.
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Figure 7. Vibratory Mode 8-2: Frequency domain and phase lag. (a) Normalized amplitude of all

SG-applied blades during resonance M8-2; (b) Phase lag of all SG-applied blades during resonance
MS8-2 in the frequency domain.

2.3. NDO Shaft Oscillations

In this section, experimental strain data from both SGs on the shaft is presented. Beginning with
the lowest responding mode M5, Figure 8 shows strain amplitude and phase lag of the shaft SGs, using
the same time window as for the SGs on the blades (Figure 3).
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(a) (b)
Figure 8. Vibratory Mode 5: Shaft vibrations, frequency domain and phase lag. (a) Normalized
amplitude of both shaft SGs during resonance M5; (b) Phase lag A®g of shaft SGs during resonance M5.

As a result of the low excitation of M5, EO24 vibrations in the shaft are barely distinguishable
from general noise, when only considering the amplitude spectrum (Figure 8a). By computing the
phase lag between the SGs on the shaft however (Figure 8b), a clear shift towards A@g = 0° can be
observed in the region of 0.5555 < f < 0.557, which corresponds to the blade vibration frequency of
M5 during EO24 excitation. This shift is also visible in the frequency spectrum of M6, M8 and M9
(Figure 9a,b and Figure 10a,b). The expected torsional vibrations in the shaft, due to the NDO vibration
pattern of the blades, are hereby verified. NDO vibrations theoretically induce a torsional vibration
on the shaft, since all blades vibrate in the same direction at the same time, hence exerting a force in
circumferential direction, which is translated into the shaft. Figure 10a,b show phases of the shaft
SGs during M6 and M9 excitation, respectively. In these cases, a clear shift towards A®g = 0° is also
visible. During M9, A®s is shifted towards —20°. This is a consequence of the ever so slight phase lag
of the blades during the excitation of M9, as mentioned in section ‘M5, M6, M9’". Due to this phase lag,
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the uniform amplitude distribution and the high rotational energy in the system at this high rotational
frequency exert a high influence on the shaft and its vibratory pattern.

Due to the already mentioned deviations of A®; ;. , from zero, a uniform torsional vibration
during EO24 excitation is not induced in the shaft. The amplitude spectra of M6 and M9, which are
not shown here, are very similar to the spectra of the blades. Due to the much higher blade responses
in these cases, shaft vibrations would also be unambiguously identifiable solely from these spectra.
Amplitude and phase lag during M8EO24 excitation are displayed in Figure 9. Like before, FFTs were
centered around the two resonance points, displayed in Figure 5. A time window of 15 seconds was
used in this case, to include all occurring frequencies during the resonance. Even though blade 5 does
not resonate in phase with the other blades in case of the first resonance rotational speed, the phase
lag of the SGs on the shaft shifts towards zero, indicating torsional vibrations, excited through NDO
vibrations of the blades.
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Figure 9. Vibratory Mode 8-2: Shaft vibrations, frequency domain and phase lag. (a) Normalized
amplitude of both shaft SGs during resonance M8-2; (b) Phase lag Adg of shaft SGs during
resonance M8-2.
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0.895 0.896 0.897 0.898 0.899
f
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Figure 10. Vibratory Modes 6 and 9: Shaft vibrations, frequency domain and phase lag. (a) Phase lag
of both shaft SGs during resonance M6 in the frequency domain; (b) Phase lag A®g of shaft SGs during

resonance M9.

Furthermore, strain data from the shaft may be used to analyze lower order vibration patterns
during operation. During all measurements, frequency content at f = 0.0215 appeared in the shaft SGs
(Figure 11a). By analyzing the phase of the shaft SGs at this frequency (Figure 11b), torsional vibrations
in the shaft are revealed. This frequency corresponds to the first torsional Eigenfrequency of the shaft,
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which has been numerically calculated beforehand. The second spike in Figure 11a at f = 0.0245
corresponds to the rotational speed of the shaft, hence EO1 vibrations, and was also visible during
all measurements. Again, the phase lag of the shaft SGs supports this assumption, since $g = —180°
at the respective frequency. As stated above, this phase lag corresponds to bending vibrations of the
shaft and is a result of residual rotor unbalance, resulting in EO1 excitation.

The deviation from Adg = 0° increases with increasing phase difference of blade 5, starting at
around f = 0.874 (see Figure 6b), which shows the strong influence of even only one blade, on resulting
vibrations in the shaft.
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Figure 11. Vibratory Mode 6: Shaft vibrations, frequency domain and phase lag (low order vibrations).

(a) Normalized amplitude of both shaft SGs during resonance M6 (low order vibrations); (b) Phase lag
A®g of shaft SGs during resonance M6 (low order vibrations).

3. ND # 0 Vibrations

In this section, blade vibrations, excited through engine orders other than 24 are briefly described
to demonstrate the ability of the presented arrangement of strain gauges to detect such vibration
patterns. As shown before in Figure 2b, the excitation of M5ND5 through EO17 is theoretically possible
in the same region of rotational speed, as M8 is excited by EO24. EO17 is of special interest here, since
the number of vanes in the diffuser of the compressor of the turbocharger is also 17. Thus, M5NDS5,
encircled in green, is analyzed here. During the measurements, blades were indeed excited by EO17,
resulting in measured strains in the frequency region of M5 at higher nodal diameters (see ZZENF
diagram, Figure 2a). Frequencies around f = 0.611 in Figure 12 are a result of EO17 excitation. A zoom
into this region is displayed in Figure 13. Along with this, the phase lag of all blades is displayed
as well.
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Figure 12. Overview of EO17 frequency region during M8EO24 resonance occurrence.
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Figure 13. EO17: Fre(a)uency domain and phase lag. The same legends as dis;g)a)yed in Figure 7 apply.
(a) Zoom on EO17 excited normalized amplitude of all SG-applied blades during rotational speed of
MB8EO24; (b) Zoom on EO17 excited phase lag A®; ;. , of all SG-applied blades during rotational speed
of MSBEO24.

The expected phase lag A®; ;,, during ND5 vibrations is +60° (Table 2). This phase lag could
only be measured between two out of the six SGs, namely A®79 and A®g ;1. AP;;,, between the
other four blades is either ~0°, or ~120°, which would be the result of NDO, ND6 or ND4 vibrations,
respectively. This behavior is expected, since the system of rotor blades is not an ideal system and the
actual nodal diameter is a superposition of several ones Ref. [15]. Interestingly, these EO17 vibrations
appear in the shaft as well (see Figure 14), and the phase lag A®g almost exactly equals 60°.

0.06 : E— 200

1 - [==a9]

0 bt | L LAPY 2200 | -
0.61 0.611 0.612 0.61 0.611 0.612

(a (b)
Figure 14. EO17: Shaft vibrations, frequency domain and phase lag. (a) Zoom on EO17 excited

normalized amplitude of shaft SGs during rotational speed of MBEO24; (b) Zoom on EO17 excited
phase lag A®g of shaft SGs during rotational speed of MSEO24.

Those observations are supported by the analysis of additional EO16 vibrations, occurring at a
rotational speed slightly above MOEO24. Here, EO16 appears in all blades (Figure 15), exciting M5
and resulting in small reactions in the shaft. A more prominent frequency content in the shaft again
corresponds to EO17, but with much smaller resulting blade amplitudes. The number of diffuser
vanes in the compressor equals 17, drawing an unexpected connection between the geometry of the
turbocharger and the measured EO17 vibrations in the shaft and the rotor blades of the turbine. Further
investigation regarding the appearance of EO17 will be necessary in the future, since this excitation
order results in significant blade vibration amplitudes at unexpected rotational speeds. As of now,
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the origin of EO16 remains unclear, since no geometric feature of the turbocharger corresponds to this
number directly.

max. blade Iamplitude ,

0.06

— 0.04

0.02

0.6 0.61 0.62 0.63 0.64 0.65 0.66

Figure 15. Zoom on EO16 and EO17 excited normalized amplitude of shaft and blade SGs during
rotational speed of MOEO24.

4. Conclusions

The applied pattern of strain gauges (one SG on every other blade around the circumference) has
proven to be able to reliably detect points of blade resonance during NDO vibrations. Even though
measured phase lags of A®; ;. , = 0° may be the result of NDO or ND6, strain data from the shaft of the
turbocharger was used, to support the theoretically predicted NDO pattern. Interestingly, in three out of
four displayed vibration modes, resonance of all blades occurred at the same frequency and rotational
speed, respectively. This may be the result of the strong physical coupling between the blades, due to
the BLISK design of the rotor and the very stiff design of radial turbines as well. In general, resonance
frequencies differ, but due to the NDO blade vibration pattern in this case, the blade coupling seems
to be promoted even more. The use of strain gauges on the shaft has provided some insight on the
coupling between compressor and turbine wheel by means of the shaft. Measured EO17 vibrations
in both the shaft and the blades are presumed to be the result of an excitation through interaction of
compressor rotor and diffusor. Compared to other excitation orders, apart from EO24, EO17 shows the
highest responses in the shaft, promoting the assumption that the shaft excites the blades in this case
and not the other way around.
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Nomenclature

BLISK blade integrated disk

Bi strain signal of ith blade

EO excitation order

AD; phase lag of strain signals on ith and jth blade

Adg phase lag of strain signals on the shaft

€ normalized strain

F Fourier transform operator

f normalized frequency

FFT fast Fourier transformation

v, resonance frequency kth Mode

k strain gauge sensitivity

ND nodal diameter

N rotational speed

(@) normalized rotational speed

w rotational speed

51,52 strain signal of shaft gauges

T; turbine inlet temperature

Twan wall temperature (estimated by CFD)

IM, RE imaginary and real part of a complex number

Ck blade damping coefficient kth Mode
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