Next Issue
Volume 6, March
Previous Issue
Volume 5, September
 
 

Int. J. Turbomach. Propuls. Power, Volume 5, Issue 4 (December 2020) – 7 articles

Cover Story (view full-size image): This paper addresses the problem of the design optimization of turbomachinery components under thermo-mechanical constraints, with focus on a radial turbine impeller for turbocharger applications. Typically, turbine components operate at high temperatures and are exposed to important thermal gradients, leading to thermal stresses. Dealing with such structural requirements necessitates the optimization algorithms to operate a coupling between fluid and structural solvers that is computationally intensive. To reduce the cost during the optimization, a novel multiphysics gradient-based approach is developed in this work, integrating a Conjugate Heat Transfer procedure by means of a partitioned coupling technique. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 6159 KiB  
Article
Towards an Ultra-High-Speed Combustion Pyrometer
by Alberto Sposito, Dave Lowe and Gavin Sutton
Int. J. Turbomach. Propuls. Power 2020, 5(4), 31; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040031 - 15 Dec 2020
Cited by 1 | Viewed by 2778
Abstract
Measuring reliably the correct temperature of a sooty flame in an internal combustion engine is important to optimise its efficiency; however, conventional contact thermometers, such as thermocouples, are not adequate in this context, due to drift, temperature limitation (≤2100 K) and slow response [...] Read more.
Measuring reliably the correct temperature of a sooty flame in an internal combustion engine is important to optimise its efficiency; however, conventional contact thermometers, such as thermocouples, are not adequate in this context, due to drift, temperature limitation (≤2100 K) and slow response time (~10 ms). In this paper, we report on the progress towards the development of a novel ultra-high-speed combustion pyrometer, based on collection of thermal radiation via an optical fibre, traceably calibrated to the International Temperature Scale of 1990 (ITS-90) over the temperature range T = (1073–2873) K, with residuals <1%, and capable of measuring at a sampling rate of 250 kHz. Full article
Show Figures

Figure 1

31 pages, 17970 KiB  
Article
Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method
by Alberto Racca, Tom Verstraete and Lorenzo Casalino
Int. J. Turbomach. Propuls. Power 2020, 5(4), 30; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040030 - 25 Nov 2020
Cited by 1 | Viewed by 3896
Abstract
This paper addresses the problem of the design optimization of turbomachinery components under thermo-mechanical constraints, with focus on a radial turbine impeller for turbocharger applications. Typically, turbine components operate at high temperatures and are exposed to important thermal gradients, leading to thermal stresses. [...] Read more.
This paper addresses the problem of the design optimization of turbomachinery components under thermo-mechanical constraints, with focus on a radial turbine impeller for turbocharger applications. Typically, turbine components operate at high temperatures and are exposed to important thermal gradients, leading to thermal stresses. Dealing with such structural requirements necessitates the optimization algorithms to operate a coupling between fluid and structural solvers that is computationally intensive. To reduce the cost during the optimization, a novel multiphysics gradient-based approach is developed in this work, integrating a Conjugate Heat Transfer procedure by means of a partitioned coupling technique. The discrete adjoint framework allows for the efficient computation of the gradients of the thermo-mechanical constraint with respect to a large number of design variables. The contribution of the thermal strains to the sensitivities of the cost function extends the multidisciplinary outlook of the optimization and the accuracy of its predictions, with the aim of reducing the empirical safety factors applied to the design process. Finally, a turbine impeller is analyzed in a demanding operative condition and the gradient information results in a perturbation of the grid coordinates, reducing the stresses at the rotor back-plate, as a demonstration of the suitability of the presented method. Full article
Show Figures

Figure 1

19 pages, 3680 KiB  
Article
Hybrid Data-Driven and Physics-Based Modeling for Gas Turbine Prescriptive Analytics
by Sergei Belov, Sergei Nikolaev and Ighor Uzhinsky
Int. J. Turbomach. Propuls. Power 2020, 5(4), 29; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040029 - 09 Nov 2020
Cited by 2 | Viewed by 4740
Abstract
This paper presents a methodology for predictive and prescriptive analytics of a gas turbine. The methodology is based on a combination of physics-based and data-driven modeling using machine learning techniques. Combining these approaches results in a set of reliable, fast, and continuously updating [...] Read more.
This paper presents a methodology for predictive and prescriptive analytics of a gas turbine. The methodology is based on a combination of physics-based and data-driven modeling using machine learning techniques. Combining these approaches results in a set of reliable, fast, and continuously updating models for prescriptive analytics. The methodology is demonstrated with a case study of a jet-engine power plant preventive maintenance and diagnosis of its flame tube. The developed approach allows not just to analyze and predict some problems in the combustion chamber, but also to identify a particular flame tube to be repaired or replaced and plan maintenance actions in advance. Full article
Show Figures

Figure 1

24 pages, 3457 KiB  
Article
An Extended Version of an Algebraic Intermittency Model for Prediction of Separation-Induced Transition at Elevated Free-Stream Turbulence Level
by Slawomir Kubacki, Daniele Simoni, Davide Lengani and Erik Dick
Int. J. Turbomach. Propuls. Power 2020, 5(4), 28; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040028 - 26 Oct 2020
Cited by 11 | Viewed by 3601
Abstract
An algebraic intermittency model for boundary layer flow transition from laminar to turbulent state, is extended using an experimental data base on boundary layer flows with various transition types and results by large eddy simulation of transition in a separated boundary layer. The [...] Read more.
An algebraic intermittency model for boundary layer flow transition from laminar to turbulent state, is extended using an experimental data base on boundary layer flows with various transition types and results by large eddy simulation of transition in a separated boundary layer. The originating algebraic transition model functions well for bypass transition in an attached boundary layer under a moderately high or elevated free-stream turbulence level, and for transition by Kelvin–Helmholtz instability in a separated boundary layer under a low free-stream turbulence level. It also functions well for transition in a separated layer, caused by a very strong adverse pressure gradient under a moderately high or elevated free-stream turbulence level. It is not accurate for transition in a separated layer under a moderately strong adverse pressure gradient, in the presence of a moderately high or elevated free-stream turbulence level. The extension repairs this deficiency. Therefore, a sensor function for detection of the front part of a separated boundary layer activates two terms that express the effect of free-stream turbulence on the breakdown of a separated layer, without changing the functioning of the model in other flow regions. The sensor and the breakdown terms use only local variables. Full article
Show Figures

Graphical abstract

17 pages, 11516 KiB  
Article
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
by Andrea Notaristefano and Paolo Gaetani
Int. J. Turbomach. Propuls. Power 2020, 5(4), 27; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040027 - 19 Oct 2020
Cited by 16 | Viewed by 4284
Abstract
Modern aero-engine combustion chambers burn a lean and premixed mixture, generating a turbulent flame which involves large heat-release fluctuations, thus producing unsteady temperature phenomena commonly referred to as entropy waves (EWs). Furthermore, to enhance the fuel air mixing, combustion air is swirled, leading [...] Read more.
Modern aero-engine combustion chambers burn a lean and premixed mixture, generating a turbulent flame which involves large heat-release fluctuations, thus producing unsteady temperature phenomena commonly referred to as entropy waves (EWs). Furthermore, to enhance the fuel air mixing, combustion air is swirled, leading to vorticity disturbances. These instabilities represent one of the biggest challenges in gas turbine design. In this paper, the design and testing of a novel entropy wave generator (EWG) equipped with a swirler generator (SG) are described. The novel EWG will be used in future works on the high-speed test rig at Politecnico di Milano to study the combustor–turbine interaction. The paper shows the process of the EWG geometry and layout. The EWG is able to produce an engine-representative EW, the extreme condition is at the maximum frequency of 110 Hz, a peak-to-valley temperature value of 20 °C and swirling angles of ±25° are measured. By virtue of these results, the proposed system outperforms other EWG devices documented in the literature. Furthermore, the addition of a swirling generator makes this device one of a kind. Full article
Show Figures

Figure 1

23 pages, 3605 KiB  
Article
Aerodynamic and Aeroelastic Effects of Design-Based Geometry Variations on a Low-Pressure Compressor
by Torben Eggers, Hye Rim Kim, Simon Bittner, Jens Friedrichs and Joerg R. Seume
Int. J. Turbomach. Propuls. Power 2020, 5(4), 26; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040026 - 24 Sep 2020
Cited by 2 | Viewed by 4260
Abstract
In modern aircraft engines, the low-pressure compressor (LPC) is subjected to a flow characterized by strong wakes and secondary flows from the upstream fan. This concerns ultra-high bypass ratio (UHBR) turbofan engines, in particular. This paper presents the aerodynamic and aeroelastic sensitivities of [...] Read more.
In modern aircraft engines, the low-pressure compressor (LPC) is subjected to a flow characterized by strong wakes and secondary flows from the upstream fan. This concerns ultra-high bypass ratio (UHBR) turbofan engines, in particular. This paper presents the aerodynamic and aeroelastic sensitivities of parametric variations on the LPC, driven by the design considerations in the upstream fan. The goal of this investigation was to determine the influence of design-based geometry parameter variations on the LPC performance under realistic inlet flow distributions and the presence of an s-duct. Aerodynamic simulations are conducted at the design and off-design operating points with the fan outflow as the inlet boundary conditions. Based on the aerodynamic results, time-linearized unsteady simulations are conducted to evaluate the vibration amplitude at the resonance operating points. First, the bypass ratio is varied by reducing the channel height of the LPC. The LPC efficiency decreases by up to 1.7% due to the increase in blockage of the core flow. The forced response amplitude of the rotor decreases with increasing bypass ratio due to increased aerodynamic damping. Secondly, the fan cavity leakage flow is considered as it directly affects the near hub fan flow and thus the inflow of the LPC. This results in an increased total-pressure loss for the s-duct due to mixing losses. The additional mixing redistributes the flow at the s-duct exit leading to a total-pressure loss reduction of 4.3% in the first rotor at design point. This effect is altered at off-design conditions. The vibration amplitude at low speed resonance points is increased by 19% for the first torsion and 26% for second bending. Thirdly, sweep and lean are applied to the inlet guide vane (IGV) upstream of the LPC. Despite the s-duct and the variable inlet guide vane (VIGV) affecting the flow, the three-dimensional blade design achieves aerodynamic and aeroelastic improvements of rotor 1 at off-design. The total-pressure loss reduces by up to 18% and the resonance amplitude more than 10%. Only negligible improvements for rotor 1 are present at the design point. In a fourth step, the influence of axial gap size between the stator and the rotor rows in the LPC is examined in the range of small variations which shows no distinct aerodynamic and aeroelastic sensitivities. This finding not only supports previous studies, but it also suggests a correlation between mode shapes and locally increased excitaion with increasing axial gap size. As a result, potential design improvements in future fan-compressor design are suggested. Full article
Show Figures

Figure 1

6 pages, 2530 KiB  
Article
High-Temperature Profile Monitoring in Gas Turbine Exhaust-Gas Diffusors with Six-Point Fiber-Optic Sensor Array
by Franz J. Dutz, Sven Boje, Ulrich Orth, Alexander W. Koch and Johannes Roths
Int. J. Turbomach. Propuls. Power 2020, 5(4), 25; https://0-doi-org.brum.beds.ac.uk/10.3390/ijtpp5040025 - 24 Sep 2020
Cited by 14 | Viewed by 3969
Abstract
In this paper, the deployment of a newly developed, multipoint, fiber-optic temperature-sensor system for temperature distribution measurements in a 6 MW gas turbine is demonstrated. The optical sensor fiber was integrated in a stainless steel protection cable with a 1.6 mm outside diameter. [...] Read more.
In this paper, the deployment of a newly developed, multipoint, fiber-optic temperature-sensor system for temperature distribution measurements in a 6 MW gas turbine is demonstrated. The optical sensor fiber was integrated in a stainless steel protection cable with a 1.6 mm outside diameter. It included six measurement points, distributed over a length of 110 mm. The sensor cable was mounted in a temperature probe and was positioned radially in the exhaust-gas diffusor of the turbine. With this temperature probe, the radial temperature profiles in the exhaust-gas diffusor were measured with high spatial and temporal resolution. During a test run of the turbine, characteristic temperature gradients were observed when the machine operated at different loads. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop