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Abstract: In this paper, we investigate the feasibility of using DNS data and machine learning
algorithms to assist RANS turbulence model development. High-fidelity DNS data are generated
with the incompressible Navier-Stokes solver implemented in the spectral/hp element software
framework Nektar++. Two test cases are considered: a turbulent channel flow and a stationary
serpentine passage, representative of internal turbo-machinery cooling flow. The Python framework
TensorFlow is chosen to train neural networks in order to address the known limitations of the
Boussinesq approximation and a clustering based on flow features is run upfront to enable training
on selected areas. The resulting models are implemented in the Rolls-Royce solver HYDRA and a
posteriori predictions of velocity field and wall shear stress are compared to baseline RANS. The
paper presents the fundamental elements of procedure applied, including a brief description of the
tools and methods and improvements achieved.

Keywords: turbulence modelling; machine learning; cooling flow; clustering; neural networks;
RANS

1. Introduction

Turbulence modelling is the element of Computational Fluid Dynamics (CFD) that
captures the complexity of the physics of turbulent flows using a mathematical model,
with the aim of accurately describing the effect of the chaotic behaviour of turbulence on the
mean flow. The overall picture has not had any significant changes in the last few decades,
with k — € [1] and the k — w [2] models still being widely used in the industry, despite the
known limitations in complex flow configurations, strong secondary flows and separated
regions. In recent years an unprecedented growth in computing power has allowed the
proliferation of high fidelity CFD calculations. Despite being still too expensive to be carried
out at design stage, even a very small number of them contains a large amount of data that
can be used to inform Reynolds-averaged Navier-Stokes (RANS) models. Together with
the development of Machine Learning (ML) algorithms, able to make predictions based on
large amounts of data, a new opportunity in turbulence modelling is offered: extract data
from high fidelity CFD and use ML to relate turbulence behaviour to geometric and mean
flow features. The final aim is to develop a process to derive adaptive turbulence models,
having as a primary objective not the generality of each of them, but rather high prediction
capability for a set of similar cases in a specific application. The scientific community has
been exploring data-driven methods in the last few years as an alternative to traditional
approaches following different paths. In particular, Weatheritt and Sandberg [3] developed
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a novel approach to model tensor expressions: it uses Gene Expression Programming
(GEP) to symbolically regress a functional form, represented as string chromosomes, that
was not previously imposed or known. The target of it is the anisotropy of the Reynolds
stress tensor, which is modelled with a non-linear constitutive stress-strain relationship,
following the approach in [4]. The application of the GEP algorithm to high pressure
turbine cascades [5] is of particular interest in turbo-machinery.

2. Aims and Objectives

The purpose of this paper is to explore the use of clustering algorithms and Artificial
Neural Networks (ANN) to modify the Boussinesq approximation, recognised as a primary
source of uncertainty in RANS predictions. It states that the anisotropic component of the
Reynolds stress tensor is proportional to the trace-less mean strain rate tensor:

. 2 2du
Tij = Tj +aij = 5 pkdi; — 20v¢(Sij — 587:5’7) @

This expression is replaced with a more general expression [4] that includes a linear
combination of the elements of the tensor basis Vﬂ built from the non-dimensional velocity
gradient tensor, with coefficients ¢, that are function of mean flow features and are learnt
from high-fidelity data:

1
T; = 20k <351~]~ + Zcqvg> )
q

In this paper, only the first term of the expansion is considered, resulting in an
anisotropy formulation that still verifies the Boussinesq approximation, with an additional
degree of freedom in the coefficient cy:

1 2
Vi§ = Sij; Sij = 50 ((Vu)ij + (VuT),»j — 3(vu)kk5i].>

Once the functional form of the coefficient has been determined by the ANN, this is
exported in the form of a look-up table to be read by the Rolls-Royce CFD solver HYDRA.
A RANS calculation can then be run with the updated model and a posteriori results
compared to DNS predictions and baseline RANS calculations.

3. The Test Cases

Two test cases are considered: a turbulent channel flow and a stationary serpentine
passage, representative of internal turbo-machinery cooling flow (Figure 1). Both cases
are run at a bulk Reynolds number of 5600, based on channel height and mean velocity.
For the channel case this corresponds to Re; = 180.

For both cases, DNS data are generated at Imperial College with the incompress-
ible Navier—Stokes solver implemented in the spectral /hp element software framework
Nektar++ [6]. The baseline RANS, referred to as k — w SST, is run in HYDRA with an
implementation of the model from Wilcox [2] that incorporates a Low-Reynolds number
correction in the form of a damping coefficient. Since the k — w SST also includes a limiter
on the eddy-viscosity and this is not accounted for in any model built from (2), a second
baseline RANS is considered, where we set c; = —1 and all other coefficients equal to 0.
This corresponds to (1) with v; = k/w and it computes the eddy-viscosity from the same
equations as the k — w SST, but without the limiter. Finally, as the flow is incompressible
for both cases, all calculations are run with p = 1.
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Figure 1. High pressure turbine cooling system (left) and CFD of internal passage (right).
3.1. Turbulent Channel Flow

The first test case is a straight channel with stationary y-normal viscous walls [7];
turbulence is introduced in the initialisation and then self-sustained by the flow, periodicity
is enforced along x and z and velocities at the outlet are rescaled and recycled at the
inlet at each time-step. Periodicity in the span-wise direction is applied by means of a
Fourier expansion, as detailed in [8]. The flow results in a 1D profile of all variables and
dyu is the only non-zero velocity gradient term. The DNS computational domain has a
non-dimensional height of 2, a length of 47, a width of 27t and consists of a structured 2D
grid with 29 equispaced points along the x direction, 26 points clustered towards the wall
along the y direction and is extended in the z direction with 168 Fourier planes. Choosing
a polynomial order p = 8 results in 9.53 M degrees of freedom. Since a recycling feature
is not available for the RANS calculation, the RANS domain consists instead of a duct
400 non-dimensional units long, to ensure that a fully developed flow can be extracted at
the end of it, and 0.2 wide. The mesh is structured and has 400, 81, and 5 points along x, v,
and z, respectively.

3.2. Serpentine Passage

This test case is illustrated in Figure 2 and is inspired by [9], although different in
many aspects. We adopt synthetic turbulence at the inlet, following the approach described
in [10]. The first two non-dimensional units of the duct have inviscid walls, after which they
are set to viscous. As with the channel, the domain is periodic with a Fourier expansion
in the spanwise direction. The flow goes through two 180-degree bends sequentially: it
approaches the first with a relatively low turbulence intensity and a symmetric profile,
undergoes separation at the exit of the bend, reaches the second bend with much higher
turbulence and a skewed profile and separates again before exiting the domain.

Figure 2 shows Q-Criterion iso-contours (Q = 100), highlighting the regions of high
turbulence downstream of the bends (left), as well as the time average velocity along the
second bend (right). Compared to the turbulent channel, this case introduces more complex
physics (turning, acceleration and separation) and, being 2D as opposed to 1D, makes it
possible to extract more and diverse points for training. The computational domain has a
non-dimensional height of the duct of 2, a total length along the centerline of 1671 + 2 and a
width of 277. It consists of a 2D grid made of unstructured triangular elements with planar
refinements in the high mixing regions and separation bubbles and quadrilateral elements
near the wall. It is then extended with 168 Fourier planes in the z direction. Choosing
a polynomial order p = 7 results in 206 M degrees of freedom. The RANS domain is
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limited to a width of 0.2 and the mesh is structured with 1236, 101 and 5 points along the
streamwise, pitchwise, and spanwise directions, respectively.

,:{;/}? . x\,\ a\
U )

N

Ly /

Z |ulpns /tinter 1.6
» 0.9

3] 1

R

" 7 \"‘;( ‘r ;_\

| fuintet

[

Figure 2. Q-Criterion iso-contours (Q = 100) and time average velocity along second bend.

4. The DNS-ML Framework

In this section, the main steps of the DNS-Machine Learning framework

are summarised:

1.

High fidelity CFD calculations are run until statistical convergence is reached. Average
velocities and Reynolds stresses are sampled at the RANS mesh nodes and exported.
These variables are then frozen at each point of the domain and the k and w equa-
tions [2] are solved in isolation. The purpose of this step is to generate an w field that
is used to compute (2) consistent with the DNS flow field and Reynolds stresses.

At each node of the RANS mesh, velocity components and their gradients from
the DNS calculation, as well as k and w from the frozen field, are used to compute
non-dimensional input features, including the first two velocity gradient invariants,
the viscosity ratio, a local turbulent Reynolds number based on the distance from the
wall and the turbulence intensity:

k dwVk 1 /2k
Ii = synSmn; Ih = WynwWmn; VR = —; RT = sz} Tl = —\| =
wv |lul V 3

v

These features form the input layer of the ANN, whose outputs are the coefficients
¢g. During training, predicted Reynolds stresses 7/ are computed applying (2) and
their difference to the DNS values summed over all points defines the loss function
for the ANN. At each iteration the ANN weights and biases are updated to reduce
the loss function, until a minimum is stably reached. The comparison between Ti‘}.‘ed
and TI?NS
The functional mapping between input features and coefficients ¢, is exported as
a look-up table of equispaced points, whose range is based on the maximum and
minimum input features for the training points.

A RANS calculation with the new model using the Rolls-Royce code HYDRA is
performed. At each point of the mesh it computes the flow features, performs a
bilinear interpolation on the look-up table and estimates the coefficients. Outside
of the table the value at last point within the range is returned, in order to avoid
extrapolations that could easily result in RANS instabilities. These are then used to
compute the Reynolds stresses that enter the RANS equations.

Results are compared a posteriori to the DNS and the baseline RANS, by looking at
the velocity field and other key flow features. This is a central aspect of the process:
we can easily check that solving the RANS after imposing the DNS values of T;
results in very accurate predictions of the flow field, but once 7;; are approximated by
the constitutive relationship (2), it is hard to provide a quantitative estimate of how
Reynolds stress errors lead to flow field inaccuracies without running the calculation.

is referred to as the a priori assessment.
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4.1. Flow Classification and Model Training

Clustering is an unsupervised learning classification technique, used in this context to
identify and isolate regions of the flow characterised by the presence of specific phenomena,
such as separation, curvature or high turbulence. This enables selectively training the ANN
on areas that are more relevant, only using one or a combination of clusters. The features
used in this process are the ones listed above and Hierarchical Agglomerative clustering
algorithms are considered here, being a good compromise between complexity and ability
to capture clusters of various shapes: high acceleration, curvature, high and very high
mixing. The best results were found using [; and TI as input features and 6 clusters.
The resulting classification is shown in Figure 3.

normalised T'7

10

[

~10 5 0
normalised I;

Figure 3. Cluster classification in feature space (left) and physical space (right).

Having defined the clusters, the ANN was created using the Python library Tensor-
Flow with the following structure: one input, two hidden layers and one output coefficient,
c1, resulting in a formulation for the anisotropy that only includes the first term of the
tensorial expansion. This very simple structure is used to define the work-flow, keep-
ing in mind that it is very easy within TensorFlow to make the structure more complex
at a later time. Despite this apparent simplicity, when building the ANN a significant
number of hyperparameters need to be specified: (a) number of neurons in the hidden
layers, (b) activation function for each layer, (c) number of training points, (d) optimisation
algorithm, (e) hyperparameters associated to the optimisation algorithm, (f) coefficient
of regularisation to ensure smoothness in the functional mapping, (g) number of itera-
tions, (h) fraction of the feature range captured by the look-up table (to avoid that a few
extreme values could deteriorate the resolution of the table in the region where most points
are), (i) fraction of training points taken within the boundary layer (to avoid bias towards
the wall), (j) weights assigned to the discrepancy between true values and predictions in
each term of the Reynolds stress tensor, (k) input features, (1) cluster or clusters where
training points are randomly selected. The choice of all these hyperparameters are made
by performing a series of random searches. This is a widely used technique in Machine
Learning, where a large number of models are generated by randomly picking each of these
hyperparameters, either from a specified range or from a set of possible values. The loss
metrics, which are a measure of how well the model is able to predict Reynolds stresses
a priori, are then compared and only the most promising models are selected to be run
and assessed a posteriori. Guidance is also offered by the requirement of having a smooth
profile, as the RANS calculation tends to easily become unstable when strong gradients
are present in the c; function. Further insight and understanding is then offered by the
results of the RANS calculations in terms of how well these models are able to capture
important aspects of the flow, such as length of the separation bubble and ability to mix
the flow downstream of it. This can limit the ranges and the choice of hyperparameters
and a second random search can be performed to fine tune the process. A new batch of
models is reassessed a posteriori and the process can be repeated until results tend to
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stabilise to a performance plateau. The process not only generates a model that improves
RANS predictions for the metrics of interest, but also sheds some light on the underlying
physics, e.g., which clusters provide the right information for the model to perform well
everywhere in the domain.

5. Results
5.1. Turbulent Channel Flow

In a straight channel the only non-negligible velocity component is the one aligned
with the direction of the flow, u. In addition, as dyu is the only non-zero velocity gradient,
the flow is steady and p = 1, most of the terms in the RANS equation and the 7;; expansion
cancel out, leaving:
ap 82u 8712

Tip = 2c1ks12 4)

®)

As 193, k and s1, are available from the DNS data, it is possible to infer the distribution
of ¢; that would make (4) hold to any degree of accuracy. In this simple case, applying
the ML process we described is equivalent to look for a non-linear best fit to a specified
smoothness (tuned through the regularisation hyper-parameter) of the point-wise mapping
ct (1) for all points in the training set, with f; being the flow feature chosen to train
the ANN. Due to the very limited amount of data available, clustering was not applied
to this test case. The flow feature that showed the best ability to predict 11, and quite
straightforwardly u from (4) is the viscosity ratio VR. In particular two models have
been selected, the one coming directly out of the ANN (referred to as CH1), and one
where ¢; is blended to —1 for high values of VR, in order to recover the Boussinesq
approximation (CH2). Figure 4 (left) shows the graphical representation of the two models,
while Figure 5 shows the comparison between DNS, ML models and baseline RANS in
terms of u™ (left) and 77}, (right). The RANS calculations were run imposing a pressure
gradient along the duct, adjusting the molecular viscosity for c; = —1 and k — w SST in
order to keep the same Reynolds number, as the bulk mean velocity differed more than 2%
from the DNS. The difference between CH1 and CH2 in the velocity and T, profiles is small
and only CH2 is shown in Figure 5. To have a quantitative metric for the improvement
achieved, the following parameter is defined:

_ Ip |modet — ¢pNs| dD
I |¢pNs| dD

where D is the domain and ¢ a flow variable of interest. Table 1 summarises how this
metric compares for the different models for u and 195.

A

©)

0 5 0 15 20 25 0 20 40 60
VR VR
Figure 4. c; models: CH1, CH2 for the channel (left) and SERP1 for the serpentine (right).
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Figure 5. Channel model comparison in terms of u (left) and 1y, (right).

Table 1. Discrepancy A between DNS and different models for the channel test case.

DNS cqg=-—1 k — w SST CH1 CH2
u - 0.213 0.041 0.026 0.019
T2 - 0.214 0.106 0.025 0.038

5.2. Serpentine Passage

For the serpentine passage the abundance of potential training points compared to
the channel made it possible to (a) take advantage of clustering to further explore training
options and (b) train (within the selected clusters) on the first half of the geometry only to
see if the constitutive relationship is able to improve the flow predictions also in a region of
the domain not used for training. From the a posteriori results of the random search it was
observed that:

¢ The best results are achieved excluding the high strain and separation clusters (black
and dark green respectively in Figure 3) from the training set. This finding is further
detailed in the Discussion section. The corresponding training set is shown in Figure 6.

Figure 6. Training regions highlighted in dark grey and location of velocity (black lines) and wall
shear stress (red line) comparisons.

e The input flow feature that performed best is again VR, as seen for the channel. Up to
VR = 15 the qualitative behaviour of the best serpentine model, referred to as SERP1,
is similar to CH1; however, after that, the coefficient becomes even stronger (c; = —2)
before settling at around —1.3 (Figure 4, right).

e  Regularisation is essential to guarantee sufficient smoothing; less regularised models
that seem to have a good performance a priori failed to meet expectations when
assessed a posteriori.
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®  The best results were found with two hidden layers, with 4 and 5 neurons, respectively.
This illustrates that significant improvements can be achieved even with relatively
simple ANN structures.

Figure 7 (bottom) illustrates for each point of the training region how the chosen
feature, VR, correlates with the ideal value of ¢, the one that would make the predicted
T2, the most impactful Reynolds stress term, match the DNS value. Overlapped in red
is the SERP1 model. It can be seen how the scatter is significant, especially in the mid-
range, where we can also expect more model uncertainty. Figure 7 (top) shows how in
the a priori analysis the true to predicted values of 17, redistribute when going from a
uniform coefficient c; = —1 to the SERP1 predictions. The difference can be quantified
in terms of the R? score going from 0.44 to 0.51, with a noticeable effect at the separation
bubble interface (highlighted in the figure). Albeit this can be seen as a relatively modest
improvement, it is sufficient to strongly influence the a posteriori performance, which is
ultimately the goal of the study. This can be seen in Figure 8, where SERP1 is compared
to DNS, baseline RANS and CH2 in terms of velocity magnitude traverses at different
locations and wall shear stress on the separation region after the second bend. The predicted
separation bubble length, as well as velocity and Tj, at these locations is summarised
in Table 2.

7.57

o1
>

b
ot

0.07

Predicted values

® SERP1
® c=-1

-5 0 5
True values

C1
I
o

0 10 20 30 10 50 60
VR

Figure 7. SERP1 a priori assessment: true to predicted 71, with comparison to Boussinesq approxi-
mation (top) and SERP1 best fit of ideal ¢1 (bottom).
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Table 2. Length of the separation bubble in non-dimensional units and discrepancy A between DNS
and different models for the serpentine test case.

DNS cg=-1 k —wSST SERP1 CH2

Sep. bubble length 2.37 3.16 5.32 2.84 4.67
|ti| 1st traverse A - 0.0804 0.1075 0.0375 0.1014
|t| 2nd traverse A - 0.0856 0.1262 0.0327 0.1066
|ti| 3rd traverse A - 0.0904 0.2445 0.0284 0.1893

1.2
1.0
20.81 2
s s
ER ]
0.4
0.2
0.0
~10  —05 0.0 0.5 1.0
y y
—_—c=-1
........ k. —w SST
---- SERP1 0.031
3 ~20.021
2 <
£l E
0,014
J\ 0.001
1
3
]
f 1.0 0.0 25 5.0 75 100
Y S

Figure 8. Velocity magnitude comparison at 3 different locations from upstream: top left, bottom left,
top right (cfr. Figure 6) and wall shear stress along the second bend: bottom right.

6. Discussion

The best ML model for both test cases presents a c; that is reduced to ~—0.15 when
VR approaches zero. This is equivalent to saying that the Reynolds stress predictions are
not proportional to v, but tend to zero faster, particularly near the wall. For the channel
this has a similar role to the one played by the limiter on v; in the k — w SST. The results
described in the previous section show that flow field predictions can significantly be
improved by a relatively small modification in the way turbulence is modelled. This can
be noticed particularly for the serpentine test case on the separation bubble, in terms of
shape and length, although the ANN training did not see any point within that region.
More surprisingly, a posteriori model performance degraded when including separation
in the training set. The following line of reasoning provides an interpretation for this
phenomenon: the ability to predict the shape of the separation bubble mainly relies on
having a good estimate of the turbulent mixing in the flow reaching the separation point
and, more importantly, just outside the rear part of the bubble, as this strongly influences
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the reattachment point. However, adding points within the separation region in the training
does not provide any benefit and has instead the effect of forcing a less than optimum ¢; in
the most influencing areas of the domain. The possibility of training different models for
attached and separated regions and applying them zonally has not been investigated in
this study. In using k — w as the underlying turbulence model, an important assumption is
that the k field obtained by solving the steady k equation:

ok . 3
le]'aij—Pk—‘B kw—i‘aix]

(v+ o )%
KVt ax]
with u;, ax,.u i and 7;; from the DNS calculation (referred to as the frozen field), converges

to a distribution that is close to the DNS one (for which k = %(u’ u' 4+ ' + w'w') is
known). While for the channel this assumption is verified, for the serpentine there are
some significant quantitative and qualitative differences (Figure 9):

2 N 2
kfm:f”/ufnlef kDJ\‘S/uinZd

[

Figure 9. Comparison between DNS and frozen k field.

The levels of k are lower for the frozen field by a factor of approximately 1.7 on average
and the diffusion does not seem to allow enough mixing after the bend. The root cause
for this can be identified in a wrong prediction of the k budget Py — 8*kw and a poor level
of k turbulent mixing. However, it would not be consistent to use the DNS distribution
of k, w and turbulent transport in the training phase, as this is not what is available to the
RANS solver, which computes k and w from the transport equations. The ANN converges
to a stronger c1, in order to compensate for the lower values of k and still achieves a
good approximation of the target 7;;. When compared to k — w SST, this has the effect of
enhancing the mixing outside of the separation bubble, along the second straight and on
the second bend, all regions where baseline RANS predictions were particularly weak.
An attempt was made to apply the SERP1 model back to the turbulent channel. Having a
similar trend at the low end of the VR range, the near wall behaviour is still captured well.
However, as the k predictions from the frozen field for this case were already close to the
DNS, the overcompensation at high VR results in the detrimental effect of flattening the u
profile towards the centreline.

7. Conclusions

In this paper, we demonstrated how we can use high fidelity DNS data and a Ten-
sorFlow Machine Learning framework to generate alternative Reynolds stress anisotropy
formulations that replace the standard Boussinesq approximation. It is observed that
this is not a blind process, as the many hyperparameters required to set up the ANN
have a strong influence on the outcome, and not carefully considering the regularisation,
the relative importance of training areas and the choice of input flow features can have a
strong detrimental effect on a posteriori performance. Clustering has been identified as
a particularly useful tool to selectively train the ANN on limited portions of the domain.
It is also emphasised how a priori assessment can provide only a partial view, as the
propagation of the error from 7j; to velocity components is non-linear and often erratic.
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In selecting the final model it is, therefore, critical to perform subsequent random searches,
testing the most promising ones by running a RANS and looking at flow fields predictions.
This method achieved significant progresses for the two test cases examined in this paper:

e  The channel flow velocity profile predictions reached a discrepancy (based on
Equation (5)) to the DNS of 0.026 for CH1 and 0.019 for CH2 from a value of 0.041 for
the k — w SST and 0.213 for the k — w SST without the limiter on v;.

e  For the serpentine the difference to the DNS in the length of the second separation
bubble went from 2.95 for the k — w SST to 0.47 for SERP1. The velocity discrepancy
(based on Equation (5)) for three representative traverses (Figure 6) was also reduced
by 65.2%, 74.1% and 88.4%, respectively.

These results show the vast potential of this method, which is targeted to specific
applications. In contrast, the poor performance of SERP1 on the turbulent channel case
highlights how the user should be conscious of the limitations of a model from a physics
perspective, such as overcompensation. Future work will aim at including more than one
input feature and other terms in the tensorial expansion, as well as expanding the work-flow
to additional flow phenomena, e.g., mixing and 3D corner vortices.
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Abbreviations

The following abbreviations are used in this manuscript:

DNS Direct Numerical Simulation
RANS Reynolds-Averaged Navier-Stokes
CFD Computational Fluid Dynamics
ML Machine Learning

GEP Gene Expression Programming
ANN Artificial Neural Network
Nomenclature

k turbulent kinetic energy

w turbulent specific dissipation

0 density

€ turbulent dissipation

Tjj Reynolds stress tensor: Tu;

Tl] isotropic Reynolds stress

ajj anisotropy tensor

vt turbulent viscosity

S; i strain rate tensor

¢q tensor expansion coefficients
v tensor basis

Sij non dimensional strain rate tensor
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wjj non dimensional rotation rate tensor
Ox; U velocity gradient tensor

w', v, w'  velocity fluctuations

v laminar viscosity

dy distance from the wall

U; velocity components

L, velocity gradient invariants

VR viscosity ratio

RT local turbulent Reynolds number
TI turbulence intensity

Py k production

B*, ok k — w SST model constants
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