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Abstract: We quantify the sensitivity of turbine acoustic impedance to aerodynamic design parame-
ters. Impedance boundary conditions are an influential yet uncertain parameter in predicting the
thermoacoustic stability of gas turbine combustors. We extend the semi-actuator disk model to cam-
bered blades, using non-linear time-domain computations of turbine vane and stage cascades with
acoustic forcing for validation data. Discretising cambered aerofoils into multiple disks improves
reflection coefficient predictions, reducing error by up to an order of magnitude compared to a flat
plate assumption. A parametric study of turbine stage designs using the analytical model shows
acoustic impedance is a weak function of degree of reaction and polytropic efficiency. The design
parameter with the strongest influence is flow coefficient, followed by axial velocity ratio and Mach
number. We provide the combustion engineer with improved tools to predict impedance boundary
conditions, and suggest thermoacoustic stability is most likely to be compromised by change in
turbine flow coefficient.

Keywords: turbine; acoustic impedance; aeroacoustics; thermoacoustic stability

1. Introduction

Thermoacoustic instability is a coupling between unsteady heat release and acoustic
waves in gas turbine combustors. If pressure and heat release fluctuations are in phase,
the system is unstable and oscillations may grow to damaging levels. Prediction and hence
mitigation of thermoacoustic instability requires acoustic impedance boundary conditions,
characterising reflection of waves from the compressor and turbine back into the combustor.
Reflected waves may arise from either incident pressure or entropy waves, so impedances
for both cases are of interest. In computations of a realistic annular combustor by Lamarque
and Poinsot [1], incorrect impedance boundary conditions yielded an error of 26% in the
first resonant frequency.

The combustor outlet boundary condition is a function of turbine design. The state of
the art for predicting the acoustic impedance of turbomachines is linear models based on the
actuator disk approach of Cumpsty and Marble [2]. In the compact limit, κ = f cx/a→ 0 ,
blade rows become a discontinuity in mean flow, and matching conditions based on
conservation laws link incident and transmitted waves. Modelling multiple blade rows
as a series of disks accommodates multi-stage turbomachines. For reduced frequencies
typical of thermoacoustic instability, κ . 0.1 , waves require a finite time to propagate
through blade rows. Kaji and Okazaki [3] relaxed the axially-compact assumption in their
semi-actuator disk model, considering flat-plate cascades with finite chord, while assuming
infinitesimal pitch to justify one-dimensional flow in blade passages.

Solving the full non-linear Navier–Stokes equations in the time domain is an alter-
native, more expensive method for predicting acoustic impedance. The only assumption
in this approach is the validity of any turbulence closure used. Bauerheim et al. [4] use
large-eddy simulations to validate the Cumpsty and Marble [2] actuator disk model for
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a two-dimensional turbine stage. The methods agree to within ±5% at low reduced fre-
quency κ ≤ 0.06 , but diverge at higher reduced frequency where the compact assumption
is invalid.

Although actuator disk models have been demonstrated for specific cases, their negli-
gible computational cost also makes them ideal for parametric studies. At present, there is
no information available on the sensitivity of acoustic impedance to turbine aerodynamic
design. This would be useful to a combustion engineer, allowing an assessment of possible
thermoacoustic instability problems due to a turbine design change.

In this paper, we first extend the semi-actuator disk model to account for the cambered
blades found in turbines. Next, we describe a time-domain computational fluid dynamics
(CFD) approach for predicting acoustic impedance. Then, we compare predictions from
the two approaches for a set of validation cases. Finally, we use the model to explore trends
in acoustic impedance over the turbine design space. The contributions of this paper are:

• improvement of the accuracy of analytical models for turbine acoustic impedance;
• demonstration of an efficient CFD approach for predicting acoustic impedance; and
• quantification of the sensitivity of acoustic impedance to a complete set of aerodynamic

parameters across the turbine design space.

2. Cambered Semi-Actuator Disk Analytical Model

We base our analytical model on the actuator disk approach developed by Cumpsty and
Marble [2], and the semi-actuator disk method of Kaji and Okazaki [3]. Bauerheim et al. [4]
present a comprehensive derivation of the actuator disk model, which we do not repeat
here. In this section, we provide an overview of the basic theory and a description of
our extension.

2.1. Mean Flow

The model treats unsteady, non-uniform flow as a perturbation to a specified steady,
axisymmetric mean flow. Mean flow quantities take uniform values within each control
volume, comprising the inlet, outlet, and spaces between blade rows as shown in Figure 1.
For validation cases presented in this paper, we specify mean flow using time- and area-
averaged CFD solutions. For the design space study, we specify mean flow using a
one-dimensional mean-line solver with prescribed polytropic efficiency.

Figure 1. Annulus control volumes i = 1, 2, . . . , Ni in the semi-actuator disk model. The mean flow is
uniform and steady over each of the inlet, outlet, and spaces between blade rows.

2.2. Characteristic Waves

Perturbations about the mean flow obey the two-dimensional linearised Euler equa-
tions in each control volume under the following assumptions:

1. high hub-to-tip radius ratio, so spanwise variations are negligible;
2. small amplitude perturbations, so products of perturbation quantities are negligible;
3. high Reynolds number, so viscous and heat conduction effects are negligible.

For harmonic perturbations with a given frequency and circumferential harmonic,
the general solution contains four arbitrary constants that set the perturbation flow field
within each control volume. These correspond to four characteristic waves: upstream-
running pressure, p̂− ; downstream-running pressure, p̂+ ; convected vorticity, v̂ ; and con-
vected entropy, ŝ [2]. To obtain a perturbation flow field, the task is to determine the ampli-
tudes of these characteristic waves in all control volumes by applying boundary conditions.
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2.3. Blade Row Modelling

Enforcing continuity of perturbation mass flux, relative-frame stagnation temperature,
and entropy across each blade row, combined with the Kutta condition α′i+1 = 0 , yields
relations between characteristic waves in successive control volumes. Figure 2 illustrates
applying these boundary conditions with varying degrees of fidelity. The result is always
a system of four simultaneous linear equations for each blade row, which we express as
a transfer matrix that yields a vector of characteristic waves in control volume i + 1 on
multiplication with the corresponding vector for control volume i .

In the actuator disk approach, Figure 2a, blade rows are a discontinuity in mean flow,
and matching conditions are independent of the flow inside the blade row. The semi-
actuator disk approach, Figure 2b, captures axial non-compactness by treating blade rows
as flat plates with finite chord. Assuming infinitesimal circumferential pitch, the flow is one-
dimensional within blade passages, and the solution for harmonic perturbations inside the
passage comprises pressure and entropy characteristic waves only. This neglects pitchwise
non-compactness, but our results show it is an acceptable approximation in practice.
Combining the matching conditions from leading and trailing edges, and eliminating the
passage characteristic waves, gives the desired transfer matrix.

Turbine blades are highly cambered, unlike flat plates, leading to significant variations
in mean flow along the blade chord. We account for this by discretising the camber line
into multiple elements, Figure 2c, each with varying stagger angle. The flow is taken to
be isentropic until the trailing edge, where the blade row loss is added. In the absence of
detailed geometry data, we assume a quadratic camber line between inlet and exit flow
angles. Applying the usual matching conditions between each element, and eliminating all
passage characteristic waves from the resulting system of equations yields the row transfer
matrix. In a typical case, the acoustic impedance becomes independent of the discretisation
level for greater than 50 elements, the number we use in this paper.

Figure 2. Blade row models for determining acoustic impedance: (a) actuator disk, after Cumpsty and
Marble [2]; (b) semi-actuator disk, after Kaji and Okazaki [3]; (c) our cambered semi-actuator disk.

2.4. Method of Solution

We use a superposition method to find perturbations that result from given boundary
conditions at the turbomachine inlet and outlet. Downstream-running pressure, vorticity,
and entropy waves are specified at the inlet, and two arbitrary guesses are made for the
unknown upstream-running pressure wave. This completes a vector of characteristic
waves in the first control volume, and successive multiplications by the blade row transfer
matrices yield amplitudes in subsequent control volumes. The actual solution is the linear
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combination of both guess solutions satisfying the desired outlet boundary condition, of no
upstream-running pressure wave in the final control volume.

3. Non-Linear Time-Domain Computations

This section describes a CFD-based approach to predicting acoustic impedances for
a turbomachine subject to incident plane waves. We use a set of three simulations with
different unsteady forcing about the same mean flow to determine impedances for incident
pressure and entropy waves. The only inherent assumption is that the problem is linear.
Implementation in an industrial-type CFD solver, with reflective boundary conditions
and a second-order accurate discretisation scheme, results in a low computational cost
compared to specialised high-order aeroacoustic codes. This is sufficient for the low
reduced frequencies of interest.

3.1. Domain and Boundary Conditions

Figure 3 illustrates the computational domain and boundary conditions. Locating
the inlet and outlet planes one wavelength of the fundamental forcing frequency (50 axial
chords) away from the machine provides spatial resolution for wave separation. Inviscid
walls at the radial boundaries enforce a two-dimensional flow. The time-averaged inlet
boundary conditions are uniform stagnation pressure and temperature with no swirl,
and the outlet boundary condition is a uniform static pressure.

Figure 3. Domain and boundary conditions for computational fluid dynamics model.

We define unsteady perturbations to the boundary conditions using a forcing function,

F(t) =
M

∑
m=1

∆ sin(2πm f0t) , (1)

where f0 is the fundamental frequency, M is the number of harmonics, and ∆ = 0.1% is a
small amplitude parameter. Three different forcing cases about the same steady operating
point generate sufficient data to solve for acoustic impedance:

Upstream isentropic forcing, p01(t)
p01

= 1 + F(t) , T01(t)
T01

= (1 + F(t))
γ−1

γ ;

Upstream entropic forcing, p01(t)
p01

= 1 , T01(t)
T01

= 1 + F(t) ;

Downstream pressure forcing, p2(t)
p2

= 1 + F(t) .

(2)

The boundary conditions are not non-reflective, and the imposed forcing is not in
terms of characteristic waves. Therefore, each simulation will contain a linear combination
of three cases with incident downstream-running pressure, upstream-running pressure,
or entropy waves alone. Rather than attempting to simulate one of these ‘pure’ cases
directly, we take the alternative approach of accounting for the combination effect in a
post-processing step.



Int. J. Turbomach. Propuls. Power 2021, 6, 18 5 of 12

3.2. Post-Processing

We sample the unsteady flow field at a series of axial locations in the inlet and exit
ducts, at least 10 axial chords away from the machine, and use this data to extract values
for acoustic impedance. The post-processing method comprises the following stages:

• Area average. Area-averaging at each time step makes the unsteady flow at a given
location spatially uniform, restricting the method to plane waves. Alternatively, ap-
plying constant-area mixed-out averaging (conserving mass, momentum, and energy)
gives identical results;

• Fourier transform. Subtracting time-mean pressure and entropy from the instanta-
neous values at each axial location forms perturbations, which are transformed to the
frequency domain using a fast Fourier transform algorithm;

• Wave separation. Applying the least-squares multi-microphone technique of Poinsot et al. [5]
separates upstream- and downstream-running wave amplitudes from static pressure
perturbations in the inlet and exit ducts;

• Reflectivity correction. We account for reflectivity of the computational boundary
conditions using a ‘black-box’ technique after Emmanuelli et al. [6], first proposed by
Cremer [7]. Expressing the wave amplitudes as a superposition of reflections, results
for all three forcing cases form a system of six simultaneous linear equations. A matrix
inversion yields the solution for the complex reflection and transmission coefficients.

3.3. Computational Details

All simulations in this paper were performed using TURBOSTREAM 3, a multi-block
structured unsteady Reynolds-averaged Navier–Stokes code developed by Brandvik and
Pullan [8]. The spatial discretisation is second-order accurate finite-volume; the temporal
discretisation is a second-order accurate dual time stepping scheme. A resolution study
verified mesh independence with 45 points per shortest acoustic wavelength. There are
72 implicit time steps over the highest frequency of interest, and 500 explicit iterations
converge each implicit step. We use the mixing length turbulence model, with a logarithmic-
layer wall function at a distance y+ ≈ 30 in wall units. This assumes fully-turbulent
boundary layers. In multi-row computations, an interpolation procedure matches the flow
between grids in relative motion at rotor–stator interfaces.

A hub-to-tip radius ratio of 0.99999 approximates two-dimensional cascade geometry.
The aerofoil section geometry is from the mid-span of a high-pressure turbine represen-
tative of a large industrial machine. Experimental data provide time-averaged boundary
condition values.

We select a fundamental forcing frequency f0 such that M = 5 harmonics corre-
sponds to a reduced frequency 0.02 ≤ κ ≤ 0.1, representative of combustion instability.
Forced unsteady simulations are started from a converged steady solution and run for
32 fundamental forcing periods before sampling flow field data over a further 32 periods.

4. Analytical Model Validation

In this section, we compare predictions of acoustic impedance from the analytical
model to results from the CFD simulations. Agreement between the two independent
calculation methods suggests that they are both valid. First, we demonstrate the benefit of
a cambered actuator disk over a flat-plate treatment for a single turbine vane. Next, we
quantify the effect of turbine cooling on acoustic impedance using simulations of a cooled
vane with different coolant flow rates. Finally, we extend the methods to a turbine stage
with stationary and rotating blade rows.

4.1. Uncooled Linear Vane Cascade

Figure 4 displays predicted acoustic impedances for an uncooled turbine vane, in terms
of magnitudes of the (complex) reflection and transmission coefficients, R and T , as a
function of reduced frequency, κ = f cx/a . Results for incident downstream-running
pressure, upstream-running pressure, and entropy waves are shown in Figure 4a–c. We



Int. J. Turbomach. Propuls. Power 2021, 6, 18 6 of 12

define the entropy wave coefficients as the entropy–acoustic transfer functions, suitably
normalised: for exampleRs = p̂−1 cv/ŝ1 p1 and Ts = p̂+2 cv/ŝ1 p2 .
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Figure 4. Reflection and transmission coefficients for an uncooled vane cascade, predicted by
analytical model and CFD, for different incident characteristic waves. ŝ Att’n denotes augmentation
with Bauerheim et al. [4] streamtube model. The cambered model matches the CFD results to within
on average ±2% for downstream-running pressure wave reflection, and ±11% for entropy–acoustic
reflection, an improvement over flat plates.

We contrast two blade row models: a flat plate staggered at the mean of the inlet
and exit flow angles, and a cambered vane. Both models converge in the zero-frequency
limit, matching the CFD data to within ±5% at κ = 0.02 , but the flat-plate model fails
to capture the trend with reduced frequency. At κ = 0.1 , the flat-plate model yields a
12% under-prediction of the reflection coefficient for downstream-running pressure waves,
while the cambered model reduces this discrepancy to a 1% over-prediction, Figure 4a. For
entropy–acoustic reflection, Figure 4c, the flat-plate model over-predicts by up to a factor
of three, and the cambered model eliminates the error. Overall, the cambered model is
a close match to the CFD for all reflection and transmission coefficients in Figure 4. The
root-mean-square discrepancies between cambered model and CFD are ±2% for reflecting
downstream-running pressure waves and ±11% for entropy–acoustic reflection.

The cambered model performs better because it accurately captures the time delay for
waves to propagate through the blade row. Bauerheim et al. [4] note that the bulk convection
time sets the slope of the entropy attenuation function at zero frequency. A flat plate with
constant stagger angle does not account for axially non-uniform velocity within the blade
passage, leading to a poor estimate of the bulk convection time. Bauerheim et al. [4] also
show that higher-order frequency terms in the entropy attenuation function are due to
entropy wave dispersion by circumferential velocity non-uniformity within the blade row.
The neglect of this effect contributes to an over-prediction by our cambered model of
transmitted entropy noise, by 140% at κ = 0.1 . Bauerheim et al. [4] accounted for entropy
wave dispersion by tracing streamlines through a CFD solution of the blade row, and using
time delays to calculate an attenuation coefficient. We use this approach for validation cases,
where CFD solutions are available. Augmenting the present model with this technique,
labelled ŝ Att’n in Figure 4c, reduces the over-prediction by half at κ = 0.1 . When CFD
solutions are not available, however, the basic cambered model gives good predictions of
entropy–acoustic reflection, the quantity of interest for thermoacoustic stability.

4.2. Cooled Linear Vane Cascade

In a typical gas turbine, film cooling controls metal temperatures below material
limits. We model coolant flow in the computations using additional surface fluxes of mass,
momentum, and enthalpy that reproduce the integral effect of film coolant ejection. In the
analytical model, we represent cooling as a discontinuity in mean flow at the row trailing
edge, together with the row loss, for simplicity. In principle coolant could be distributed
along the camber line between the coupled semi-actuator disks.
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We vary the coolant flow, Θ , up to 15% of the inlet mass flow, a value representative
of a highly-cooled nozzle guide vane (the exit Mach number is held constant). Figure 5
compares computational results and model predictions for the cooled vane. CFD data show
that the variation in pressure wave reflection and transmission coefficients due to coolant
flow is within ±3% of the mean over all coolant flow rates. The analytical model does
not capture the trend with varying coolant flow rate: computations predict that acoustic
impedance is independent of flow rate for κ = 0.1 , whereas the model predicts this to
occur at κ = 0.064 . We attribute this to lumping coolant ejection onto the trailing edge
in the semi-actuator disk model, while in reality film cooling alters the mean flow within
the passage. The CFD shows increasing coolant flow tends to decrease reflected entropy
noise, and the model agrees only qualitatively with this trend. Because of the relatively
small effect size, and inaccuracy of the analytical model, we exclude coolant flow from our
design space study.

Figure 5. Reflection and transmission coefficients for a cooled vane cascade, with varying coolant flow
rates Θ, predicted by cambered analytical model and CFD. The change in pressure wave reflection
coefficients is small: within ±3% of the mean value over all flow rates.

4.3. Linear Stage Cascade

Figure 6 compares acoustic impedance predictions for a two-dimensional, linear
turbine stage cascade, using the cambered model and CFD. The analytical model captures
the trends with reduced frequency, and is in good quantitative agreement with CFD
simulations. The root-mean-square discrepancy is within ±7% for incident downstream-
running pressure waves, and within ±16% for entropy–acoustic reflection. This confirms
applicability of our methods for multi-row cases.
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Figure 6. Comparison of reflection and transmission coefficients for a two-dimensional turbine stage,
predicted by cambered analytical model and CFD. The predictions agree on average to within ±7%
for downstream-running pressure wave reflection, and ±16% for entropy–acoustic reflection.
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5. Design Space Study

In this section, we use the analytical model to map acoustic impedance across the tur-
bine design space and quantify the sensitivity to aerodynamic design parameters. From di-
mensional analysis, the acoustic impedance of an uncooled two-dimensional turbine stage
is a function of,

R = func(φ , ψ , Λ , ζ , Ma2 , γ , η , κ ) . (3)

In gas turbines, the combustor imparts no swirl, so the stage inlet flow is axial, α1 = 0° .
The velocity triangles are controlled by: flow coefficient, φ ; stage loading coefficient, ψ ;
degree of reaction, Λ ; and axial velocity ratios, ζ1 and ζ3 . These parameters are defined,

φ =
Vx2

U
, ψ =

h01 − h03

U2 , Λ =
h3 − h2

h3 − h1
, ζ1 =

Vx2

Vx1
, ζ3 =

Vx3

Vx2
. (4)

Textbook design practice is constant axial velocity, with ζ1 = ζ3 = 1 . The maximum
practical axial velocity ratio varies around the design space and corresponds to parallel
annulus lines. The vane exit Mach number, Ma2 , characterises density variations in the
mean flow. Polytropic efficiency, η , characterises stagnation pressure losses. We fix values
of specific heat capacity ratio, γ = 1.33 , and reduced frequency, κ = 0.02 ; repeating the
analysis with different values produces the same qualitative trends. We take the vane axial
chord, blade axial chord, and axial spacing between the rows to be equal. Table 1 lists
datum values for the parameters with representative upper and lower limits.

Table 1. Datum values and upper and lower bounds for turbine design parameters.

Parameter φ ψ Λ ζ1 , ζ3 Ma2 η γ κ

Lower 0.4 0.8 0.4 — 0.6 0.85 — —
Datum 0.8 1.6 0.5 1.0 0.7 0.90 1.33 0.02
Upper 1.2 2.4 0.6 parallel annulus 0.8 0.95 — —

We generate families of turbine designs with different velocity triangles covering the
classical Smith chart design space of intervals 0.4 ≤ φ ≤ 1.2 and 0.8 ≤ ψ ≤ 2.4 , holding
the other parameters constant at datum values. The cambered semi-actuator disk model
predicts acoustic impedances for these designs subject to incident downstream-running
pressure and entropy waves. Next, we perturb each of the other parameters in turn to
determine their respective influences. Finally, we summarise by ranking the average
sensitivity of acoustic impedance to all parameters.

5.1. Velocity Triangles

Figure 7 displays contours of reflection coefficients for turbine designs with Λ, ζ1, ζ3,
Ma2, and η held at datum values, and illustrative vane shapes at the corners of the design
space. Vane turning increases towards the top left of the chart: from Euler’s work equation
tan α2 ∼ ψ/φ .

For incident pressure waves, Figure 7a, the reflection coefficient is three times more
sensitive to flow coefficient than stage loading coefficient. Increased aerofoil stagger angle
produces greater acoustic impedance by geometric blockage [3], which leads to the highest
reflection coefficient for high-turning designs. The blade speed Mach number U/a scales
rotational effects on the acoustic impedance; it reduces as stage loading increases, offsetting
some of the rise in reflection coefficient due to increased turning. For incident entropy
waves, Figure 7b, change in axial Mach number drives the trend in reflection coefficient.
For constant vane exit Mach number, the axial Mach number and, hence, entropy–acoustic
reflection is greatest for low-turning designs.
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Figure 7. Effect of velocity triangle design on acoustic impedance for incident downstream-running
pressure and entropy waves. Pressure wave reflection coefficients are most sensitive to flow coeffi-
cient. Entropy–acoustic reflection increases for low-turning designs.

5.2. Other Parameters

We now quantify the sensitivity of acoustic impedance to the parameters which were
held constant in the preceding velocity triangle analysis. By repeating the calculations
of Figure 7 changing one parameter at a time, and subtracting acoustic impedances at
the upper and lower limits, we derive a directional sensitivity for each (φ, ψ) point in the
design space. Figure 8a,b show results for incident pressure and entropy waves.

Increasing vane exit Mach number increases pressure-wave reflection coefficients,
Figure 8a. The lowest-turning design is a factor of two more sensitive to vane exit Mach
number than the highest-turning design. This is because lower flow angles imply a greater
axial component of Mach number.

Varying reaction gives rise to two competing effects. First, it controls the balance of
exit Mach numbers between vane and blade, with higher reaction leading to higher blade
exit relative Mach number and increased reflectivity. Second, higher reaction reduces the
vane loading and leads to lower vane exit flow angles, reducing reflectivity by geometric
blockage. The latter effect dominates for high-turning designs, leading to a net reduction
in reflection coefficient, and vice versa for low-turning designs, Figure 8a.

Changes in polytropic efficiency affect stagnation pressure loss through the turbine.
As efficiency increases, less annulus divergence is required to keep Mach numbers and
flow angles constant, and from Figure 8a the reflection coefficient increases. Less annulus
divergence implies more contraction in flow area through each row, and, hence, increases
reflectivity. Lower-turning designs, with less flow area contraction to begin with, are more
sensitive to this effect, by a factor of two.

As with increasing efficiency, increasing axial velocity ratio leads to reduced annulus
divergence, increased flow area contraction, and, hence, greater reflectivity, Figure 8a.
Lower-turning designs are more sensitive because of their lesser existing contraction in
flow area, as for polytropic efficiency. Highly-loaded designs are more sensitive because
they produce greater density changes, requiring more annulus divergence to maintain
constant axial velocity. Due to the combination of these effects, the sensitivity to axial
velocity ratio is more dependent on flow coefficient than stage loading.

Now considering entropy–acoustic reflection, Figure 8b, the impedance is dominated
by Mach number effects, with a maximum sensitivity of 0.08 for low-turning designs. This
is consistent with a smaller rise of up to 0.03 in entropy–acoustic reflection coefficient for
high-reaction, low-turning designs, due to increased rotor exit relative Mach numbers as
discussed above. Varying polytropic efficiency and axial velocity ratio alters the entropy–
acoustic reflectivity by less than 0.02.
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Figure 8. Effect of secondary parameter variations on acoustic impedance, for incident downstream-
running pressure and entropy waves. Contours of sensitivity calculated by subtracting acoustic
impedances at the upper and lower limits of each parameter, with other parameters at datum values.

5.3. Parameter Sensitivity Rankings

Figure 9 summarises the results of the design space study. We rank the parameters of
Equation (3) in order of their influence on pressure wave and entropy–acoustic reflectivity.
To quantify the average sensitivity to each parameter, we take the root-mean-square acoustic
impedance change with respect to the datum value of that parameter.

Flow coefficient is the most significant parameter for pressure wave reflection, due to
its influence on vane stagger angle, with a sensitivity twice that of the next parameter, axial
velocity ratio. Flow coefficient is also of primary influence for entropy–acoustic reflection,
with Mach number a close second. The influences of polytropic efficiency and degree
of reaction are minor, with sensitivities less than 28% those of flow coefficient for both
incident wave types.

So far, we have discussed only impedance magnitude results. Although we do not
present the results here, we note that repeating the design space sensitivity study for
impedance phase also yields similar rankings: flow coefficient, followed by stage loading
are the most influential parameters.
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Figure 9. Ranking of turbine design parameters by root-mean-square acoustic impedance sensitivity,
for incident pressure and entropy waves. Flow coefficient is the most influential parameter.
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6. Conclusions

1. Predictions of turbine acoustic impedance using a cambered semi-actuator disk model
agree with two-dimensional CFD simulations to within ±7% and ±16% for incident
pressure and entropy waves, an improvement over simpler flat-plate models;

2. For representative coolant flow rates, turbine cooling has a limited effect on acoustic
impedance of ±3%. Increasing coolant flow rate reduces entropy–acoustic reflectivity;

3. A parametric study of the turbine design space shows that acoustic impedance is most
sensitive to flow coefficient, then axial velocity ratio, Mach number, and stage loading
coefficient. Acoustic impedance is relatively insensitive to polytropic efficiency and
degree of reaction.

Our work furnishes the combustion engineer with improved tools for efficiently and
accurately predicting impedance boundary conditions, and the insight that thermoacoustic
instability is most likely to be compromised by a change in turbine flow coefficient.
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Nomenclature

Roman Greek
a Acoustic wave speed [m s−1] α Flow angle [°]
c Blade chord [m] γ Specific heat ratio [–]
f Frequency [Hz] η Polytropic efficiency [–]
h Specific enthalpy [J kg−1] Θ Coolant flow fraction [–]
Ma Mach number [–] κ Reduced frequency [–]
p Pressure [Pa] Λ Degree of reaction [–]
R Reflection coefficient [–] ρ Density [kg m−3]
s Specific entropy [J K−1 kg−1] υ Vorticity [s−1]
T Temperature [K] φ Flow coefficient [–]
T Transmission coefficient [–] ψ Stage loading coefficient [–]
U Rotor blade speed [m s−1] ζ Axial velocity ratio [–]
V Velocity [m s−1]

Subscripts Accents
0 Stagnation conditions �̂ Characteristic wave
i Control volume index �′ Perturbation relative to mean
1 Vane inlet �+ Downstream-running
2 Vane outlet �− Upstream-running
3 Blade outlet �(t) Function of time
x Axial component � Time average
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