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Abstract: The fast-paced development of power systems necessitates the smart grid (SG) to facilitate
real-time control and monitoring with bidirectional communication and electricity flows. In order to
meet the computational requirements for SG applications, cloud computing (CC) provides flexible
resources and services shared in network, parallel processing, and omnipresent access. Even though
CC model is considered to be efficient for SG, it fails to guarantee the Quality-of-Experience (QoE)
requirements for the SG services, viz. latency, bandwidth, energy consumption, and network cost.
Fog Computing (FC) extends CC by deploying localized computing and processing facilities into
the edge of the network, offering location-awareness, low latency, and latency-sensitive analytics
for mission critical requirements of SG applications. By deploying localized computing facilities
at the premise of users, it pre-stores the cloud data and distributes to SG users with fast-rate local
connections. In this paper, we first examine the current state of cloud based SG architectures and
highlight the motivation(s) for adopting FC as a technology enabler for real-time SG analytics. We also
present a three layer FC-based SG architecture, characterizing its features towards integrating massive
number of Internet of Things (IoT) devices into future SG. We then propose a cost optimization model
for FC that jointly investigates data consumer association, workload distribution, virtual machine
placement and Quality-of-Service (QoS) constraints. The formulated model is a Mixed-Integer
Nonlinear Programming (MINLP) problem which is solved using Modified Differential Evolution
(MDE) algorithm. We evaluate the proposed framework on real world parameters and show that
for a network with approximately 50% time critical applications, the overall service latency for FC is
nearly half to that of cloud paradigm. We also observed that the FC lowers the aggregated power
consumption of the generic CC model by more than 44%.

Keywords: smart grid (SG); internet of things (IoT); fog computing; cloud computing; hierarchical
fog architecture; modified differential evolution (MDE)

1. Introduction

A smart grid (SG) is a pervasive network of densely distributed energy and resource-limited
wireless things (e.g., smart devices), all capable of gathering and transferring in real-time large volumes
of heterogeneous environmental data. However, due to the current energy computing bandwidth
limitations of the wireless domain, to date, a system of this complexity has been unfeasible [1].
Through the notion of Internet of Things (IoT), the future Internet is bringing SG machines, devices,
and sensors connected to the internet [2,3]. By interconnecting the machines with the Internet they
become smart, with the ability to react and make decisions on their own. IoT devices are connecting
wirelessly or directly through network switches and devices. Many of the devices have closed
interfaces that make it hard to extract information. Some devices are old, some are new, and all of them
communicate with different protocols, thus give rise to interoperability issues. With machines and
sensors recording data in real time every second or minute, the amount of data can be massive. Latency
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can be a big issue when real-time decisions need to be made [2,4–7]. When multiplied by hundreds
of machines across multiple plants the amount of data can be too much for the network to handle
when it finally reaches the cloud data center. Finally, trying so many machines and devices together
means exorbitant customization costs. In such circumstances, reaching a consensus on where to install
the compute and storage resources becomes a critical research thrust for the academia, industries,
R&D, and legislative bodies [8]. The centralized cloud computing (CC) model, though having virtually
unlimited resource pooling capabilities, ceases to welcome its proponents because of its failure in
building common and multipurpose platform that can provide feasible solutions to the mission critical
requirements of an IoT-aided SG [9].

Fog computing (FC) is a distributed computing framework installed on the intermediary network
switches, devices sensors and machines to eliminate the connectivity, bandwidth, and latency issues
prevalent in CC. FC is a natural extension of CC and is foreseen as a remedy to alleviate such issues [10].
Both these platforms complement each other to form a mutually beneficial and interdependent
service continuum between the Cloud and the endpoints to make computing, storage, control, and
communication possible anywhere along the continuum. A robust FC-based SG topology will allow
dynamic augmentation of associated Fog Computing Nodes (FCN), thus rejuvenating the elasticity
and scalability profiles of mission critical SG requirements. The objective of FC is to standardize and
ensure secure communication between all devices, SG components, old and new, across all vendors,
so that customization and service costs are kept to a minimum. The FCNs are placed on or between
devices and the cloud. The notion is to allow machines to speak directly to each other without going
through cloud by connecting machines, devices and sensors directly to each other (at only one or
few steps) enabling real-time decisions to be made without transmitting vast amount of data through
the cloud. The FC objective is also to connect all devices to the cloud with open communication
standards [11]. The result is a smart network of devices that are able to make decisions themselves
and react in real-time to a changing environment or supply chain such as SG. Further it will facilitate
the following.

(a) Make electric utilities smarter.
(b) Help accelerate the transformation of cities into smart cities.
(c) Accelerate industries into smart manufacturing.
(d) Make SG logistics even more efficient, and many more.

Since the FC elements are heterogeneous and resource constrained, proper orchestration among
them is very essential to attain a near optimal performance. Moreover, the workload allocation in FC
should be performed so that the resource utilization rate is maximized. In other words, for efficient
execution of FC, the resources should be provisioned to guarantee an optimal balance of attributes
defining architectural Quality-of-Service (QoS) (e.g., power consumption, carbon footprint, etc.) and
Quality-of-Experience (QoE) (near real-time response) of user. As the FCNs exhibit diverse cost profiles,
it is necessary to have an optimal user-to-FCN association such that the corresponding upload latency
is minimized. Also, the number of successful connections is limited by the number of bandwidth
units (BU) or computational resource blocks (CRBs) available at each FCN. For each workload to be
allocated, finding a proper set of FCNs to host the virtual machines (VMs) for each application is also
a key issue to cost minimization. Therefore, in this paper, we are motivated to investigate the QoS
guaranteed minimum cost resource management problem in fog enabled SG architectures. The key
contributions of this paper are as follows.

• We synoptically revisit the current state of cloud based SG. Correspondingly, we also examine
how the Fog Computing (FC) models can serve as an ally to cloud computing platforms and how
far an optimal mix of both computation models will successfully satisfy the high assurance and
mission critical computing needs of SG.

• We present a three layer architecture of fog-based SG describing the composition and working of
each layer.
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• We present a mathematical framework for defining the cost profiles in both cloud and fog-based
execution. Successively, a cost-efficient optimization framework for cumulative assessment of user
to Fog Computing Node (FCN) association, workload allocation, and VM placement constraints,
is proposed towards viable deployment of FC.

• The model is then solved using Modified Differential Evolution (MDE) algorithm for
comprehensive cost comparison of FC (Fog-assisted cloud) over generic cloud computing
techniques, through metrics such as latency cost, power consumption cost.

The rest of the paper is organized as follows. In Section 2, works related to fog computing in
SG and workload allocation in FC are presented. Section 3 presents the theoretical background of
FC in SG infrastructures. In Section 4, simulations and algorithmic setup are presented to solve the
proposed optimization model. Results and discussions are presented in Section 5. Section 6 concludes
the manuscript by providing insights, challenges and future prospects or FC-based sustainable
SG deployments.

2. Related Works

The advantages of FC are increasingly attracting attention from both academic and industry.
The store and compute model of FC is being pervasively used for mission critical infrastructures
such as SG, Intelligent Transportation Systems (ITS), Healthcare Cyber Physical Systems (HCPS),
and Emergency and Response Applications (viz. disaster management, accident prevention, etc.).
However, since the FC nodes are heterogeneous and resource constrained, proper orchestration among
them is very essential to attain a near optimal performance. In addition, the workload allocation in FC
should be performed efficiently so that the resource utilization is maximized. In this section we first
highlight the recent research on using FC as analytics platform for SG applications. We then revisit the
works related to optimal workload allocation and resource provisioning solutions in FC.

2.1. Works Related to Fog Computing in Smart Grid

In future smart cities, smart power grids will be critical in ensuring reliability, availability, and
efficiency in city-wide power management [12]. A successful SG architecture will be able to help
improve transmission efficiency of electricity, react and restore timely after power disturbances, reduce
operation and management costs, better integrate renewable energy systems, and effectively save
energy for future usage. This vision is bold but critical to enabling smart living [13]. The new
challenges of big data analytics (BDA) posed by SG welcome scientists from both academia and
R&Ds to investigate and develop novel and high-performance computing architectures [11]. Due to
its multifaceted opportunities and advantages over pure cloud and edge models, FC had received
enormous attention from the SG community. In fact, in the seminal paper where the concept of FC was
first proposed, the authors presented the SG architecture to be a rich use-case of fog computing [14].
They further enlightened the scope of fog-based SG deployment taking a micro grid (wind farm)
example [15]. An FC-based SG prototype is presented by Varghese et al. [16], where the authors
examined how the FC environment can act as a bridge between the SG and back end cloud for offering
store and compute services for smart meter from AMI. Through smart home example, they show
how an FC-based SG deployment will assist the customers to monitor, analyze, and fine-tune their
daily/weekly/monthly electric consumption in a secure manner. However, sound mathematical
foundation was not drawn to support the model. Besides, a range of literatures [3,5,12,17,18] exemplify
the sprouting opportunities, challenges, and research directions in fog-based SG, and emphasize the
significance of software platforms as well as SOAs for big data analytics in SG.

The SG transportation networks must adapt to dynamic usage, traffic conditions, and user
behavior with a minimal carbon footprint. A clean and renewable power grid must actuate localized
energy and power control. Also, pervasive security enforcement is needed to detect and prevent
potential threats [13]. Jalali et al. [19] proposed FC as a technology enabler for green IoT. They compared
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the power consumption of multiple IoT applications when running on both Fog and Cloud platforms.
However they considered only energy metric for comparison purpose, not the full range of metrics
that defines a typical fog environment. As a preliminary estimation the authors took the instance of
Los Angeles smart grid, the largest public utility in the US that will serve over four million electricity
consumers, to highlight the scope of fog-based deployments [18]. They hypothesized a test bed where
the IoT integrated smart meters from AMI running over P2P or M2M communication channels will
observe energy demand at households and industries and report them periodically back to the utility
every few minutes. For demand response operations, the gateways can act as fog nodes take local
decisions to determine curtailment strategies and control, say a smart appliance or an electric car,
or centrally change set-points of HVAC systems across campus buildings [6]. The suitability of FC
is also explored for the case of distributed state estimation models, but they nowhere present any
experimental framework to validate the proposals [17,18].

2.2. Works Related to Workload Allocation in Fog Computing

Critical inspection of the recently published works support the conclusion that resource
provisioning and workload allocation in Fog-assisted cloud architectures is still in its infancy and
lacks concrete solutions to reveal its viability [20]. In some works scheduling-based workload
allocation policy is presented to balance computation load on FCNs and client/user devices [21].
Some literatures present a workload allocation framework for optimizing the delay and power
consumption in Fog–Cloud interaction [22]. In one paper the authors focus on task scheduling
algorithms for the minimization of the energy in reconfigurable data centers that serve static clients [23].
They proposed a greedy strategy-based scheduling algorithm for mapping tasks to VMs and then
to suitable servers. Though the achieved energy performance is appreciable but their use-case does
not consider mobile clients, which are pervasive in SG. Similarly, Jalali et al. present a programming
model including a simple resource provisioning strategy, which relies on workload thresholds, i.e.,
if the utilization of a particular fog cell exceeds a predefined value, another fog cell is leased [24].
Apart from fog-specific resource provisioning solutions, resource allocation and service scheduling are
major research challenges in the general field of cloud computing [25,26]. Though such tactics offer
motivating insights, there are key differences between fog services and cloud services. Thus it prevents
a direct adaptation for the use in the work at hand. First, the size and type of fog resources are very
different from its cloud computing counterparts. While cloud resources are usually handled on the
level of physical machines, virtual machines (VMs), or containers, fog resources are usually not as
powerful and extensive. While cloud resources are usually placed in centralized data centers, the FCNs
may be distributed in a rather wider area having heterogeneous network topology, making it more
important to take into account data transfer times and cost in FC. This is especially important since one
particular reason to use FC in IoT scenarios is the higher delay-sensitivity of fog-based computation.
Hence, resource provisioning approaches for the fog need to make sure that this benefit is not foiled by
extensive data transfer times and cost. Resource and workload allocation fog like networks may be
performed through optimization algorithms. One such work was presented by Persico et al., where the
authors define an iterative optimization algorithm based on weighted spherical means [27]. We found
analogous efforts in healthcare applications [28], where the objective is to solve the problem of the
unstable and long-delay links between the cloud data centers and medical device(s). A case study on
fog-based Electrocardiogram (ECG) feature extraction is performed by Zhan et. al to diagnose cardiac
diseases [29]. Interestingly, more than 90% bandwidth efficiency was achieved for the same but they
did not consider other QoS metrics such as energy consumption or carbon footprint etc. A prototypical
Smart e-Health Gateway or fog node called UT-GATE was devised by Skarlat et al. for IoT based
Early Warning Score (EWS) application [30]. Extensive simulations were presented to demonstrate
the enhanced overall system intelligence, energy efficiency, mobility, performance, interoperability,
security, and reliability. But to the best of our knowledge, we found no such contribution focusing
on workload allocation, resource-provisioning and feasibility analysis of fog-based SG platforms.
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Inspired by such concept(s), our work further investigates a fog-based SG architecture coupled with a
cost-efficient workload allocation framework and provides rigorous theoretical results to guide the
practical SG deployment.

3. Theoretical Background

The FC framework will potentially abridge the silos between personalized and batch analytics in
SG informatics. The FC is an architectural setup for federated as well as distributed processing where
application specific logic is embedded not only in remote clouds or edge systems, but also across
the intermediary infrastructure components. A robust fog topology allows dynamic augmentation
of associated fog nodes thereby improving the elasticity and scalability profiles of mission critical
infrastructures. In this section we first examine the use of FC in the context of SG applications. In the
next subsection we present a three-layer architecture of fog-based SG describing the composition and
working of each layer. We also present the networking model and optimization framework for defining
the cost profiles in both cloud and fog-based execution.

3.1. Smart Grid as Use-Case for Fog Computing

In this section, we outline the FC paradigm and examine its preeminence over the cloud computing
in SG context. We highlight some key SG characteristics that motivate the analytics utilities to relinquish
the current cloud adoption and opt for analytics at the edges of the SG networks.

3.1.1. Decentralization and Low Latency Analytics

The data generation and consumption sites of SG entities and stakeholders are sparsely distributed
all over the SG network. The centralized cloud model succumbs to serve as the optimal strategy for SG
applications that are geographically distributed. For instance, together with a centralized control, the
sensor and actuator nodes deployed across the smart home or Electric Vehicle (EV) infrastructures also
require geo-distributed intelligence. The domain of information transparency may need to be extended
from mere Supervisory Control and Data Acquisition (SCADA) systems to a scale that ensures national
level visibility. However, since majority of the SG services are consumer centric, they demand location
aware analytics to be performed closer to the source of the data.

The contemporary cloud infrastructures pose serious latency issues for power applications
operated by real-time decisions. For instance, the SCADA system employed in a modern data driven SG
is so timed that it may produce glitches when operated over ubiquitous TCP/IP protocols. Fortunately,
the FC is there to harness the store and compute resources latent in the underutilized SG resources such
as vehicles [31,32], gateways, PMUs, etc. [11]. The fog model complements the cloud computations
with dedicated and ad hoc computational resources [33], to be performed on the edge nodes of an
IoT-aided SG thereby reducing the networking latency.

3.1.2. Limited Resource Distribution for Individual IoT Endpoints

Compared to mega servers in cloud computing, each individual IoT devices such as sensors
and actuators have limited store and process capabilities. The front end mobile devices may fail
to perform complex SG analytics due to hardware restrictions such as draining of battery, or other
middleware limitations. Often the data needs to be sent to cloud to meet the processing demands and
meaningful information is then relayed back to the front end [34]. However, if carefully designed,
such resource scraps may be aggregated and utilized for dedicated purposes. Think of a smart vehicle
having limited processing and storage resources, thanks to the parked vehicular cases where these
underutilized resources can be aggregated, utilized to perform alluring services such as Internet of
Vehicles (IoV), Social Internet of Vehicles (SIoV), infotainment services, etc. Moreover, for many of
the SG use-cases, not all data from a front end device will need to be used by the service to construct
analytical workloads on the cloud. Potentially, data can be filtered or even analyzed at such fog nodes
equipped with spare computational resources, to accommodate data management and analytics tasks.



Big Data Cogn. Comput. 2019, 3, 8 6 of 29

3.1.3. Energy Consumption of Cloud Data Centers

The energy consumption in mega data centers is likely to get tripled in in coming decade.
Adopting energy aware strategies becomes an earnest need for SG utilities. Offloading the whole of
smart grid applications into the cloud data centers causes untenable energy demands, a challenge
that can be alleviated by adopting sensible energy management strategies. There are plenty of SG
applications that can be run without significant energy implications [35]. For such trivial services,
instead of overloading data centers, the analytics can be made ready at SG fog nodes such as RTUs,
SCADA systems, roadside units (RSU), base stations, and network gateways.

3.1.4. Handling Data Deluge and Network Traffic

The population IoT endpoints in SG architectures is growing at an enormous rate, as can be
discovered from the smart meter installation landscape in [36]. As an illustration, consider a smart
meter that is reporting data at frequency four times per hour. It will generate 400 MB of data a year.
Thus, a utility serving AMI to a million customers will generate 400 TB of data a year. In 2012, BNEF
predicted 680 million smart meter installations globally by 2017—leading to 280 PB of data a year.
This is not the only data utilities are dealing with, the generated data volume is anticipated to come
from other SG attributes such as consumers load demand, energy consumption, network components
status, powerline faults, advanced metering records, outage management records, forecast conditions,
etc. The Electric Power Research Institute (smartgrid.epri.com) estimates the exponential boom in the
quantities of smart grid data for a vertically integrated utility serving about one million customers [36].

One solution to cope with such a big data avalanche is to have an expansion of data center
networks that can mitigate the analytical workloads. However, this again raises concerns related to
sustainable energy consumption and carbon footprint. Attempts to undertake analytics on the edge
device is restrictive due to their resource limitations. Also in many cases, aggregated and collective
analytics becomes unfeasible. Added to this is the volume of network traffic and complexity in SG that
worsens the reliability and availability of analytics services [37]. Leveraging the SG architectures with
dedicated fog nodes deployed at a few hop distances (mostly one hop) from the core network, will
complement the computations of both front end device as well as back-end data center.

3.1.5. Security Concerns

In the context of SG applications security is defined to mean the safety and stability of the
power grid, rather than protection against malice, as the latter comes under the privacy umbrella.
The malignancy of casual justification of Consistency Availability Partition tolerance (CAP) theorem
or Brewer’s theorem is manifested in the current position of SG cloud security [38]. In current SG
designs, whole data finds its way into cloud storages comprised of a huge number of servers and
storage components having peculiar horizontal and vertical elasticity. Unfortunately, the existing
cloud based security and privacy enforcements are precisely erratic, and many a times the threats may
enter from cloud operators’ side. In a competitive plus shared cloud SG environments the worry is
that the rivals may spy on proprietary data, leading to cyber physical war among nations.

Gartner claimed that the cloud platforms are fraught with security risks and suggests SG like
customer must put rigorous questions and specifications before the cloud service providers [39,40].
They should also consider a guaranteed security assessment from a neutral third party prior to making
any commitment. Rigorous efforts are on headway across the power system and transportation
communities to come up with SG cloud utilities and platforms leveraged with robust protective
contrivances where the stakeholders could entrust the storage of sensitive and critical data even under
concurrent share and access architectures [41].

The distinguishing geo-distributed intelligence provided by FC deployments make it more viable
for security constrained services as the critical and sensitive tasks are selectively processed on local fog
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nodes and are kept within the user control, instead of offloading the whole universe of datasets into
the vendor regulated mega data centers.

3.2. Fog Computing for Smart Grid Architecture

A SG offers a rich use-case of FC. Consider an IoT-aided SG architecture, where we have a
large-scale, geographically distributed micro grid (e.g., wind farm) system populated with thousands
to millions of sensors and actuators. This system may further consist of a large number of
semiautonomous modules or subsystems (turbines). Each subsystem is a fairly complex system
on its own, with a number of control loops. Established organizing principles of large-scale systems
(safety, among others) recommend that each subsystem should be able to operate semi-autonomously,
yet in a coordinated manner. For that, controller with global scope, implemented in a distributed
way may be employed. The controller builds an overall picture from the information fed from the
subsystems, determines a policy, and pushes the policy for each subsystem. The policy is global, but
individualized for each subsystem depending on its individual state (location, wind incidence, and
conditions of the turbine). The continuous supervisory role of the global controller (gathering data,
building the global state, and determining the policy) creates low latency requirements, achievable
locally in the edge centered deployment also known as the fog. Such system generates huge amounts
of data, much of which are actionable in real time. It feeds the control loops of the subsystems, and is
also used to renegotiate the bidding terms with the ISO whenever necessary. Beyond such real-time
network applications, the data can be used to run analytics over longer periods (months to years) and
over wider scenarios (including other wind farms or other energy data). The cloud is the natural place
to run such batch analytics. The SG requires a store and computing framework leveraged with efficient
communication network connecting the subsystems, the system and the internet at large (cloud).

The underlying notion of FC is the distribution of store, communicate, control and compute
resources from the edge to the remote cloud continuum [3]. The fog architectures may be either fully
distributed, mostly centralized, or somewhere in between. In addition to the virtualization facilities,
specialized hardware and software modules can be employed for implementing fog applications. In
the context of an IoT-aided SG, a customized fog platform will permit specific applications to run
anywhere, reducing the need for specialized applications dedicated just for the cloud, just for the
endpoints, or just for the edge devices. It will enable applications from multiple vendors to run on the
same physical machine without reciprocated interference [9]. Further, the FC will provide a common
lifecycle management framework for all applications, offering capabilities for composing, configuring,
dispatching, activating and deactivating, adding and removing, and updating applications [42]. It will
further provide a secure execution environment for fog services and applications [3].

A multi-tier fog-assisted cloud computing architecture is shown Figure 1, where a substantial
proportion of smart grid control and computational tasks are nontrivially hybridized to geo-distributed
FC nodes (FCN) alongside the data center-based computing support. The hybridization objective
is to overcome the disruption caused by the penetration of IoT utilities into SG infrastructures that
calls for active proliferation of control, storage, networking and computational resources across the
heterogeneous edges or end-points. The framework facilitates the comprehensive enactment of IoT
services in a fog landscape supporting big data analytics of SG data and guaranteeing optimal resource
provisioning in the fog.
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3.2.1. Layer 1

The lowermost tier consists of smart grid physical infrastructure populated IoT devices, that
are further meshed by noninvasive, highly reliable, and low cost sensory nodes, deployed across the
SG horizontals i.e., generation, transmission, distribution, and consumption [42]. Thus, the physical
components of this tier comprises of RFIDs, devices, cameras, infrared sensors, laser scanners, GPSs,
and miscellaneous data collection entities.

3.2.2. Layer 2

The next tier also called FC tier functions as the prime component of a typical FC model.
Though the notion of FCN were mainly proposed by Cisco [43] and Bonomi [14], the distribution,
computational, and storage capacities; their interaction; and their deployment as a service (FaaS)
scheme has not been clearly classified. The FCNs are expected to analyze the datasets based on the
nonfunctional requirements of supporting applications such as latency, QoS, reliability, etc. Further,
the massive sensing data streams generated from these geospatially distributed sensors have to be
processed as a coherent whole.

The FC layer in Figure 1 (within dashed oval) integrates the intermediate computing services into
various sub layers. The lowest layer, closest to the physical layer, comprises of multiple low-power and
high-performance computing nodes or edge devices such as dedicated routers, cellular network base
stations, etc. Each edge device covers a group of sensors in its domain for performing traces of local and
instant analytics. The outputs of edge devices may either fully assimilated within the SG applications
or may be offloaded to the upper tier for further processing. The later may be reports of accomplished
tasks or some preprocessed datasets that are made ready for upper level analysis. For example,
the instant output can be used to provide real-time feedback control to a local infrastructure, e.g.,
to inform police authorities in response to any isolated and small threats to a monitored electric
vehicular network.

The higher sub layer consists of dedicated computing nodes named as FCN, either connected to
edge nodes from lower layers or to upper layer cloud data centers through reliable communication links.
Sometimes, the FCNs at same depth are paralleled to nodes lying below in the hierarchy to undertake
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tasks. In many cases the FCN may form further sub trees of FCNs, with each node at higher depth in
the tree managed by the ones at lower depth, in master slave paradigm [44]. A typical association of
such hierarchies is depicted FC layer of Figure 1. To be specific, consider a SG power transmission
scenario where the FCNs are assigned with spatial and temporal data to identify potential hazardous
events in transmission lines, viz., power thefts, intrusion in the network, etc. In such circumstances,
these computing nodes will shut down the power supply from the distribution substation and the
data analysis results will be feed backed and reported to the upper layer (from village substation to
SCADA, to city wise power distribution center or to generation bodies) for complex, historical, and
large-scaled behavioral analysis and condition monitoring. The distributed analytics from multi-tier
fogs (followed by aggregation analytics in many use-cases) performed at the FC layer acts as localized
“reflex” decisions to avoid potential contingencies. Meanwhile, a significant fraction of generated IoT
data from smart grid applications is not required to be dispatched to the remote clouds; hence response
latency and bandwidth consumption problems could be easily solved.

3.2.3. Layer 3

The uppermost tier is the Cloud Computing or data center layer, providing global or centralized
monitoring and control. The data centers are leveraged with high performance distributed computing
and storage elements that allow to perform complex, long-term (days to month or years), and grid-wide
behavioral analysis. The results of cloud scale analytics may be large-scale event detection, long-term
pattern recognition, and relationship modeling, to support dynamic decision making. One major
objective of cloud level analytics is to ensure the grid and service vendors to perform large scale
resource and response management activities and to be prepared for blackouts or brownouts.

3.3. Network Model for Fog Computing

In a cloud computing model the Mega Data Center (MDC) provides sharable resource pool
available for on-demand use. Since the MDCs are far away from the data generation sites, data
migration and service latencies give rise to infeasibilities for real-time and interactive SG applications.
However, in fog architecture, low/battery powered FCNs are deployed at the dedicated edges of the
network to offer store, compute and networking support for SG mobility, real-time response, and
geodistributed intelligence. Consider an FC architecture customized to BDA in SG applications, in
which data and computation are selectively offloaded to either cloud or fog scale processing, guided
by an application specific logic. Without loss of generality, respectively, let us assume the sets D, F,
and N represents the set of data centers, fog nodes, and number of consumers having cardinality D,
F, and N, respectively. An instance of SG network can be modeled as a connected cellular graph of
order (N + F) whose vertices are constituted by data consumer set (N) and FCN set (F). Let ra

i be the
frequency of workload arrivals on fog node i. For simplicity it is assumed that the FCNs are equipped
with homogenous processing elements (having same processing power) each having service rate rs

i .
An FCN j is reachable from query source node k if j is in the preference list L, dynamically maintained
by FCN j.

Consider a pilot SG analytics service to be delivered from the hierarchical fog architecture shown
in Figure 1. Over the time frame considered, out of volume Ω of generated workload, the sensing
and offloading schemes directly dispatch (towards the left subtree of root in Figure 2) the less critical
datasets Ω1 (demanding historical analytics on power market operational data, forecasting data, etc.)
for cloud scale processing. The latency critical datasets Ω2 are uploaded to the associated FCNs with
probability 1− πc. A fraction of datasets (Ω3) demand sequential execution of both cloud and fog scale
algorithms, where the results of fog analytics are used for reflex and real-time decision making, and
consecutively dispatched to remote clouds for operations such as large scale event detection, behavioral
analysis, prediction, pattern analysis, etc. The uncertainties associated with such multimodal execution
are captured through probability terms appearing in the leaves ((a) to (e)) of decision tree in Figure 2.
An ideal Fog–Cloud framework is leveraged with robust inferencing logic and intelligent filtering
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devices to undertake instant decisions on where to distribute the produced datasets. Following these
assumptions, in this section, we establish a mathematical framework for defining the cost profiles
in both cloud and fog scale processing. The objective of the proposed framework is to minimize the
overall cost incurred due to power consumption, latency, and carbon footprint.
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3.3.1. Cost Profile for Generic Cloud Processing

The term CT
C in Equation (1) represents the total cost of a traditional data center-based

computational infrastructure. The addend terms are respectively source to cloud communication
latency cost, cost of storage and analytics, cost corresponding to electricity consumption, and cost
reflecting the volume of carbon footprint from these data centers.

CT
C = Ccomm

C + Ccomp.
C + Ccons.

C + Cems.
C (1)

3.3.2. Cost Profile for Fog-assisted Cloud Processing

The term CT
F in Equation (2) denotes the net cost of fog-assisted cloud architecture. The first

term gives the cost corresponding to the edge level processing for data demanding real-time or time
critical processing. An optimal workload allocation algorithm filters the datasets which are less latency
sensitive or that demand bulky resources and offloads them directly to the cloud level processing
logic. Thus the cost profile of second term in (2) is similar to generic cloud analytics as shown
in (1). The uncertainty associated with workload offloading is captured through variable πc shown in
Figure 2.

CT
F =

T

∑
t = 0
∀i ∈ I+

Ct
i =

T

∑
t=0

(1−ΠC).BV1Ct
f ,i + ΠC.(1− BV1)Ct

c,i (2)

Without loss of generality, the cost term corresponding to fog level processing in (2) is given by

Ct
f ,i = Ccomm

f ,i + Ccomp.
f ,i + Ccons.

f ,i + Cems.
f (3)

where, the addend terms are analogous to (1), i.e., cost due to fog communication latency, cost
of computation, cost of power consumption, and the cost corresponding to carbon footprint in
Fog-assisted cloud network. The cost of communication Ccomm

f ,i in (4) includes the overheads
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corresponding to data upload delays from user applications to FCNs, processing latency at candidate
FCNs, and inter-fog communication delays. It also includes latency cost in fog to cloud dispatch and
price of cloud level batch analytics.

Ccomm
f ,i =

{
Lupd

f ,i + Lcomp.
f ,i + ΠF.Lcomm.

f− f ,j + (1−ΠF).L
dispatch
f−c +

(1−ΠF).(1−ΠCS)Lcomp
c

}
.αcomm. (4)

Equations (5)–(9) define the each cost term involved in (4), respectively. For application(s)
associated to fog node k via link j of bandwidth w, the upload latency is given by (5). Assuming a
queuing system, for the fog device i with the traffic arrival rate ra

i and service rate rs
i , the computation

latency is given by (6) that involves queuing delay while waiting for service, service time, and time
taken for VM installation. The equation may also be extended to capture the scenario when the task
(depending upon the size of data) needs to be paralleled to multiple fog nodes. We omit additional
latency term due to aggregation of results from any such concurrent computations. Often, the data
passes through multistage fog computations involving inter-fog communication delay, given by (7).
A significant fraction of data coming out from the fog network also needs to be dispatched to the cloud
for permanent storage and historical analysis. The delay due to transmission of data over the fog to
cloud WAN transmission link is captured in (8).

Lupd
f ,i =

Ω2

ωjk
=

Ω2

∑ch∈CH BV3.δ
(5)

Lcomp.
f ,i =

1(
rs

i, f − ra
i, f

) (6)

Lcomm.
f− f ,i =

`c

r f− f
(7)

Ldispatch
f−c = χ f−c.Γ f−c (8)

Lcomp
c = W

 n,
rs

i,c
ra

i,c

(ra
i,c − rs

i,c)

+
1

rs
i,c

(9)

The processing in cloud data server is characterized through an M/M/n queuing model having
cloud response time of the order given by (9), where W(n/λ) is the Erlang’s C formula [45] and λ is the
computational performance index defined as the ratio of traffic arrival rate to the service rate. If VM i
and j are installed into FCN f and f’, respectively, the aggregate traffic cost or the cost of computation
Ccomp

f is given by

Ccomp.
f = ∑

c f

∑
c f ′

BVi
f .BV j

f ′ .Θi,j. f , f ′ (10)

The net power consumption term in a typical FC model involves energy expended due to
transmission of byte stream from data generation nodes to cloud data center(s) via fog node(s) and
due to computations across FCNs and data centers. Thus Pcons

net,t is given by
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Pcons.
net,t = Pcomm.

a f f ′c,t + Pcomp.
t = Pcomm.

a f f ′c + Pcomp.
f + Pcomp.

c

=
[
Pcons.

a− f + Pcons.
f− f ′ + Pcons.

f−c

]
+ Pcomp.

f + Pcomp.
c

=


BV2.pa− f .

N′

∑
i=1

Ωi
2+

ΠF.p f− f ′ .
N′

∑
i=1

(
Ωi

2 −Ωi′
3

)
+

(1−ΠF).p f−c.
N′′

∑
i=1

Ωi
f−c,t


+ Pcomp.

f + Pcomp.
c

(11)

where, the terms inside square braces denotes power consumption at the network while transmitting
the byte-stream. The second and third addend in (11) represents power consumption profile for FCNs
and cloud servers, respectively. The energy consumption profile of a typical fog node (Pcomp

f ) can
be represented as a quadratic, monotonic increasing and strictly convex function of computation
volume yi. The function satisfies the fact that marginal power consumption of fog nodes increases
proportionally with time. It also ensures that computation power consumption to be proportional to
the amount of analytics activities performed. Thus,

Pcomp.
f = BV2.(pcomp.

f .ψ f .
t

∑
i=t−τ

(aiy2
i + biyi + ci)) (12)

Similarly, if each data center is assumed to host homogenous computing elements (machines) of
identical CPU frequency η, the power consumption component Pcomp

c of each computational element
at cloud server can be approximated as a function of η, given by

Pcomp.
c = (1− BV2).BVc,i.nm,i.(Aiη

∆
i + Bi) (13)

where Ai and Bi are positive constraints. In realistic scenarios,4 varies between 2.5 and 3. All three
attributes can be obtained by curve fitting against empirical measurements when profiling the
system offline [42]. The net power consumption across the architecture given by (11) is mapped
to corresponding cost term Ccons

f through energy to cost conversion parameter αcons. Thus,

Ccons.
f = αcons..Pcons.

net,t (14)

Cems.
f = Cems.

c = (1−ΠF).ζ.R.PUE.βc (15)

Equation (15) calculates the cost term due to emission given in (3), in terms of cost of carbon
footprint ζ (USD per gram) and the average carbon emission rate R found from weighted contribution
of different fuel types (gram per KWh).

3.3.3. Illustrative Example

In order to have an optimal and cost preserving FC model, it is indispensable to investigate the
constraints pertaining to user–FCN association, workload allocation and VM deployment towards
cost-efficient FC architecture. To have further insight, let us consider an illustrative connected vehicular
network shown in Figure 3a,b. The toy example describes how the QoS parameters such as the upload
latency, processing latency and communication latencies etc. are improved when the mode of task
association/distribution, virtual machine deployment, and resource allocation/association are altered.

The vehicular network (VANET) shown in Figure 3a,b comprises of four electric vehicles having
each driver using a smart charging app (single application) that recommends the optimal location of
an electric vehicle charging station (EVCS). The recommendation criteria may be on economic power
tariff, lowest queuing delay, shortest distance, or any/all combination of these. There are ten roadside
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units (RSU) each having four bandwidth units (BU). Each RSU can contribute for an uploading data
rate of one per time unit and are deployed across the VANET.

The RSUs fetch different attributes, behavior, location, etc. of the commuters as input and process
it to regulate the fleet dynamics. All RSUs are also interconnected through WSN or wired links
having a five unit communication delay between each neighboring pair. Each RSU charges two per
time unit for hosting one VM. The RSUs also incurs an application uploading cost. In our example
(shown in Figure 3a,b as arrows with weighted tail), we assume RSUs R1, R2, R5, and R10 have
uplink costs of 5, 2, 3, and 5 units, respectively. For case 1, shown in Figure 3a, we assume that all the
vehicles are associated to R1 and data requests from all four drivers are uploaded through R1 and
then processed in R1, R3, R4, and R8 respectively. RSUs R2, R3, R4, and R8 are used to host virtual
machines for user applications U1, U2, U3, and U4, respectively. Our aim is to minimize the total unit
cost that includes cost due to total VM deployment, queuing delay, application/request uploading
and inter-RSU communication.
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Thus the uploading cost for Figure 3a is 5 + 5 + 5 + 5 = 20, whereas the VM deployment cost
and cost due to inter-RSU communication (2 + 2 + 2 + 2 = 8) and (0 + 2 × 5 + 3 × 5 + 4 × 5 = 45),
respectively. The multiplication factors in inter-RSU communication correspond to number of hops
required for the packet to reach destinations. Each of those paths is labeled as green, red, and violet,
respectively. Hence, the total cost will be 20 + 8 + 45 = 73. The uploading latency incurred by each
driver in this case is 1 because each application can use only one BU of R1. If there would have less
number of BUs available to each user there would be queuing delay that further raises the latencies.

Now let us reconsider the network dynamics by incorporating some changes in the user-RSU
association, VM deployments and resource (BU) allocation, as shown in Figure 3b. Suppose that R1, R2,
R4, and R6 are used to host the VM for applications U1, U2, U3, and U4, respectively. The respective
users are now associated to R1, R3, R10, and R5. Keeping the remaining network attributes and the
QoS parameters intact the cost due to request uploading, VM deployment, inter-RSU communication,
and total cost are (5 + 2 + 3 + 5 = 15), (2 + 2 + 2 + 2 = 8), (0 + 5 + 5 × 2 + 5 = 20), and (15 +
8 + 20 = 43). The uploading delay of all users is now decreased to 1/4 thanks to full occupancy
of all four BU of corresponding RSUs. It can be inferred from this illustration that if proper task
association/distribution, resource allocation, computing machines deployment strategies are employed
the network/infrastructure resources, and the QoS can be significantly improved. For this specific
example the cost reduction is (73 − 43)/73 × 100 = 41.09%.

Since, an optimal solution of user-to-FCN association, BU allocation, VM deployment, and
workload distribution not only contributes to lower total cost but also improves Quality of Experience
(QoE) of applications (e.g., the response time), it is necessary to investigate these factors for QoS
guaranteed minimum-cost SG applications in FC environments. The optimization framework proposed
in this work includes an extensive range of constraints to investigate base station association, task
distribution, and virtual machine placement to ensure an optimal QoS for a fog archetype in SG.

In this section, we present an MINLP formulation on the minimum cost problem with the joint
consideration of data consumer association, workload allocation, VM deployment, and networking
constraints for communication infrastructure.

3.3.4. User–FCN Association Constraints

Since the SG have both mix of static as well as dynamic data consumers, at each time epochs the
FCN maintains a dynamic list L to track the reachable data consumers, user i can only be associated to
FCN j only if j is reachable from i. In other words, FCN j is reachable from query generation source
node k if the former is in the preference list L.

Therefore,

∑
a∈A

BV3 ≤ BVL (16)

where, BVL is a binary variable indicating if user node i is in the list L. Also, an FCN j can associate user
i only when it has at least one available bandwidth unit (BU). If S denotes the set of BUs corresponding
to FCN j, then

∑ BV3

|S| ≤ BV2 ≤∑ BV3 (17)

Since there is no restriction on the number of BUs allocated to a consumer from a fog node; but
one BU can be only allocated to at most one consumer, i.e., there is a many one mapping from each set
of BU to those of FCN, i.e.,

∑
a∈A

BV3 ≤ 1 (18)

∑
f∈F,a∈A

BV2 = 1 (19)

Equation (19) is an assignment constraint that ensures that every consumer must be associated
with one and only one FCN. This is a single source constraint that is derived from (40), that granulates
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the QoS of applications. For simplicity, each consumer request is assumed to be atomic and is routed
to the FCN which is nearest to the source. The objective is to minimize the packet transmission delays
from data source to FCN.

3.3.5. Workload Allocation Constraints:

Since the data streams may undergo sequential fog processing, constraint (20) indicates that fog
node f can distribute application data to processing at fog node f ′ only when it is associated with
application consumers in the list L’ of f’. Thus,

BV4 ≤ ∑
a∈A

BV2 (20)

If λa
f− f ′ denotes inter-fog (f − f ′) data arrival rate, then

λa
f− f ′

R ≤ BV4 ≤ λa
f− f ′ .R (21)

Corresponding to each application request, if the task need to be accomplished by more than
one fog nodes, constraint (22) ensures that all uploaded data are completely processed and total data
received from data consumers through fog node f shall be equal to data finally processed at all fog
node f ′.

∑
a∈A

ra
f− f ′ .BV2 = ∑

f ′∈F
λa

f− f ′ (22)

3.3.6. VM Deployment Constraints

In principle, the FCN may serve the connected IoT devices according to all three general models,
namely, the Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS) [46]. However, due to the stringent hardware and software resources limitations of the of the
IoT devices in SG environments, only the SaaS model seems to be the most feasible one. According to
Cisco [47], a state-of-the-art FCN is an IoE-compliant SaaS-oriented software that aims at mapping
raw sensor data into actionable information. Roughly speaking, an FCN defined for our purpose is
composed of five components as shown in Figure 4.

(a) Admission Control Router (ACR): For defining the admission control policy, it maintains loss-free
input and output queue.

(b) Input buffer: A time-slotted G/G/1/NI FIFO queuing system for modeling the input queue.
(c) Output buffer: A time-slotted G/G/1/NO FIFO queuing system for modeling the output queue.
(d) VLAN: It consists of a reconfigurable computing platform and the related switched Virtual LAN
(e) Adaptive scheduler: It reconfigures and consolidates the available computing-communication

resources and also performs the control of the input/output traffic flows.

Let each fog node (FCN) is equipped with NP physical servers. Each server can host at the most
Vmax number of VMs. Thus the maximum number of VMs hosted by an FCN i is given by

Vi
M =

NP
∑

i=1
Vi

max ∀i = 1, 2, . . . NP (23)
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Figure 4. General architecture of a Virtualized Fog Computing Node (FCN). (PS = Physical Server,
VL = Virtual Link, VM = Virtual Machine).

In a virtualized FCN, each VM processes the currently assigned workload by self-managing own
local virtualized storage and computing resources. When a request for a new job is submitted to the
FCN, the corresponding resource scheduler adaptively performs both admission control and allocation
of the available virtual resources. At the end of time slot t, new input requests arrive at the input of the
ACR (Figure 4) following Poisson distribution. For t ≥ o, the random process vt defining the arrival
pattern is presumed to be independent from the current backlogs of the input/output queues. At the
end of slot t, it is assumed that any new arriving packet that is not admitted by the ACR is declined.
Thus, out of vt if v′t is the number of BUs per slot that are admitted into the input queue, then

0 ≤ v′t ≤ vt (24)

The respective time evolutions of the backlogs in input and output queues are given by

qI
t+1 =

(
qI

t − qI,d
t

)
+ v′t (25)

qO
t+1 =

(
qO

t − qO,d
t

)
+ qI,d

t (26)

For the data stream generated by application a to be processed in FCN f ′, i.e., BV4 = 1 and
corresponding VM must be deployed in k and vice versa. Constraints in Equations (27) and (28) are
defined respectively for that case.

rs
i
R ≤ BV5 ≤ rs

iR (27)

BV4 ≤ BV5 (28)

if Qs
a, Qs

f , and Qp
f respectively denote the resource requirements of any application a and the storage

capacity of FCN f, and its processing capability, then Equations (25) and (26) say that requirements of
any application at any time is limited by storage and computational capacity of deployed VM, i.e.,
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∑
a∈A

BV5.Qs
a ≤ Qs

f (29)

∑
a∈A

rs
i .εa ≤ Qp

f (30)

where, εa is a scaling factor to indicate the relationship between processing speed and allocated
computation resource.

3.3.7. Network Constraints for FC

In addition to constraints (5)–(8), at any instant, constraint (27) maintains the stable queuing
equilibrium by keeping the service request rate less than the service rate. Constraint (28) ensures that
the expected delay for any application or consumer at any instant should not exceed the specified
delay limit imposed by QoS requirements.

∑
f ′∈F

λa
f− f ′ < rs

i (31)

La
f c = Lupd

f ,i + Lcomp.
f ,i + Lcomm.

c, f 2 f + Ldispatch
f−c + Lcomp

c < La (32)

3.4. Optimization Model

In this section, we present an MINLP formulation on the minimum cost problem with the joint
consideration of data consumer association, workload allocation, VM deployment, and networking
constraints for communication infrastructure. The objective of the proposed framework is to minimize
the overall cost incurred due to power consumption, latency and carbon footprint. By summarizing
the constraints discussed above, the cost optimization problem can be formulated as a mixed-integer
nonlinear programming (MINLP) problem, i.e.,

Maximize
{

minCT
F −minCT

C
}

Subject to constraints (16) to (32)
(33)

4. Simulation and Algorithmic Set-Up

The essential nodes in the system include set of cloud servers D, fog nodes F, and data users N.
The architecture is virtually deployed on the essential nodes in an arbitrary SG network. For simulating
the pilot SG topology, the 100 most populated places around the world are considered (i.e., |F| = 100),
the corresponding population for representing the number of consumer/data generation nodes and
the corresponding geographical coordinates are used to determine the relative Euclidian distance [48].
The consumer endpoints within a particular city are logically grouped to form a cluster and are
associated to an FCN. The generated data traffic will be proportional to the population of internet
users of the corresponding city. The number of servers across the globe is considered to be 8, the
pairwise Euclidian distance is stored in 2D variable DE[ ][ ] when their geo-location is determined
through clustering of city population.

Each instruction is of size 64 bits. The user to fog links allows transmission of packets of 34 to
64 K bytes following Poisson arrival pattern having 8 byte instruction size and having mean packet
arrival rate being 1 packet per node per second. The capacity of the links between data generators
and FCNs is considered to be 1 Gbps whereas the inter-fog communication link capacity is taken as
10 Gbps. However, WAN communication between the FCNs and the cloud servers is assumed to take
place through bandwidth unconstrained channels. The total number of data consumers in the system
is treated as a variable, within the range (106,107), to assess the system performance against varying
network conditions. The cloud servers transmit their data through access points distributed across
each SG network. Each homogenous cloud server is assumed to accommodate the varied number of
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IoT devices within the discrete set (16 K, 32 K, 64 K, 128 K), based on the network traffic to be processed.
Energy consumption rate of each FCN is taken to be 3.7 W while for cloud servers it is taken to be
proportional to the number of IoT devices associated to each of them and taken from the range (9.7,
19.4, 38.7, 77.4) MW. The cost corresponding to consumed power is uniformly distributed between
USD 30/MW h and USD $70/MW h [49]. For cost analysis, the cost of a 1 Gbps and 10 Gbps gateway
router port is kept at USD 50 each per year while cost of server is USD 4000 per year [49]. These routers
are assumed to consume electricity at 20 W and 40 W, respectively. Upload tariff is USD 12 per byte
while storage cost is kept in the range of USD 0.45–0.55 per hour. The penalty corresponding to CO2

emission is kept USD 1000 per tons of CO2 emitted [50]. For easy understanding, Table 1 depicts some
important parameters used in the simulation.

Table 1. Simulation set-up.

Parameter Value Parameter Value

Instruction size 64 bits Storage tariff 0.45–0.55 $ per hour
ra

i 1 per node per seconds ζ 1000 $ per tons of CO2
ωjk 1 Gbps Nc (106,107)

r f− f 10 Gbps F 100
Γ f−c Unlimited Upload tariff 12 $ per byte

In order to obtain an optimal value of probability (πC) (best estimates that maximizes fog utility
in (16)), Monte Carlo (MC) simulations are performed, having number of trials set to (1000, TMC),
where TMC is the number of required MC trials that ensure a 95% confidence interval of an error less
than 1% [51]. Further to improve the efficiency of scenario generated through MC, Latin Hypercube
Sampling (LHS) [52] is used. LHS is a low discrepancy technique that generates evenly distributed
random samples with small variance.

The formulated optimization model is a multistage, discrete, non-convex, constrained
mixed-integer nonlinear programming problem (MINLP). Usually classical mathematical
programming techniques fail to provide tractable solutions to such problems. Evolutionary
optimization algorithms specifically metaheuristic methods such as differential evolution (DE) [52]
provide promising approach to solve an MINLP. DE is a population-based evolutionary optimization
method which had proven to be very simple yet powerful to solve minimization problems with
nonlinear and multimodal objective functions. It differs from conventional evolutionary algorithms
in that instead of having a predefined probability distribution function (pdf ) for mutation process, it
utilizes the differences of randomly sampled pairs of objective vectors for its mutation process [44].
Such variations will ensemble the topology of the objective function towards optimization procedure
thus providing more efficacious global optimization capability. In order to reduce the fitness of similar
offspring’s, we employed a modified version of differential evolution with a fitness sharing function of
niche radius (ρ). For each individual population i and given a threshold value of niche radius ρ, the
DE calculates the shared fitness S′f according to (34).

Calculating the shared fitness S′f before selection operation supplements significant computations
for evaluating values before executing selection operation. The underlying principle of employing
fitness sharing is to cluster the population into smaller groups defined by a similarity measure. In this
work the similarity is defined by a distance function dij that satisfies Equation (30).

f (dij) =


0 ≤ f (dij) ≤ 1

f (0) = 1
limdij→∞ f (dij) = 0

(34)
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The individuals which lie in same group will share the corresponding fitness value and in the
selection operation, clusters having larger fitness sharing value will be selected for producing the next
generation offspring. The fitness sharing function is given by

f (ϕ, dij) =

1−
(

dij
ρ

)ϕ
0 ≤ dij < ρ

0 otherwise
(35)

The niche count ρc for every individual i can be calculated as

ρc =
F

∑
j=1

f (ϕ, dij) (36)

Since during selection process, individuals with large fitness survive and used for mutation or
recombination purpose, the value of shared fitness can be calculated by

S f =
f j

F
∑

j=1
f j(ϕ, dij)

(37)

However, for our purpose, since the evolution strategy is focused to obtain minimal optimal
value, the shared fitness S′f is obtained from the equation

S′ f = f j.
F

∑
j=1

f j(ϕ, dij) (38)

where, f j controls the crossover constant commonly determined on a case to case basis having ϕ as
the control parameter and often set as ϕ = 1. In order to guarantee the fact that the best offspring
always appear for next generation, elitism is employed. Algorithm 1 shows the progress of modified
DE employed. When the BUs are exclusively allocated to an application user, the update latency cost
is determined by the uplink rate δ (see Equation (5)), regardless of the data volume. Similarly, the
inter-FCN communication cost and WAN dispatch latency is determined by the actual network traffic
`c.ri,j (where ri,j is the request rate for application a from FCN i to FCN j) and WAN communication
bandwidth ωc, respectively. The overall goal is to maximize utility function (33) having best settings of
πC πF, BV1 − BV5, BVL, and rs

i . The decision variables for (33) are the workload ra
i, f assigned from user

i to FCN f workload yj dispatched from FCNs to data center j, the traffic rate Γ f−c dispatched from
FCN f to data center c, and CPU frequency η of homogenous servers installed at these data centers
and the number of turned-on machines nm,i on server i. After applying MDE algorithm we obtain
optimal workloads (ra

i, f )
+ and y∗j . Correspondingly power consumption, latencies and total cost of

architecture for both fog and cloud scale processing can be calculated.
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Algorithm 1

1. Initialize main population set P with |P| = F
2. Evaluate the population P
3. Copy elite solutions to elite set E with |E| = F

2
4. While stopping criteria not met do

- {Generate hybrid population H with |H| = F
- For each individual in the population, Find S′ f using (34)

- ∀i ∈ H do {

• Descending sort on H based on Shared fitness S′ f
• Remove the worst half of H

} While (mixed population is full)

- do H
′ ← H + E where H

′
is the combined population set.

- do descending sort on H
′

- Copy first F
2 elite solution from H

′
to form new elite class E

′

- do P← H

5. Results and Discussions

In this section we presented a comprehensive comparison of cloud and fog scale execution in
terms of performance metrics namely response times (service delay), electricity consumption, and cost
of architecture. We depict the overall latency profile of fog-assisted cloud architecture with a generic
cloud execution scenario. The upload latency, inter-fog communication delay and delay due to fog to
cloud dispatch is abstracted in transmission latency term while the delay caused due to computations
and analytics at VM fog nodes and cloud servers is covered under processing latency term. The overall
response time (service delay) is given by algebraic sum of transmission latency and processing latency.
We define Fog Network Efficiency (FNE) < in Equation (39) as the ratio of data packets dispatched to
cloud core to the number of packets entering into the fog network through consumer to fog gateways.
A higher value of < indicates that a larger fraction of applications demand real-time responses.

< =
NC
NF

=
NF −N f

NF
(39)

For instance, < = 0.8 means only 20% of consumer requests demand fog plus cloud scale
computations and is better than < = 0.01 because in that case almost (99%) of data traffic needs cloud
scale processing also. Such scenario extrapolates to pure cloud paradigm (even worse if response
time is the only QoS of the system) for very low magnitudes of <. For < = 1, the offloading model
degenerates to pure edge computing model.

The Fog–Cloud delay statistics are shown in Figure 5 for < = 0.5 (half of consumer requests are
served within fog alone). The mean transmission latency mean processing latency and service latency
are plotted, separately for both cloud and fog platforms, against variable number of consumer nodes
(in the order of 106). It can be observed that for both the fog as well as cloud platforms the latency is
proportional to the density of data generators (traffic). Meanwhile the performance of fog-assisted
cloud execution outperforms the cloud counterparts for every magnitude of data traffic.
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Figure 5. Comparison of latencies in fog and generic cloud computing models.

We consider the changes of the magnitude of Fog Network Efficiency < defined in (39) in the
range (0,1) as shown in Table 2, and plot the transmission latency and processing latency, and observe
the change in the corresponding service latencies in Figure 6. It can be observed that as the value
of < is scaled from 0.05 (5%) to higher magnitudes, the response time is significantly improved i.e.,
the overall network latencies (average transmission latency Figure 6a, average processing latency
Figure 6b and average service latency Figure 6c) is reduced.
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Table 2. Change in execution strategy with varying FNE.

Rate < Execution Model

1 1 Edge
2 0.8 Fog-assisted cloud
3 0.5 Fog-assisted cloud
4 0.01 Fog-assisted cloud
5 0 Pure cloud

Figure 6a–c shows the most significant observation of the proposed model that, with the increase in
the magnitude of< i.e., as more number of application requests demand real-time and latency-sensitive
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services (workload percentage on the FCNs increases), the mean transmission latency, and the mean
processing latency are significantly reduced. For an infrastructure with ≈ 50% applications requesting
real-time services (i.e., < ≈ 0.5), the overall service latency for FC is noted to get reduced to almost
half of that of pure cloud paradigm. Also, with the increase in the number of workload generators
(consumer nodes), the latencies increase. For lower number of consumer nodes and at low values
of < (<0.13 in Figure 6a–c, red and black colored curves), the latencies are almost same for both
cloud and fog platforms. This indicates that adopting FC is viable only when the data traffic is huge
(Big Data Analytics) and is not economic for small scale computations. Also, in the context of IoT-aided
environment such as SG, if the percentage of applications demanding for real-time services is low, then
FC may come with an overhead compared to the traditional cloud computing.

In Figure 7 the electricity consumption pattern due to transmission/dispatch of each bytes-stream
and computation (at both fog and cloud servers) is analyzed. It can be observed that with the rise
in the population of service consumers the overall power consumption show near piece-wise linear
growth and is significantly lower than the conventional cloud framework. The fog-assisted cloud
framework betters the aggregated electricity consumption over the cloud computing paradigm by
more than 44%.

Big Data Cogn. Comput. 2019, 3, x FOR PEER REVIEW 23 of 29 

Figure 6a–c shows the most significant observation of the proposed model that, with the increase 
in the magnitude of ℜ i.e., as more number of application requests demand real-time and latency-
sensitive services (workload percentage on the FCNs increases), the mean transmission latency, and 
the mean processing latency are significantly reduced. For an infrastructure with ≈ 50% 
applications requesting real-time services (i.e., ℜ ≈ 0.5), the overall service latency for FC is noted to 
get reduced to almost half of that of pure cloud paradigm. Also, with the increase in the number of 
workload generators (consumer nodes), the latencies increase. For lower number of consumer nodes 
and at low values of ℜ (<0.13 in Figure 6a–c, red and black colored curves), the latencies are almost 
same for both cloud and fog platforms. This indicates that adopting FC is viable only when the data 
traffic is huge (Big Data Analytics) and is not economic for small scale computations. Also, in the 
context of IoT-aided environment such as SG, if the percentage of applications demanding for real-
time services is low, then FC may come with an overhead compared to the traditional cloud 
computing.  

In Figure 7 the electricity consumption pattern due to transmission/dispatch of each bytes-
stream and computation (at both fog and cloud servers) is analyzed. It can be observed that with the 
rise in the population of service consumers the overall power consumption show near piece-wise 
linear growth and is significantly lower than the conventional cloud framework. The fog-assisted 
cloud framework betters the aggregated electricity consumption over the cloud computing paradigm 
by more than 44%. 

 

Figure 7. Comparison of various cost parameters involved in fog and generic cloud computing. 

Figure 8 shows the variation of cost when the network parameters are varied, i.e., the number 
of application users, the data arrival rate, number of fog nodes, etc. For Figure 8, the optimization 
model was run on a pilot network of only 80 users and 50 FCNs having five BUs allocated each fog 
nodes. Curve (I) shows the variation in the cost of architecture when the number of consumers are 
varied from 50 to 95. It is observed that the cost profile also shows a nearly piece-wise linear growth 
corresponding to rise in the population of fog customers. This supports the intuition that more 
customers will create more service requests, thus generating more data traffic and hence more VMs 
need to be deployed.  

The cost variation against change in arrival rate is shown in curve II where the architecture also 
shows similar cost profile because in order to guarantee optimal QoS more BUs as well as processing 

1 2 3 4 5 6 7 8 9 10

0

1 0 00 0

2 0 00 0

3 0 00 0

4 0 00 0

5 0 00 0

 C
os

t d
ue

 to
 P

ow
er

 C
on

su
m

pt
io

n 
($

)

 No of  Consumers X 10 6

  Fog  C ost d ue  to d ata  tran sm is sio n  
  Fog  C ost d ue  to co m pu tati on
  Fog  C ost d ue  to d ata  Sto rag e
  Fog -N e t P ow e r con su m ptio n  cos t
  Clou d  Co st d ue  to  d ata  tr an sm iss io n
  Clou d  Co st d ue  to  co mp u ta tio n
  Clou d  Co st d ue  to  d ata  Stor ag e
  Clou d -N et Po w er  c on su mp tio n  c os t

Figure 7. Comparison of various cost parameters involved in fog and generic cloud computing.

Figure 8 shows the variation of cost when the network parameters are varied, i.e., the number of
application users, the data arrival rate, number of fog nodes, etc. For Figure 8, the optimization model
was run on a pilot network of only 80 users and 50 FCNs having five BUs allocated each fog nodes.
Curve (I) shows the variation in the cost of architecture when the number of consumers are varied from
50 to 95. It is observed that the cost profile also shows a nearly piece-wise linear growth corresponding
to rise in the population of fog customers. This supports the intuition that more customers will create
more service requests, thus generating more data traffic and hence more VMs need to be deployed.

The cost variation against change in arrival rate is shown in curve II where the architecture also
shows similar cost profile because in order to guarantee optimal QoS more BUs as well as processing
resource are needed. Correspondingly the cost due to communication latencies (Ccomm

f ) also increases,
thus augmenting the overall cost. However, if more and more fog nodes are deployed more efficiently
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the task will be accomplished and correspondingly better options for VM deployment. Similarly curve
(III) illustrates the total cost as a decreasing function of the number of Fog Nodes. The cost of task
distribution and virtual machine deployment algorithms decrease significantly when the network is
populated with more number of FCNs, hence the total cost decreases.
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6. Conclusions and Future Work

FC, when complemented with optimal workload allocation strategies, is able to support
context-aware virtually real-time applications, providing improved computing performance, and
geodistributed intelligence in SG ecosystems. In this work, we presented a fog-based data intensive
analytics scheme with cost-efficient resource provisioning optimization approach that can be used
for SG applications. In order to achieve QoS guaranteed FC execution strategies, we jointly examine
user–FCN association, workload allocation, VM deployment, and communication network constraints
towards minimizing the cost of architecture. For comparative performance assessment of cloud versus
fog computing, we formulated an MINLP optimization problem, which is further solved using MDE
algorithm. Exhaustive simulation results are presented to depict the enhanced performance of FC in
terms of the provisioned QoS attributes, viz., service latency (response time), power consumption, and
cost of architecture.

Such observations related to FC reveal its latent potential as a store and compute model for
emerging IoE environments such as SG. For further conclusive insights, real-world trials need
to be conducted on SG architectures. The efficacy of typical FC paradigm may be improved by
embedding selective sensing intelligence in the edge nodes as well dedicated FCNs. Intelligent
mobility management techniques for data generators and data consumers will potentially improve the
performance of FC architectures.
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Abbreviations

Acronyms Definitions
BU Bandwidth Units
CC/FC Cloud/Fog Computing
EV Electric Vehicles
SG Smart Grid
VM Virtual machines
ACR Admission Control Router
AMI Advanced Metering Infrastructure
BDA Big Data Analytics
CAP Consistency Availability Partition
CRB Computational Resource Blocks
FCN Fog Computing Node
FNE Fog Network Efficiency
ISO Independent System Operators
M2M Machine to Machine
MDC Mega Data Centers
MDE Modified Differential Evolution
P2P Peer to Peer
PMU Phasor Measurement Unit
QoS/QoE Quality of Service/Experience
RSU Road-Side Units
RTU Remote Terminal Unit
SOA Service Oriented Architecture
WAN Wide Area Networks
HVAC Heating, Ventilation and Air-Conditioning Systems
I/P/S/FaaS Infrastructure / Platforms /Software/ Fog as a Service
RFID Radio-Frequency Identification
SCADA Supervisor Control And Data Acquisition
VANET Vehicular Ad hoc Network

Nomenclature

SYMBOLS DEFINITION
T Length of time frame
F Number of fog severs
Nc Number of data consumers
NC Number of data packets dispatched to cloud core after fog processing
NF Number of data packets presented for FCN
N f Number of data packets that are processed within FCN
πC Probability that a packet is directly dispatched to cloud
πF Probability that a packet is pushed to fog
ωjk Bandwidth of Consumer-Fog link
δ Data rate of bandwidth unit/sub carrier allotted
αcomm Delay to cost conversion parameter
ra

i Traffic arrival rate
rs

i Service Rate
`c Length of Data demanding multiple fog hops
r f− f Data rate of Inter-fog communication links
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SYMBOLS DEFINITION
χ f−c Delay of WAN transmission path

Γ f−c
The traffic rate dispatched from the fog device (no. of requests per second) i to the cloud
server j

nm,i No. of turned-on machines in server i
Γi Traffic arrival rate of machine i at cloud server
η CPU frequency at cloud server i
K No. of cycles per request
Θi,j Denotes the traffic between clusters (VM) i and j

f , f / Cost of unit traffic between clusters (VM) i and j
αcons Power to cost conversion parameter
pa− f Energy required to upload unit byte of data-stream
p f− f / Energy required to transmit unit byte fog-fog of data-stream
p f−c Energy required to dispatch unit byte of data-stream (fog-cloud)
pcomp

f Average power consumption per byte of Computation
ψ f Weight-factor associated with the data-set required for analysis
ai bi ci Ai Bi Positive architectural constants
ζ Cost of carbon footprint
R average carbon emission rate
PUE Power usage effectiveness
βc Server power at the cloud
λa

f− f / Inter-fog arrival data rate
R Arbitrary large real number
E a Scaling factor
Q f Capacity of storage resources of fog node f
BV1 Binary variable deciding cloud/fog scale offloading
BVi

f Binary variable denote the on/off state of VM i FCN f

BV j
f / Binary variable denote the on/off state of VM j at FCN f ′

BV2 Binary variable deciding if fog f is associated to consumer d
BV3 Binary variable indicating if a bandwidth units allocated to consumer

BV4
A binary variable indicating if data from fog node f for application a is associated in fog
node f ′

BV5 A binary variable indicating if a VM for application a is placed in fog node f ′

BVc,i Denotes the on/off state of cloud server i
qI

t State of Input Buffer
qI, d

t Size of Workload Drained from Input Queue
qO

t State of Output Buffer
qO, d

t Size of Workload Drained from output Queue
VMI

M Maximum number of VMs hosted by FCN i

References

1. Saleem, Y.; Member, S.; Crespi, N.; Member, S.; Rehmani, M.H.; Copeland, R. Internet of Things-aided Smart
Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. Available online:
https://dblp.org/db/journals/corr/corr1704.html#0001CRC17 (accessed on 30 August 2017).

2. Shojafar, M.; Nazionale, C. FOCAN: A Fog-supported Smart City Network Architecture for Management of
Applications in the Internet of Everything Environments. J. Parallel Distrib. Comput. 2018, in press.

3. Hussain, M.; Alam, M.S.; Beg, M.M.S.; Asaad, M. Viability of Fog Methodologies in IoT aware Smart Grid
Architectures. In Proceedings of the 1st EAI International Conference on Smart Grid Assisted Internet of
Things, Sault Ste. Marie, ON, Canada, 11–12 July 2017.

4. Naranjo, P.G.V.; Shojafar, M.; Vaca-cardenas, L. Big Data over Smart Grid—A Fog Computing Perspective.
In Proceedings of the 24th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–6.

https://dblp.org/db/journals/corr/corr1704.html#0001CRC17


Big Data Cogn. Comput. 2019, 3, 8 27 of 29

5. Yigit, M.; Gungor, V.C.; Baktir, S. Cloud Computing for Smart Grid applications. Comput. Netw. 2014, 70,
312–329. [CrossRef]

6. Abdullah, M.; Faruque, A.; Vatanparvar, K. Energy Management-as-a-Service Over Fog Computing Platform.
IEEE Internet Things J. 2015, 3, 161–169.

7. OpenFog Consortium. OpenFog Architecture Overview; White Paper; OpenFog Consortium: Fremont, CA,
USA, 2016; pp. 1–35.

8. Yannuzzi, M.; Milito, R.; Serral-Gracià, R.; Montero, D.; Nemirovsky, M. Key ingredients in an IoT recipe:
Fog Computing, Cloud Computing, and more Fog Computing. In Proceedings of the 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of Communication Links and Networks,
CAMAD, Athens, Greece, 1–3 December 2014; pp. 325–329.

9. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.-K.R.; Dlodlo, M. From Cloud to Fog Computing: A Review
and a Conceptual Live VM Migration Framework. IEEE Access 2017, 5, 8284–8300. [CrossRef]

10. Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3,
854–864. [CrossRef]

11. Saqib, M.; Hussain, M.M.; Alam, M.S.; Beg, M.M.S.; Sawant, A. Smart Electric Vehicle Charging through
Cloud Monitoring and Management. Technol. Econ. Smart Grids Sustain. Energy 2017, 2, 18. [CrossRef]

12. Hahn, G.J.; Shapiro, S.S. Statistical Models in Engineering, 1st ed.; Wiley: New York, NY, USA, 1967.
13. Wu, L.; Shahidehpour, M.; Li, T. Stochastic security-constrained unit commitment. IEEE Trans. Power Syst.

2007, 22, 800–811. [CrossRef]
14. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A survey on smart grid communication infrastructures: Motivations,

requirements and challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [CrossRef]
15. Naeem, A.; Rehmani, M.H.; Saleem, Y.; Rashid, I.; Crespi, N. Network Coding in Cognitive Radio Networks:

A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1945–1973. [CrossRef]
16. Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog Computing for Sustainable Smart

Cities: A Survey. ACM Comput. Surv. 2017, 50, 32. [CrossRef]
17. McMillin, B. Fog Computing for Smart Living. no. February. In Computing: The Next 50 Years; IEEE:

Piscataway, NJ, USA, 2017.
18. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog Computing: A Platform for Internet of Things and Analytics.

A Roadmap for Smart Environments. Stud. Comput. Intell. 2014, 546, 169–186.
19. Okay, F.Y.; Ozdemir, S. A fog computing based smart grid model A Fog Computing Based Smart Grid Model.

In Proceedings of the International Symposium on Networks, Computers and Communications (ISNCC),
Yasmine Hammamet, Tunisia, 11–13 May 2016.

20. Agarwal, S. An Efficient Architecture and Algorithm for Resource Provisioning in Fog Computing. Int. J. Inf.
Eng. Electron. Bus. 2016, 8, 48–61. [CrossRef]

21. Gu, L.I.N.; Zeng, D. Cost Efficient Resource Management in Fog Computing Supported Medical
Cyber-Physical System. IEEE Trans. Emerg. Top. Comput. 2017, 5, 108–119. [CrossRef]

22. Haider, F.; Zhang, D.; St-Hilaire, M.; Makaya, C. On the Planning and Design Problem of Fog Computing
Networks. IEEE Trans. Cloud Comput. 2018, 6, 1–14. [CrossRef]

23. Varshney, P.; Simmhan, Y. Demystifying Fog Computing: Characterizing Architectures, Applications and
Abstractions. In Proceedings of the IEEE 1st International Conference on Fog and Edge Computing (ICFEC),
Madrid, Spain, 14–15 May 2017; pp. 1–23.

24. Jalali, F.; Vishwanath, A.; de Hoog, J.; Suits, F. Interconnecting Fog computing and microgrids for greening
IoT. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne,
Australia, 28 November–1 December 2016; pp. 693–698.

25. Deng, R.; Lu, R.; Member, S.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud
Computing Toward Balanced Delay and Power Consumption. IEEE Internet Things J. 2016, 3, 1171–1181.
[CrossRef]

26. Wu, C.; Chang, R.; Chan, H. A green energy-efficient scheduling algorithm using the DVFS technique for
cloud datacenters. Future Gener. Comput. Syst. 2014, 37, 141–143. [CrossRef]

27. Persico, V.; Pescape, A.; Picariello, A.; Sperl, G. Benchmarking Big Data Architectures for social networks
data processing using public cloud platforms. Future Gener. Comput. Syst. 2014, 89, 98–109. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2014.06.007
http://dx.doi.org/10.1109/ACCESS.2017.2692960
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1007/s40866-017-0035-4
http://dx.doi.org/10.1109/TPWRS.2007.894843
http://dx.doi.org/10.1109/SURV.2012.021312.00034
http://dx.doi.org/10.1109/COMST.2017.2661861
http://dx.doi.org/10.1145/3057266
http://dx.doi.org/10.5815/ijieeb.2016.01.06
http://dx.doi.org/10.1109/TETC.2015.2508382
http://dx.doi.org/10.1109/TCC.2018.2874484
http://dx.doi.org/10.1109/JIOT.2016.2565516
http://dx.doi.org/10.1016/j.future.2013.06.009
http://dx.doi.org/10.1016/j.future.2018.05.068


Big Data Cogn. Comput. 2019, 3, 8 28 of 29

28. Hong, K.; Lillethun, D.; Ottenwälder, B.; Koldehofe, B. Mobile Fog: A Programming Model for Large—Scale
Applications on the Internet of Things. In Proceedings of the MCC’13, Hong Kong, China, 12 August 2013;
pp. 15–20.

29. Zhan, Z.; Liu, X.; Gong, Y.; Zhang, J.U.N. Cloud Computing Resource Scheduling and a Survey of Its
Evolutionary Approaches. ACM Comput. Surv. 2015, 47, 63. [CrossRef]

30. Skarlat, O.; Schulte, S.; Borkowski, M. Resource Provisioning for IoT Services in the Fog. In Proceedings of the
IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China,
4–6 November 2016.

31. Luntovskyy, A.; Spillner, J. Architectural Transformations in Network Services and Distributed Systems, 1st ed.;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–344.

32. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular Fog Computing: A Viewpoint of Vehicles as the
Infrastructures. IEEE Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

33. Xiao, Y.; Zhu, C. Vehicular fog computing: Vision and challenges. In Proceedings of the 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Kona, HI, USA, 13–17 March 2017; pp. 6–9.

34. He, J.; Wei, J.; Chen, K.; Tang, Z.; Zhou, Y.; Zhang, Y. Multi-tier Fog Computing with Large-scale IoT Data
Analytics for Smart Cities. IEEE Internet Things J. 2017, 4662, 677–686.

35. Gia, T.N.; Jiang, M.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog computing in healthcare
Internet of Things: A case study on ECG feature extraction. In Proceedings of the 15th IEEE International
Conference on Computer and Information Technology CIT, Liverpool, UK, 26–28 October 2015; pp. 356–363.

36. Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and Opportunities in
Edge Computing. In Proceedings of the IEEE International Conference on Smart Cloud (SmartCloud 2016),
New York, NY, USA, 18–20 November 2016; pp. 20–26.

37. Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart
e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Futur. Gener.
Comput. Syst. 2016, 78, 641–658. [CrossRef]

38. Whitepaper. MaRS Market Insights-The Evolving Digital Utility: The Convergence of Energy and IT. 2015,
pp. 1–15. Available online: www.marsdd.com/news-and-insights/the-evolving-digital-utility (accessed on
21 November 2018).

39. Birman, K.; Ganesh, L.; Renesse, R. Running smart grid control software on cloud computing
architectures. In Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop,
Ithaca, NY, USA, 19–20 April 2011; pp. 1–28.

40. Yang, Y. Security architecture and key technologies for power cloud computing. In Proceedings of the
International Conference on Transportation, Mechanical, and Electrical Engineering, ChangChun, China,
16–18 December 2011; pp. 1717–1720.

41. Amato, F.; Moscato, V.; Picariello, A.; Sperl, G. Diffusion Algorithms in Multimedia Social Networks: A
preliminary model. In Proceedings of the IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, Sydney, Australia, 31 July 31–3 August 2017; pp. 844–851.

42. Fang, R.; Pouyanfar, S.; Yang, Y.; Chen, S.-C.; Iyengar, S.S. Computational Health Informatics in the Big Data
Age. ACM Comput. Surv. 2016, 49, 12. [CrossRef]

43. Ullah, R.; Faheem, Y.; Kim, B.S. Energy and Congestion-Aware Routing Metric for Smart Grid AMI Networks
in Smart City. IEEE Access 2017, 5, 13799–13810. [CrossRef]

44. Sarkar, S.; Chatterjee, S.; Misra, S. Assessment of the Suitability of Fog Computing in the Context of Internet
of Things. IEEE Trans. Cloud Comput. 2015, 6, 46–59. [CrossRef]

45. Cisco Systems. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. 2016,
pp. 1–6. Available online: www.cisco.com (accessed on 4 March 2018).

46. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things
Characterization of Fog Computing. In Proceedings of the MCC’, Helsinki, Finland, 13–17 August 2016;
pp. 13–15.

47. Yu, L.; Jiang, T.; Zou, Y. Fog-Assisted Operational Cost Reduction for Cloud Data Centers. IEEE Access 2017,
5, 13578–13586. [CrossRef]

http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1109/TVT.2016.2532863
http://dx.doi.org/10.1016/j.future.2017.02.014
www.marsdd.com/news-and-insights/the-evolving-digital-utility
http://dx.doi.org/10.1145/2932707
http://dx.doi.org/10.1109/ACCESS.2017.2728623
http://dx.doi.org/10.1109/TCC.2015.2485206
www.cisco.com
http://dx.doi.org/10.1109/ACCESS.2017.2728624


Big Data Cogn. Comput. 2019, 3, 8 29 of 29

48. Hussain, M.; Alam, M.S.; Beg, M.M.S. Fog Computing for Next Generation Transport—A Battery Swapping
System Case Study. In Technology of Economcs and Smart Grid (TESG); Springer: Berlin/Heidelberg, Germany,
2018; Volume 3, pp. 1–11.

49. Wu, C.; Buyya, R. Cloud Data Centers and Cost Modeling: A Complete Guide to Planning, Designing and Building
a Cloud Data Center; Morgan Kaufmann: Burlington, MA, USA, 2015; pp. 1–687.

50. Cisco Solutions. Available online: http://www.cisco.com/c/dam/en/us/solutions/collateral/trends/
ataglancec45734964.pdf (accessed on 24 June 2016).

51. Brinkoff, T. City Population. January 2013. Available online: http://www.citypopulation.de/ (accessed on
7 July 2013).

52. Larumbe, F.; Sansò, B. A tabu search algorithm for the location of data centers and software components in
green cloud computing networks. IEEE Trans. Cloud Comput. 2013, 1, 22–35. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cisco.com/c/dam/en/us/solutions/collateral/trends/ataglancec45734964.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/trends/ataglancec45734964.pdf
http://www.citypopulation.de/
http://dx.doi.org/10.1109/TCC.2013.2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Works Related to Fog Computing in Smart Grid 
	Works Related to Workload Allocation in Fog Computing 

	Theoretical Background 
	Smart Grid as Use-Case for Fog Computing 
	Decentralization and Low Latency Analytics 
	Limited Resource Distribution for Individual IoT Endpoints 
	Energy Consumption of Cloud Data Centers 
	Handling Data Deluge and Network Traffic 
	Security Concerns 

	Fog Computing for Smart Grid Architecture 
	Layer 1 
	Layer 2 
	Layer 3 

	Network Model for Fog Computing 
	Cost Profile for Generic Cloud Processing 
	Cost Profile for Fog-assisted Cloud Processing 
	Illustrative Example 
	User–FCN Association Constraints 
	Workload Allocation Constraints: 
	VM Deployment Constraints 
	Network Constraints for FC 

	Optimization Model 

	Simulation and Algorithmic Set-Up 
	Results and Discussions 
	Conclusions and Future Work 
	References

