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Abstract: The semantic network structure is a core aspect of the mental lexicon and is, therefore,
a key to understanding language development processes. This study investigated the structure
of the semantic network of adolescents with intellectual disability (ID) and children with typical
development (TD) using network analysis. The semantic networks of the participants (nID = 66;
nTD = 49) were estimated from the semantic verbal fluency task with the pathfinder method. The
groups were matched on the number of produced words. The average shortest path length (ASPL),
the clustering coefficient (CC), and the network’s modularity (Q) of the two groups were compared.
A significantly smaller ASPL and Q and a significantly higher CC were found for the adolescents with
ID in comparison with the children with TD. Reasons for this might be differences in the language
environment and differences in cognitive skills. The quality and quantity of the language input
might differ for adolescents with ID due to differences in school curricula and because persons with
ID tend to engage in different out-of-school activities compared to TD peers. Future studies should
investigate the influence of different language environments on the language development of persons
with ID.

Keywords: semantic network analysis; intellectual disability; adolescents

1. Introduction

The semantic network structure is a core aspect of the mental lexicon [1] and is,
therefore, a key to understanding language development processes. Different methods
have been applied to study the semantic network structure in various populations in recent
years [2–5]. However, little is known about the semantic network structure in persons with
intellectual disability (ID), although language limitations [6], including semantic verbal
fluency deficits [7,8], are part of the ID symptomatology. A better understanding of the
specific characteristics of the semantic networks in persons with ID can be an essential tool
for the development of language interventions for the group. It may also give important
clues about semantic network development in general by shedding light on the role of
general intellectual functioning. The current study aimed to investigate if the semantic
network structure in a sample of adolescents with ID and a control group of younger
typically developing (TD) children, differs. Studying the structure of the semantic network
may lead to important insight into the verbal profile of persons with ID. Differences in
the structure could help to explain specific challenges seen in language ability [9] and
memory [10] in the population with ID. Such knowledge could, in the long-term, lay the
foundation for the development of more effective interventions aimed at strengthening
different verbal abilities based on specific network features of the ID population.
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Semantic network analysis builds on graph theory and offers new ways for analyzing
how information such as words generated in verbal fluency tasks are stored in memory
and later retrieved [11]. The basic elements of the semantic network are nodes (words) and
edges (the relationships between the words). The edges represent the associative strength
between words [12]. Words that are named in temporal proximity to each other are likely to
be stored nearby in the mental space [13]. Data for the network analysis are often attained
through a semantic fluency task, typically involving participants naming as many words
as possible within a given category and time [14].

Different characteristics of semantic networks have been studied, including distances
between nodes and the tendency and nature of the cluster formation. The shortest path
length is defined as the minimum number of edges (steps) between two nodes. The average
shortest path length (ASPL) is the average number of edges in the shortest path between
all possible pairs of nodes [12]. A high ASPL indicates that the nodes are, on average,
remotely connected in the semantic network. The clustering coefficient (CC) measures the
extent to which the nodes and their neighboring nodes are interconnected [12,13]. A high
CC indicates that the semantic network is densely clustered. Another common quantifier
of a semantic network is the network’s modularity (Q). Modularity is a measure of the
tendency to form subgroups (communities) within the network [12,15]. A high Q indicates
well-defined subgroups with many edges connecting nodes within the subgroups and
few edges between nodes belonging to different subgroups [15]. Taken together, these
three measures—ASPL, CC, and Q—describe the mental representation of the semantic
network in an individual’s long-term memory. See Figure 1 for visual representation of the
three measures.
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It has been argued that the structure of the semantic network might be the result
of statistical learning, a process where taxonomic categories are formed based on co-
occurrence regularities [16]. Evidence suggests that statistical learning is apparent in
children as young as 4–5 years of age [16]. A prerequisite for statistical learning is that
the similarities between contexts are detected and understood by the child, i.e., an ability
to implicitly match patterns. Research studying statistical learning in persons with ID is
sparse (see Saffran [17]), but it has been suggested that the capacity of implicit learning is
functionally equivalent in young adults with and without ID [18] as well as in children and
adolescents with and without ID matched on mental or chronological age [19]. However,
Kover [20] argues that persons with ID may exhibit difficulties in implementing learning
from distributional cues (i.e., patterns in input) and that weaker cognitive and linguistic
skills may hinder efficient learning from cues. In addition, Thiessen et al. [21] suggest that
the outcome of statistical learning changes during development as a function of experience
and the maturity of the learner. Thus, it would be reasonable to assume that the ID
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population differs from the TD population in terms of the outcome of statistical learning. If
this is the case, and if statistical learning influences the structure of semantic networks, it
follows that the semantic networks of persons with ID differ from those of TD peers. For
example, semantic categories may be structured according to different principles in the ID
and the TD groups. A specific word, such as “dog”, could activate the category “house
animals” in the TD group while activating random animals, words from other categories,
or no other words at all in the ID group.

Statistical learning is likely not the only factor influencing the semantic network.
In a conceptual framework for understanding the aging mental lexicon presented by
Wulff et al. [1], learning processes are placed alongside aspects of the environment as
factors that may affect the network structure. When it comes to environmental factors,
Wulff et al. [1] suggest both qualitative (content) and quantitative (total amount of exposure)
aspects that may be of importance. It might be the case that the environment differs between
students with and without ID since the former group follows a different curriculum in
Sweden [22] and tends to attend different out-of-school activities [23]. One aspect of
learning highlighted by Wulff et al. [1] is that the encoding of new information is moderated
by prior knowledge.

No previous study has applied network analysis to compare the semantic network
structure of adolescents with ID to a TD sample based on data from a semantic fluency
task. The current study will begin to fill this research gap. The number of words included
in the network might influence the structure [24]. Therefore, controlling for size is essential.
In the current study, this bias was reduced through the matching of groups based on the
number of produced words on the semantic fluency task. The study aimed to answer the
following research question: Does the structure of the semantic networks differ between
adolescents with ID and children with TD, and if so, how?

Since prior research within the field of network structure in ID is scarce, there is no
clear basis for formulating specific hypotheses, which motivates the explorative design of
the present study. However, prior research and theories on statistical learning and semantic
network development indicate the following interpretations of possible outcomes:

1. The chronological age of the ID group is higher compared with the TD group. There-
fore, they should have been exposed to more language input, and their semantic
network should be more developed than the semantic network of the comparison
group, even if their total number of produced words are the same.

2. However, the limitations in cognitive functions might lead to the ID group not being
able to make the same use of the language input as a TD group. Therefore, their
semantic network might have a similar or less developed structure than the one of
the comparison group.

2. Materials and Methods

The current study was an empirical study investigating differences in the semantic net-
work between adolescents with ID and children with TD. Data from two different projects
were used, and a network analysis using the pathfinder method was implemented. In the
following sections, the sample, procedure, materials, and network analysis are described.

2.1. Participants and Recruitment

The verbal fluency data used in this paper are based on existing data from two different
projects [25,26]. The data includes 49 participants with TD and 66 participants with ID. The
participants with TD attended preschool class (i.e., Swedish school preparation class for
children ~age 6). According to the teacher report, none of the children in the TD group had
a developmental disability. The participants with ID were all adolescents, had an ID with
unknown etiology, and attended compulsory school for students with ID. Participants in
the ID group with additional disabilities, as indicated by a parental report, were excluded
from the study.
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Caregivers of all participants, and adolescents with ID over the age of 15, signed an
informed consent form. Caregivers and participants were told they could drop out of the
study without giving a reason. The data collection for the children with TD (Ref: 2015/308-
31) and adolescents with ID (Ref: 2017/139-31) was approved by the local Research Ethics
Review Committee in Linköping. The results from the semantic verbal fluency test of the
TD group have been reported in another study about pragmatic language ability [27]. The
result from the semantic verbal fluency data of the ID group is used in two pre-registered
studies investigating reading ability in adolescents with ID [26].

2.2. Matching Procedure

The number of words included in the network might influence the structure [24].
Therefore, controlling for size is essential. This bias was reduced through the matching of
groups based on the number of produced words on the semantic fluency task. Since the ID
group was larger than the TD group, a subset of the ID group was selected for matching.
One child from the TD group was excluded as the testing was disturbed several times. In
addition, one outlier with a much higher score than the others from the TD group was
excluded. Several, but not all, participants in the ID group could be individually matched
to a child in the TD group. To minimize the effect of selection bias, ten different (but
overlapping) samples were selected from 1,000,000 randomly generated possible selections
from the ID group. These ten samples were chosen since they deviated the least from the
mean (12.00) and standard deviation (4.08) of the number of produced animals in the TD
group. All ten ID samples were matched on mean and SD to the TD group on the number
of produced animals (p > 0.65; all means = 12.00, SD = 4.08 (range 4.07–4.09)). Both the TD
group and the 10 different ID groups contained 47 participants each (64 different ID partici-
pants belonged to at least one selected ID group). The samples were comparable in terms
of gender (21 females in the TD group; 22.5 females across the ID groups (range 20–25)).
The TD group (M = 6:6 years, SD = 3.9 months) had a lower chronological age than the ID
group (M = 15:11 years, SD = 27.6 months). All analyses were performed on all ten datasets.
The results were pooled across datasets, and the pooled results are presented.

2.3. Semantic Verbal Fluency Test

The semantic network was assessed using the animal category subtest from the
Delis-Kaplan Executive Function System (D-KEFS; [14]). The participants were asked
to verbalize as many animals as possible in one minute. The total number of correctly
generated words was used to match the groups. Fictional animals or duplicates were
marked as invalid responses.

2.4. Procedure

The testing was conducted one-to-one in a quiet room at school (both groups) or at
home (for some of the children in the TD group). The test administrator was a speech
and language pathologist (both groups), an experienced test leader with a background in
education (ID group), or a researcher with a background in cognitive science (TD group).
All test sessions were recorded, and the recordings were used to transcribe the answers for
the semantic verbal fluency task. The testing was part of two larger research projects. The
children with TD as well as the adolescents with ID were tested on more tasks than are
reported here.

2.5. Network Analysis

Only responses produced by at least two participants were included in the network
analysis. We estimated the networks using the pathfinder method (see [13] for the recom-
mendation, see [28,29] for method). The pathfinder method has been recommended for the
estimation of group networks that are connected using every response, and networks are
based on edge similarity [13]. The topological properties of the networks were validated
using a bootstrapped random network analysis [24]. To compare the network of the ID
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group and the TD group, a case-drop bootstrap analysis with 2000 runs was performed.
This analysis was performed with all 10 datasets. ASPL, CC, and Q were thereafter pooled.
Because the visualization of the networks cannot be pooled, the comparison was done for
all 10 datasets with ID that gave the same results. To improve the readability of the results
section, only one ID network is presented (for the dataset closest to the median values on a
combination of ASPL, CC, and Q).

All analyses were performed in R [30] using the R packages tidyverse [31], readxl [32],
tictoc [33], beepr [34], stringr [35], flextable [36], SemNetCleaner, SemNetDictionaries, and
SemNeT [37]. An alpha level of 0.05 was used.

3. Results
3.1. Number of Unique Words

The adolescents with ID produced 129 (pooled result: 128.9) unique animals. Of these
animals, 43.6 (39.8%) were only produced by one child. The children with TD produced
106 unique animals. Of these animals, 43 (40.6%) were produced by only one child.

3.2. Network Validation

ASPL, CC, and Q of all networks differed significantly from random (p < 0.001). The
results of the random comparison are reported in Appendix A.

3.3. Network Comparison

The results from the pooled bootstrap analyses are reported in Table 1. A significantly
smaller ASPL and Q were found for the adolescents with ID in comparison with the
children with TD. In addition, a significantly higher CC was found for the adolescents with
ID in comparison with the children with TD.

Table 1. The result from the pooled bootstrap analyses for ASPL, CC, and Q.

ID Mean TD Mean F(1,1997) p Partial η2 Direction

ASPL 2.73 2.84 178 <0.001 0.08 ID < TD
CC 0.48 0.43 800 <0.001 0.27 ID > TD
Q 0.35 0.37 308 <0.001 0.12 ID < TD

As can be seen in Figures 2 and 3, the network of the adolescents with ID includes
more close nodes and exhibits a shorter ASPL. In addition, the network is less spread
out. Neither the network of the children with TD nor the network of the adolescents with
ID appear to have clear subgroups. Rather, many words are not clearly separated. For
the network of the children with TD, there is a tendency towards the development of
subgroups, which is not the case as much for the network of the adolescents with ID. This
is also mirrored in the Q, which is significantly larger for the TD group compared with
the ID group. Further, the adolescents with ID exhibit a higher CC compared with the
children with TD. This is visible in the figures, as the largest subgroup of the ID group is
more densely clustered (see bottom left in Figure 2) compared with the largest subgroup
of the TD group (see top right in Figure 3). For the TD group, the developing subgroups
are mostly related to the expected taxonomic structure of the animal category, while this is
true to a lesser extent for the ID group. Note that the network layout was created using
the Fruchterman–Reingold algorithm [37], which is very sensitive to small differences
in network properties such as path length. The position of the large subgroups on the
opposite ends for the ID group compared with the TD group is therefore merely an artifact
of how the network plot was created.
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4. Discussion

The current study compared the semantic network structure in a group of adolescents
with ID and a group of younger children with TD, matched on the produced number of
words on a semantic fluency task. This is, to our knowledge, the first attempt to quantify
the semantic network in the ID population. The results showed that the structure of the
semantic networks differs between the groups. The semantic network of the adolescents
with ID has a significantly smaller ASPL and Q and a significantly larger CC compared
to with the semantic network of the children with TD. Adolescents with ID in this study
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have a more condensed semantic network structure compared with children with TD,
which indicates that the semantic network for the adolescents with ID is less developed.
Similar results have been found for children with cochlear implants (CI; [24]) and second-
language speakers [3]. Kenett et al. [24] compared a group of children with CI with a group
of age-matched, typical-hearing peers. The CI group had a significantly smaller ASPL
compared with the typical-hearing group. Kenett et al. [24] interpreted this result as the
CI group having a less developed semantic network structure. Borodkin et al. [3] showed
that second language speakers had a lexical network with a larger CC and a smaller Q in
comparison with its first language equivalent. This result was interpreted as the second
language speakers’ network being less well-organized, as the words in the network were
less likely to be grouped into identifiable subcategories [3]. Similar to the findings by
Borodkin et al. [3], the current study found a lower Q value in the ID group compared with
the TD group, indicating a less developed taxonomic structure of the semantic network in
adolescents with ID.

Wulff et al. [1] proposed a framework for understanding the mechanisms behind
age differences in the mental lexicon. We suggest that the components of this framework
can be used in explaining the less developed semantic network of adolescents with ID.
Wulff et al. [1] argue that the environment plays an important role in the structure of the
semantic lexicon. It could be that the quality and/or quantity of the language input differs
between adolescents with ID and children with TD.

The adolescents in the current study were all enrolled in special schools, meaning
that they were exposed to a different learning environment compared to the children with
TD. The special schools in Sweden follow a different curriculum [22]. This curriculum
also provides more opportunities for individual adaptations of teaching [22], meaning
that the learning environment might vary between students enrolled at the same special
school. The language input for the adolescents with ID can therefore be assumed to be
heterogeneous, which in turn means that a greater variation in verbal fluency performance
can be expected. This could be a contributing factor as to why the estimated semantic
network is less structured. Similar reasoning was used by Borodkin et al. [3], who argued
that a possible explanation for the less well-organized semantic network in second language
speakers could be the heterogeneous language proficiency in that group.

There has been some evidence that adolescents with ID engage in different out-of-
school activities compared to their typically developing peers [23]. The difference in
educational and out-of-school environments may affect the quality and/or the quantity
of the linguistic input. In addition, it has been shown that parents of children with a
delayed language development tend to adjust their language level on several quality
measures [38], and in line with the reasoning of Beckage et al. [39], this could create a
linguistic environment with different structural properties compared to the TD group.

Wulff et al. [1] proposed learning as another component that is vital for the men-
tal lexicon. As laid out in the Introduction, statistical learning is of importance for the
development of the semantic network (see: [16]). A less developed semantic lexicon for
adolescents with ID could be explained by reduced statistical learning ability. In addition,
an important aspect of learning is prior knowledge, meaning that the encoding of new
information is moderated by pre-existing knowledge [1]. Studies have shown that the level
of acquired language predicts further learning from distributional cues in infants [40,41],
and suggestions have been made that the delayed language development may constrain
the usage of cues [21]. Kover [20] argues that even if persons with ID may have more
experience as measured by chronological time, the knowledge might be less accumulated
due to poorer learning efficiency.

Currently, little is known about the effects that the structure of the semantic network
has on the higher-order language ability of adolescents with ID. A less structured semantic
network likely makes language understanding and production more demanding, as words
might not be activated automatically (or the wrong ones might be activated). This is in
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accordance with studies showing that a shorter ASPL and a higher CC might make it
harder to identify words and might lead to confusing words in memory [42,43].

To conclude, adolescents with ID have a less structured semantic network than chil-
dren with TD even when the network size is controlled for. These differences might be due
to differences in the language environment as well as to differences in cognitive skills. If
the language environment is an important factor for the structure of the semantic network
of persons with ID, interventions should aim to increase the quality and quantity of the
language input that children and adolescents with ID receive. The less structured seman-
tic network might be an important underlying factor for language problems in persons
with ID.

4.1. Future Studies

This is a novel field of research, and more studies are needed to disentangle the effects
of different factors on the semantic network structure in persons with ID. One way of
differentiating the effect of cognitive ability and the effect of the language input could be
cognitive modeling. A simulation study using a semantic network model could help to
investigate which type of behavior a network would display with less qualitative language
input and which behavior it would display with reduced statistical learning ability. This
kind of study could also help to investigate how the structure of the semantic network is
influencing language ability in persons with ID. The magnitude of the differences in the
current study was small (cf. [24]), and it is currently not known if these small differences in
the structure influence real-life language abilities. In addition, more studies are needed to
investigate the effects of different learning environments and their relation to the quality
and quantity of language input.

4.2. Limitations

This study was conducted using data from two different research projects. A coordi-
nated data collection would have allowed the research team to collect more data on related
linguistic and cognitive abilities. The sample size in this study should be considered large
concerning the tradition within disability research. However, when estimating networks, a
larger sample size would be desirable to make sure the estimated networks are stable.
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Appendix A

Table A1. Random Network comparison for the network of the children with TD, p < 0.001 for
all comparisons.

TD M SD

ASPL 3.47 2.25 0.03

CC 0.38 0.28 0.02

Q 0.35 0.23 0.01

Table A2. Random Network comparison for the network of the adolescents with ID (dataset 1),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.73 2.03 0.02

CC 0.45 0.37 0.02

Q 0.31 0.17 0.01

Table A3. Random Network comparison for the network of the adolescents with ID (dataset 2),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.82 2.08 0.02

CC 0.45 0.34 0.02

Q 0.33 0.19 0.01

Table A4. Random Network comparison for the network of the adolescents with ID (dataset 3),
p < 0.001 for all comparisons.

ID M SD

ASPL 3.23 2.09 0.02

CC 0.47 0.38 0.02

Q 0.33 0.19 0.01

Table A5. Random Network comparison for the network of the adolescents with ID (dataset 4),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.62 2.01 0.01

CC 0.47 0.31 0.01

Q 0.36 0.18 0.01

Table A6. Random Network comparison for the network of the adolescents with ID (dataset 5),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.70 1.97 0.01

CC 0.50 0.45 0.02

Q 0.28 0.15 0.01
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Table A7. Random Network comparison for the network of the adolescents with ID (dataset 6),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.79 1.98 0.01

CC 0.50 0.45 0.02

Q 0.23 0.14 0.01

Table A8. Random Network comparison for the network of the adolescents with ID (dataset 7),
p < 0.001 for all comparisons.

ID M SD

ASPL 3.12 2.1305 0.0177

CC 0.44 0.31 0.02

Q 0.33 0.20 0.01

Table A9. Random Network comparison for the network of the adolescents with ID (dataset 8),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.98 2.05 0.02

CC 0.46 0.34 0.02

Q 0.32 0.18 0.01

Table A10. Random Network comparison for the network of the adolescents with ID (dataset 9),
p < 0.001 for all comparisons.

ID M SD

ASPL 3.12 2.04 0.02

CC 0.46 0.38 0.02

Q 0.30 0.17 0.01

Table A11. Random Network comparison for the network of the adolescents with ID (dataset 10),
p < 0.001 for all comparisons.

ID M SD

ASPL 2.57 2.08 0.02

CC 0.41 0.32 0.02

Q 0.30 0.19 0.01
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