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Abstract: Training and education of real-world tasks in Virtual Reality (VR) has seen growing use in
industry. The motion-tracking data that is intrinsic to immersive VR applications is rich and can be
used to improve learning beyond standard training interfaces. In this paper, we present machine
learning (ML) classifiers that predict outcomes from a VR training application. Our approach makes
use of the data from the tracked head-mounted display (HMD) and handheld controllers during
VR training to predict whether a user will exhibit high or low knowledge acquisition, knowledge
retention, and performance retention. We evaluated six different sets of input features and found
varying degrees of accuracy depending on the predicted outcome. By visualizing the tracking data,
we determined that users with higher acquisition and retention outcomes made movements with
more certainty and with greater velocities than users with lower outcomes. Our results demonstrate
that it is feasible to develop VR training applications that dynamically adapt to a user by using
commonly available tracking data to predict learning and retention outcomes.

Keywords: virtual reality; machine learning; intelligent tutoring systems; training

1. Introduction

Virtual Reality (VR) has been used extensively for education and training [1]. VR
practitioners have developed educational VR environments for knowledge acquisition,
such as learning about geometry [2], World War I [3], and how to inspect a haul truck [4].
VR has also been used for training psychomotor skills, such as how to visually scan for
threats [5], use measurement tools [6], and put on personal protective equipment [7]. As
consumer VR systems have become more easily available, these educational uses of VR
have gained more attention [8].

The field of Intelligent Tutoring Systems (ITSs) is closely related to VR training and
education. The goal of an ITS is to develop a deep understanding of each learner’s
behavior to allow for intelligent engagement in sustained learning activities [9]. While
much work in the field of ITSs is focused on immediate knowledge, some research has
made strides towards attempting to understand and predict longer-term retention of
information, which is a better indicator of mastery than short-term retention [10]. ITSs
incorporate Artificial Intelligence (AI) techniques to allow for tutoring systems that know
“what they teach, who they teach, and how to teach it” through user models [11]. ITSs can
use these user models to provide adaptive support for learners because they provide a
representation of the learner in terms of relevant traits like learning behaviors and meta-
cognitive ability [12]. This adaptive support can be implemented via proactive guidance
(scaffolding) or reactive guidance (feedback) [13]. Most ITSs that create adaptive learning
environments employ feedback [13], which is usually implemented with static rules for
specific types of detected errors [14].
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In this paper, we investigate using a machine learning (ML) approach to classify
users of a VR training application into groups of low and high learning and retention
outcomes, expanding upon our previous work which only sought to predict learning
outcomes [15]. Our work in this paper makes use only of the head-mounted display (HMD)
and handheld controller tracking data, as opposed to events or errors [14], which makes our
approach viable for real-time scaffolding, before events or errors even occur. Unlike most
prior approaches that are only capable of feedback [13], this tracking-based ML approach
can potentially be used for both feedback and scaffolding, such as providing interaction
cues [16], guiding the user’s attention [17], or even simplifying the interactions [18]. Our
work explores using HMD and controller tracking data as a means for predicting knowledge
acquisition, knowledge retention, and performance retention.

After discussing related work, we present a user study in which participants used a
VR training application to learn the procedure for troubleshooting a surgical robot [19],
then returned a week later to perform this task again in VR. Participants were administered
a knowledge test after the initial training session and before the week-later retention session
to evaluate knowledge acquisition and retention, respectively. Errors were tracked in the
retention simulation to evaluate performance retention. For each learning and retention
outcome, we used the results to separate participants into two groups: high-performance
participants scoring at least one standard deviation above the mean and low-performance
participants (i.e., all remaining participants that did not score at least one standard deviation
above the mean).

We then present the results of an ML experiment that employed support-vector
machines (SVMs) [20] to predict which group each participant belonged to, based on their
tracking data. For the experiment, we compared six different sets of input features based
whether the data represented positions or velocities and three different combinations of
HMD and controller data: (a) linear-and-angular features for both the HMD and controllers,
(b) linear-and-angular features for the HMD and linear-only features for the controllers,
and (c) linear-only features for both the HMD and controllers. We compared the accuracy
(i.e., correctness of the prediction) and the Matthews correlation coefficient (MCC) (i.e.,
a measure of the quality of binary classifications [21]) of each model learned from these
six different sets of input features. For the feature representations, we applied Principal
Component Analysis (PCA) [22]. The results of our ML experiment indicate that this
approach can yield high degrees of accuracy for predicting learning and retention outcomes,
with our maximum observed overall accuracy at 96.7%. However, we note varying accuracy
across our different input features, which reinforces the usefulness of exploring these
features as hyperparameters when building models for similar educational purposes.

In order to understand how the SVMs classified participants into their high and
low-performance groups with such high degrees of accuracy, we have visually inspected
tracking data segments that were correctly identified by the SVMs. Visualizations show
that participants with high learning and retention outcomes moved with better economies
of motion than those participants with lower outcomes. These results show that it is
feasible to use HMD and controller tracking data to develop new real-time scaffolding
and feedback techniques for VR training applications. We anticipate that our work will be
useful in the development of systems that predict learning and retention outcomes, and
subsequently respond dynamically when learning can be improved. Such systems may
make use of real-time classifiers to provide scaffolding and feedback that better support
the user’s learning. In this paper, we present the following research activities:

• A study that collected VR tracking data and results pertaining to knowledge acquisi-
tion, knowledge retention, and VR-based performance retention from 60 participants
across two VR training sessions, separated by one week.

• An ML experiment investigating six sets of input features for predicting the three
different outcomes. This is the first such experiment to investigate both learning and
retention, particularly psychomotor retention.
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We also present the following research results:

• Our results indicate that our velocity-based ML models generally outperformed our
position-based models for predicting all three outcomes.

• Our results also indicate that VR tracking data can be better used to predict psychomotor-
based outcomes than cognitive-based outcomes.

2. Related Work

Machine learning has been applied for predicting both cognitive and psychomotor
learning outcomes. Much of this research has focused on creating “online” classifiers
that can evaluate or predict performance in real time. There has also been some research
more recently looking at predicting knowledge retention at least a few days after the last
learning session.

2.1. Predicting Cognitive Learning Outcomes

There has been some work in the past on predicting cognitive learning outcomes
in training and education environments, particularly in the realms of declarative and
procedural knowledge. While the field of ITSs has many examples of predicting cognitive
learning outcomes based on system and contextual events, we focus our discussion on
research that makes use of physiological data for prediction.

The prediction of declarative knowledge gains based on physiological data has been
an active area of research for some time. Schneider and Blikstein [23] developed an ear
anatomy trainer with a tangible user interface and used ML methods to predict the learning
gains of students. Based on a “rough” median split of their participants, they were able to
achieve 100% accuracy with their SVM using a Multilayer Perceptron kernel [24]. Although
they did not find a direct correlation between knowledge acquisition and posture, they
determined that student posture had predictive value for classifiers by showing that it was
a useful feature for their system. Won et al. [25] also researched prediction of declarative
knowledge acquisition, specifically looking at the learning gains of environmental princi-
pals in a teacher–student dyad. They made use of skeletal data in the form of joint angles
tracked from a Microsoft Kinect, a full-body motion-sensing device that makes use of struc-
tured light and time of flight , to predict the learning gains. While the system showed little
predictive power over all dyads, decision trees yielded a classification accuracy of 85.7%
when comparing the top seven and bottom seven teacher–student dyads.

Beyond these approaches for predicting declarative knowledge gains, researchers have
also investigated the prediction of procedural knowledge gains based on physiological
data. Amershi and Conati [12] designed a desktop tutor that taught mathematics using
a clustering approach that used distilled eye-tracking features, such as gaze shifts and
interface events. This ML model was able to classify students based on high and low
knowledge acquisition with an average accuracy of 86.3%. Recently, we also developed an
ML approach that partitions users into high and low knowledge acquisition groups [15].
We made use of velocity data derived from HMD and controller tracking data to predict
the learning gains from a robotic operating room training scenario based on a post-test
knowledge test and found a mean accuracy of 93.1% among our examined approaches.
Unlike our recent work, in this paper, we investigate both position and velocity data,
and we also investigate using ML models to predict retention outcomes, in addition to
learning outcomes.

The research studies above indicate that physiologically based data, such as body
postures [23,25], eye tracking [12], and body movements [15], can be used to predict
cognitive learning outcomes, such as declarative and procedural knowledge acquisition.

2.2. Predicting Psychomotor Learning Outcomes

In addition to predicting cognitive learning outcomes, there has been research into
predicting psychomotor learning outcomes from physiological data.
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DeMoraes et al. [26] developed an online training assessment system for a bone
marrow harvesting simulator that made use of a Gaussian Naïve Bayes classifier. This
system was able to match expert classification with a Kappa coefficient of 80% by utilizing
position, velocity, forces, and time as features. Ultimately, their system made mistakes in
only 20 of 150 cases. Similarly, Sewell et al. [27] performed classification in a mastoidectomy
simulator via a Hidden Markov Model. This system used position, distance, tool force,
and suction position features, and yielded 85% correct classification for both novices and
experts. In more recent work that attempts to predict learning of gross motor movements,
dos Santos [28] investigated rhythm skill prediction in a dancing trainer. This system
made use of data from the student’s phone and the song tempo in beats per minute (BPM)
to classify their movements as faster, correct, slower, or mixed and was able to correctly
identify 74% of sessions with an F1 score of 0.79.

The works by DeMoraes et al. [26] and Sewell et al. [27] indicate that motion data
collected during training can be used to predict fine motor skill learning of complex tasks.
Additionally, dos Santos [28] has shown that gross motor movement learning can also be
predicted and used for feedback. These results indicate that psychomotor outcomes can be
estimated by using positional tracking data.

2.3. Predicting Cognitive Retention Outcomes

In addition to predicting the immediate learning outcomes, research has also been
conducted to predict longer-term knowledge retention. Wang and Beck [10] examined
using logistic regression to predict knowledge retention for a period of five to ten days
after the student’s last practice. Their approach makes use of features representing prior
performance, when the student last practiced, and student response time. Work by Choffin
et al. [29] has looked at modeling student learning and forgetting of skills by leveraging
the Knowledge Tracing Machines framework [30] to embed features from multiple skills to-
gether. Their results suggest that incorporating both item-skill relationships and forgetting
effects provides better learner models than only incorporating one or the other. Li et al. [31]
found speed of mastery to be a relevant feature for predicting performance in week-later
assessments within their Automatic Reassessment and Relearning System intelligent tutor.

By looking at the retention after a period of time, these works attempt to measure
the “broader notion of knowing a skill” [10]. These works all found that the retention of
knowledge appears to vary by skill and is possibly unique to each student [10,29,30] and
generally requires additional considerations beyond prediction of knowledge acquisition.

2.4. Novelty of Current Work

To the best of our knowledge, our work is the only one that attempts to predict
retention outcomes for psychomotor outcomes, and one of few works analyzing prediction
of retention outcomes for procedural knowledge. This comparison can be seen in Table 1.



Big Data Cogn. Comput. 2021, 5, 29 5 of 17

Table 1. An overview of related work that have predicted learning and retention outcomes.

Prediction Paper System Input Model

Cognitive learning [12] Math tutor Eye tracking, K-means
Context events

[25] Classroom monitor Skeletal tracking Decision tree

[23] Anatomy tutor Skeletal tracking, SVM
Context events

[15] Surgical simulation Head tracking, SVM
Hand tracking

Psychomotor learning [27] Surgical simulation Instrument tracking HMM

[26] Surgical simulation Instrument tracking Naive Bayes

[28] Dance monitor Phone accelerometer, Decision tree,
Song BPM kNN,

Logistic regression
Naive Bayes,
Neural network,
Random forest,
SVM

Cognitive retention [10] Math tutor System events Logistic regression

[31] Math tutor System events Logistic regression

[29] Math tutor System events Logistic regression

Cognitive learning, Ours Surgical simulation Head tracking, SVM
Cognitive retention, Hand tracking
Psychomotor retention

3. VR Learning and Retention User Study

We made use of an existing VR application designed for training first assistants
how to troubleshoot a faulted arm on a surgical robot [19]. This robotic operating room
(OR) application makes use of virtual hand-based selections and manipulations [32,33] to
support multiple equipment interactions, as well as communicating with a virtual surgeon
and staff member by selecting dialog options. In order to complete the scenario, the user
must perform an ordered set of steps involving these interactions while moving around
the virtual OR by physically walking [34] and periodically looking at a vision cart screen.
Table 2 shows a list of these subtasks and the types of interactions that they require.

We slightly varied the virtual training application between the learning and retention
sessions. During the learning session, it provided interaction cues, which convey actions to
take [35], for each step. These interaction cues consisted of verbal instructions and visual
animations showing perceived affordances and feedforward information. Selection cues
used semi-transparent green controller models that continuously linearly interpolated
from the user’s controller to the target dialog option or object to be selected (see Figure 1).
Manipulation cues used semi-transparent green copies of the objects being manipulated
and linearly interpolated these copies to the target positions for the manipulations. Finally,
for travel cues, these animations consisted of semi-transparent green boots that linearly
interpolated from the user’s position to a icon representing the travel destination that read
“Stand Here”.

In the learning version of our VR training application, the interaction cues described
were preemptively presented to the users, in order to demonstrate and train how to perform
the troubleshooting task. However, for the retention-session version, these cues were not
presented, unless the user committed an error or was inactive for 30 s.
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Table 2. The subtasks and their required interactions involved in the VR training simulation.

# Subtask Interaction

1 Check error message Walk + Look
2 Consult Surgeon Select (dialog)
3 Ask to press power down Select (dialog)
4 Ask to press power up Select (dialog)
5 Ask to call support Select (dialog)
6 Ask for release wrench Select (dialog)
7 Grab release wrench Select (wrench)
8 Ask for emergency stop Select (dialog)
9 Hold instrument carriage Select (carriage)

10 Insert wrench Position (wrench)
11 Rotate wrench Rotate (wrench)
12 Check vision monitor Look
13 Remove wrench Position (wrench)
14 Remove instrument Position (instrument)
15 Give instrument to staff Position (instrument)
16 Ask to recover fault Select (dialog)
17 Ask to disable arm Select (dialog)
18 Check error message Walk + Look
19 Use cannula lever Select (lever)
20 Use instrument clutch Position (clutch)
21 Use port clutch Position (clutch)
22 Ask to confirm disable Select (dialog)
23 Check error message Look
24 Ask to press recover fault Select (dialog)

Figure 1. A first-person perspective of the VR training application used for our research.

3.1. Materials

The VR hardware for this study was HTC Vive system, consisting of an HMD and two
handheld controllers, which were used to interact with the VR training application. The
display of the Vive HMD has a resolution of 1080× 1200 pixels per eye, a 90 Hz refresh rate,
and affords a 110◦ diagonal field of view (FOV). We fitted the HMD with the Vive audio
strap that integrates over-the-ear headphones. The VR application maintained 90 frames
per second to match the Vive’s refresh rate and was developed in Unity. The input data
from the Vive was processed with the SteamVR plugin. For every frame in the VR training
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application, the HMD and controller tracking data was logged. This data consisted of
the global positions and quaternions of both the HMD and the controllers, as well as the
frame’s timestamp.

3.2. Procedure

The following procedure was reviewed and approved by the University of Texas at
Dallas Institutional Review Board (IRB).

The human subjects study consisted of one learning and one retention session for each
participant. The duration of the sessions was approximately 60 min for the learning session
and 30 min for the retention session. The retention session occurred one week after the
learning session.

Participants first gave informed consent, then the learning session began with a
background survey on the demographics, education, and technology experience of the
participant. To train the participant on how to use the HTC Vive, the experimenter would
help the participant put on the HMD and run the SteamVR tutorial. After this, the exper-
imenter would then run the participant through the VR training application. Once the
participant finished, they were then administered a number of questionnaires regarding
their VR experience. Finally, participants were administered a knowledge test consisting of
multiple-choice questions pertaining to the training scenario.

One week later (restricted to the same day of the week to avoid confounds), a par-
ticipant would begin the retention session with the experimenter administering the same
knowledge test to measure knowledge retention. After completing the test, the experi-
menter would help the participant to put on the HTC Vive, and the participant would
then experience the retention version of the VR application. After completing the reten-
tion application, the participant was given a free-response exit survey and compensated
$15 USD.

3.3. Participants

A total of 61 participants were recruited through university mailing lists and com-
pleted the initial training session. However, one participant did not return to complete the
retention session. Thus, our data consists of 60 participants (11 females, 49 males). None of
our participants had prior knowledge of or experience with surgical robots or the training
task. The mean age of the participants was 22.6 ± 4.2 years.

4. Machine Learning Experiments

In this section, we discuss the learning and retention outcomes, experimental design,
input features, input feature representation, hyperparameters, and scoring method.

4.1. Learning and Retention Outcomes

For this research, we are concerned with three learning and retention outcomes:
Knowledge Acquisition, Knowledge Retention, and Performance Retention. We measure
Knowledge Acquisition and Knowledge Retention with the knowledge tests that were
administered at the end of the learning session and beginning of the retention session,
respectively. We measure Performance Retention by tracking errors and completion time at
the subtask level. If participants made no errors and completed a subtask within 30 s (i.e.,
the period of inactivity allowed before an interaction cue was presented), they are regarded
as having successfully completed that subtask. In order to predict these different outcomes
in a consistent way, we choose to implement a similar approach to that by Moore et al. [15].
For each outcome factor, we fit a Gaussian distribution to the observed scores, then classify
all scores one standard deviation above the mean as high performance, and all others as
low performance. These splits are described in Table 3.
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Table 3. Evaluation metrics and categorizations of participants.

Metric Value Range Mean Score SD # High # Low

Knowledge Acquisition [0, 20] 8.45 3.04 10 50
Knowledge Retention [0, 20] 10.50 3.60 9 51

Performance Retention [0, 24] 8.47 3.05 9 51
(# High and # Low indicate the number of participants identified with high- and low-performance.)

4.2. Experimental Design

In order to evaluate the performance of our models, we conduct an exhaustive grid-
search with four-fold, participant-level cross-validation across all hyperparameter options.
This is performed by first segmenting our data into an 80/20 train/test split for later
evaluation. On the training data, we create four approximately equal partitions to iteratively
train on three of the partitions and evaluate on the fourth, retaining the average score for
comparison against other hyperparameter configurations. We then select the configuration
with the highest average score, train on the entirety of the training data, and then test on
both the training and testing data, separately and overall.

4.3. Input Features

Our data consists of the position and rotation of the tracked HMD and handheld
controllers at a rate of 90 Hz, the frame rate of the training application. We encode this
tracking data in the form of a three-value vector for position and a four-value quaternion
for rotation. To mitigate possible noise introduced by including the rotation data, we
compare three sets of position and rotation data: (a) linear-and-angular features for both
the HMD and controllers, (b) linear-and-angular features for the HMD and linear-only
features for the controllers, and (c) linear-only features for both the HMD and controllers.
Because of recent success seen in making use of velocity rather than position for predicting
success [15,36], we also look at the linear and angular velocities derived from the position
and rotation data, thus resulting in six total conditions for each evaluation metric.

4.4. Input Feature Representation

In our analysis, we take the 90 Hz data and use a sliding window approach to
chunk it into spans that are more meaningful than an instant of data. This window is
made by selecting a time span for the segment length, and another for the shift size.
Depending on these parameters, there can be a significant amount of overlap between
subsequent windows. The frames of data within a window are concatenated to create a
high-dimensional vector that encodes the information. These vectors are then processed
with Principal Component Analysis (PCA) to extract salient features. This process greatly
reduces the amount of data and forms the input vectors used for training our models.

4.5. Hyperparameters

We consider several hyperparameters for both the representation of the input and the
support vector machine (SVM). The six described options for Input Feature Representation
can be regarded as hyperparameters within an evaluation metric prediction. However, in
this paper, we will treat them as separate experiments as we are interested in discussing
the differences in their performance. The sliding window approach for chunking our data
is determined by two hyperparameters: the segment length and shift size. The PCA feature
extraction also has a hyperparameter for determining the number of features extracted.
Finally, the SVM that we use in our methodology has two hyperparameters: penalty and
expressivity. The range of values that we explore for these five hyperparameters are shown
in Table 4.
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Table 4. Value range of hyperparameters considered.

Hyperparameter Seg. Length Shift Size PCA
Features Penalty Expressivity

Min Value 30 5 10 1 0.001
Max Value 120 13 80 10,000 0.090

4.6. Scoring Method

We fit SVMs [20] with Gaussian kernels to the featurized data. The resulting linear
separator will yield a classification of low or high for each window segment. One possible
way to extend the segment classification to an entire user is to determine the user’s label
by majority vote over the predicted labels of the user’s velocity segments. This approach is
reasonable, but doesn’t accommodate well for cases where several vectors are incorrectly
classified with low confidence. Thus, we weight each vote based on its distance from the
decision boundary.

Let lu,i and du,i denote the predicted label and corresponding distance for the ith
segment of participant p. We define the participant-level confidence that p belongs to class
c as:

confp,c =
∑i st. lp,i=c dp,i

∑N
i=1 dp,i

,

where N is the number of segments that belong to participant p. Then, the predicted label
of the user is determined by selecting the class c that maximizes the confidence.

5. Machine Learning Results

In this section, we will detail the results of our ML experiments across our learning
metrics. We choose to analyze the performance of each model in terms of the Matthews
correlation coefficient (MCC) score. This value is a special case of Pearson’s correlation
coefficient for two categories and is valued from -1 (full counter-correlation) to 1 (full
correlation). Unlike metrics such as accuracy, MCC takes into account the relative size
of each category when assigning a score, thus balancing the weight of disparately sized
categories [21]. This is particularly useful for our experiments in which the relative category
sizes have approximately a 5:1 ratio of low-performance to high-performance participants.

5.1. Knowledge Acquisition Results

Table 5 shows the full results of our Knowledge Acquisition experiment. First,
it is clear from the discrepancies in high-performance accuracy between the training
(High Acc = 1.000) and testing (High Acc = 0.000) datasets and the MCC scores for the
testing data (MCC = −0.135) that the first and third sets of input features, both position-
based, suffered from overfitting the high-performance training data. Similarly, the sixth
set, the velocity-based, linear-only input features set, also suffered from overfitting the
high-performance training data, resulting in a low MCC score (MCC = 0.000).

Interestingly, the two best performing models were the second and fifth sets of input
features (i.e., the position-based and velocity-based linear-and-angular HMD features and
linear-only controller features, respectively). The velocity-based fifth set yielded the best
test MCC of 0.674 and a better overall accuracy of 0.833 than the position-based second set,
which yielded a test MCC of 0.400 and an overall accuracy of 0.783. This position-based
second set was more conservative in identifying low-performance participants in both
the training (Low Acc = 0.725) and testing (Low Acc = 0.900) datasets than the velocity-
based fifth set, which was more accurate for both training (Low Acc = 0.825) and testing
(Low Acc = 1.000).



Big Data Cogn. Comput. 2021, 5, 29 10 of 17

Table 5. Knowledge Acquisition prediction results. For each of the six sets of input features, the accuracy of the low-
performance and high-performance predictions and the MCC are shown for both the training and testing data. Accuracy
and MCC are also shown for each set of input features across the entire dataset (i.e., both the training and testing data).

Set Position/ HMD Controllers Train/ Low High MCC Overall Overall
Velocity Test Acc Acc Acc MCC

1 Position Lin + Ang Lin + Ang Train 0.800 1.000 0.632 0.817 0.513Position Lin + Ang Lin + Ang Test 0.900 0.000 −0.135

2 Position Lin + Ang Linear Train 0.725 1.000 0.553 0.783 0.516Position Lin + Ang Linear Test 0.900 0.500 0.400

3 Position Linear Linear Train 0.829 1.000 0.665 0.836 0.541Position Linear Linear Test 0.900 0.000 −0.135

4 Velocity Lin + Ang Lin + Ang Train 0.700 0.750 0.346 0.700 0.309Velocity Lin + Ang Lin + Ang Test 0.700 0.500 0.158

5 Velocity Lin + Ang Linear Train 0.825 0.750 0.482 0.833 0.493Velocity Lin + Ang Linear Test 1.000 0.500 0.674

6 Velocity Linear Linear Train 1.000 0.625 0.762 0.917 0.674Velocity Linear Linear Test 1.000 0.000 0.000

5.2. Knowledge Retention Results

Table 6 shows the complete results of our Knowledge Retention experiment. Unlike
the Knowledge Acquisition experiment, there are no clear results indicating that any
of the six models overfitted the training data for low- or high-performance outcomes.
However, it is also the case that none of the six models performed as well on the Knowledge
Retention results, as they performed on the Knowledge Acquisition results. For Knowledge
Acquisition, five of the six models yielded overall MCC scores ranging from 0.493 to 0.674.
However, for Knowledge Retention, the six models only yielded overall MCC scores
ranging from 0.327 to 0.430. In terms of test MCC scores, two of the models, the first and
third sets, yielded chance-like results (i.e., near zero MCC scores).

Table 6. Knowledge Retention prediction results. For each of the six sets of input features, the accuracy of the low-
performance and high-performance predictions and the MCC are shown for both the training and testing data. Accuracy
and MCC are also shown for each set of input features across the entire dataset (i.e., both the training and testing data).

Set Position/ HMD Controllers Train/ Low High MCC Overall Overall
Velocity Test Acc Acc Acc MCC

1 Position Lin + Ang Lin + Ang Train 0.732 0.857 0.435 0.717 0.358Position Lin + Ang Lin + Ang Test 0.600 0.500 0.076

2 Position Lin+Ang Linear Train 0.732 0.857 0.435 0.733 0.377Position Lin + Ang Linear Test 0.700 0.500 0.158

3 Position Linear Linear Train 0.756 0.857 0.459 0.717 0.358Position Linear Linear Test 0.500 0.500 0.000

4 Velocity Lin + Ang Lin + Ang Train 0.854 0.714 0.477 0.817 0.430Velocity Lin + Ang Lin + Ang Test 0.800 0.500 0.258

5 Velocity Lin + Ang Linear Train 0.610 0.857 0.331 0.617 0.327Velocity Lin + Ang Linear Test 0.400 1.000 0.316

6 Velocity Linear Linear Train 0.805 0.714 0.412 0.783 0.380Velocity Linear Linear Test 0.800 0.500 0.258

The best performing model for predicting Knowledge Retention was the fourth set of
velocity-based, linear-and-angular HMD and controller input features. This model yielded
the best overall MCC of 0.430 and the second best test MCC of 0.258, which would have
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dramatically improved had it identified both high-performance participants instead of
just one (i.e., High Acc = 0.500). The sixth set of velocity-based, linear-only HMD and
controller input features performed similarly with an overall MCC of 0.380 and the same
test MCC of 0.258. Finally, the fifth set of velocity-based, linear-and-angular HMD and
linear-only controller features performed well with an overall MCC of 0.327 and the best
test MCC of 0.316. However, this model was overly generous with high-performance labels,
particularly in the testing data (High Acc = 1.000), which yielded poor low-performance
identification (Low Acc = 0.400).

5.3. Performance Retention Results

Table 7 shows the complete results of our Performance Retention experiment. Like the
Knowledge Retention results, there are no clear results indicating that any of the six models
overfitted the training data for low- or high-performance outcomes. However, unlike the
Knowledge Retention results, the six models performed relatively well on the Performance
Retention results, yielding overall MCC scores ranging from 0.341 to 0.869 and test MCC
scores ranging from 0.258 to 0.529.

The best performing model for predicting Performance Retention in the VR training
application was the sixth set of velocity-based, linear-only HMD and controller input
features. It yielded the highest overall MCC score of 0.869 (with an overall accuracy
of 0.967), and it yielded one of the top test MCC scores of 0.400, incorrectly predicting
exactly one low-performance participant and one high-performance participant. The third
and fourth sets of input features yielded the best test MCC scores of 0.529. However, these
models were generous with high-performance labels in the testing data (High Acc = 1.000),
which yielded conservative low-performance identification (Low Acc = 0.700).

Table 7. Performance Retention prediction results. For each of the six sets of input features, the accuracy of the low-
performance and high-performance predictions and the MCC are shown for both the training and testing data. Accuracy
and MCC are also shown for each set of input features across the entire dataset (i.e., both the training and testing data).

Set Position/ HMD Controllers Train/ Low High MCC Overall Overall
Velocity Test Acc Acc Acc MCC

1 Position Lin+Ang Lin+Ang Train 0.878 1.000 0.716 0.867 0.620Position Lin + Ang Lin + Ang Test 0.800 0.500 0.258

2 Position Lin + Ang Linear Train 0.927 1.000 0.805 0.900 0.685Position Lin + Ang Linear Test 0.800 0.500 0.258

3 Position Linear Linear Train 0.780 1.000 0.584 0.800 0.572Position Linear Linear Test 0.700 1.000 0.529

4 Velocity Lin + Ang Lin + Ang Train 0.683 0.714 0.290 0.700 0.341Velocity Lin + Ang Lin + Ang Test 0.700 1.000 0.529

5 Velocity Lin + Ang Linear Train 0.780 1.000 0.584 0.800 0.517Velocity Lin + Ang Linear Test 0.800 0.500 0.258

6 Velocity Linear Linear Train 1.000 1.000 1.000 0.967 0.869Velocity Linear Linear Test 0.900 0.500 0.400

6. Visual Inspection of Results

Given the highly accurate results of our ML experiments, we decided to conduct
visual inspections of the motions of participants, in order to try and understand how the
SVMs are classifying participants with such high degrees of accuracy. We use an approach
similar to our recent work [15], rendering the positions and high-velocity moments of
the tracking data within the environment, in a top-down orthographic view. We show
the HMD tracking data in yellow, and the left and right controller data in blue and red,
respectively. To convey high-velocity moments, green lines connecting the three tracked
traces are rendered for frames in which the velocity of any tracked device exceeded 1 m/s,
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with a minimum 15 frame break since the last rendered line to prevent visual clutter.
To convey time, we adjust the brightness of all four traces from dim to bright over the
course of the segment. For example, Figure 2 shows the visualizations of the same set
of actions for a participant with low performances on all three metrics (i.e., Knowledge
Acquisition, Knowledge Retention, and Performance Retention) and a participant with
high performances on all three metrics.

Figure 2. Visualizations of motion data from a low-performance participant and a high-performance
participant, based on all three metrics, for the same set of actions.

Through our visual inspections, we have noticed that the motions of low-performance
participants generally have more directional changes and return more often to prior posi-
tions than the motions of high-performance participants. Additionally, we have observed
that low-performance participants exhibit fewer velocity peaks (i.e., moments in which
velocity exceeds 1 m/s) than high-performance participants. Together, these results suggest
that low-performance participants moved more haphazardly and with less certainty. In
contrast, high-performance participants moved more smoothly and with greater certainty,
and likely, intention. These results are similar to prior results from the robotic surgery
domain, in which less-experienced robotic surgeons often demonstrate worse economies of
motion (i.e., excessive motions) than more-experienced robotic surgeons [37,38].
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Considering that our visualizations indicated that low-performance participants
moved more haphazardly and timidly, we decided to investigate whether prior VR experi-
ence had a significant effect on whether a participant would be a low- or high-performance
learner. We conducted a Mann–Whitney U test for each metric to compare the distribution
differences of low and high performances among participants with and without prior VR
experiences. Table 8 shows the results of these tests. The results clearly indicate that prior
VR experience did not have a significant effect on Knowledge Acquisition, Knowledge
Retention, or even Performance Retention.

Table 8. Results of Mann–Whitney U tests comparing the distribution differences of low and high
performances among participants with or without prior VR experiences.

Metric Prior VR Exp No VR Exp U pLow: High Ratio Low: High Ratio

Knowledge Acquisition 28:6 22:4 432.0 0.888
Knowledge Retention 29:5 22:4 439.0 0.968

Performance Retention 27:7 24:2 385.0 0.401

7. Discussion

In this section, we will discuss our results and what knowledge has been gained
through this work.

7.1. Position-Based versus Velocity-Based Models

Overall, we found that our velocity-based models generally outperformed our position-
based models. For all three metrics, we found that one of our velocity-based models yielded
the best results. Our velocity-based, linear-and-angular HMD with linear-only controller
model was the best for predicting Knowledge Acquisition. Our velocity-based, linear-and-
angular HMD and controller input features had the best results for predicting Knowledge
Retention. Finally, our velocity-based, linear-only HMD and controller input features were
the best for predicting Performance Retention.

In contrast, we observed that our position-based models produced some of the worst
results. For predicting Knowledge Acquisition, we found that two of the position-based
models suffered from overfitting the high-performance training data. Similarly, we found
that the same two position-based models, the linear-and-angular HMD and controller
input features and the linear-only HMD and controller input features, yielded chance-like
results for predicting Knowledge Retention. However, all three position-based models
did perform moderately well for predicting Performance Retention, which is based on
psychomotor skills as opposed to cognitive-only skills.

These results strongly support future research into the use of velocity-based models
for predicting learning and retention outcomes, both cognitive and psychomotor ones. On
the other hand, particularly if computing resources are limited, future researchers can likely
omit position-based models for predicting cognitive learning and retention outcomes, like
our Knowledge Acquisition and Knowledge Retention metrics. However, we believe that
position-based models are still viable for predicting psychomotor outcomes, based on the
results of our Performance Retention experiment.

7.2. Linear-and-Angular versus Linear-Only Models

In general, we did not find any results indicating that linear-and-angular or linear-only
models performed better than the other. In our experiments, we investigated three different
combinations of these features: (a) linear-and-angular features for both the HMD and
controllers, (b) linear-and-angular features for the HMD and linear-only features for the
controllers, and (c) linear-only features for both the HMD and controllers. We found that a
velocity-based version of each combination performed the best for one of our three metric
predictions. We found that the velocity-based, linear-and-angular HMD and controller
combination performed the best overall for predicting Knowledge Retention. We found that
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the velocity-based, linear-and-angular HMD and linear-only controller model performed
the best overall, without overfitting, for predicting Knowledge Acquisition. Finally, we
found that the velocity-based, linear-only HMD and controller features performed the best
overall for predicting Performance Retention.

These results suggest that there is still much research to be conducted into the investi-
gation of these linear and angular features. It is likely that one combination is not superior
to the others, and that researchers should investigate each to identify the best model for
their prediction metric. Furthermore, it is important to note that we did not investigate
angular-only features, which might be viable models for some types of prediction, such as
simulator sickness [39]. There are also other types of features that should be investigated,
such as the linear distances between the HMD and handheld controllers [40].

7.3. Cognitive versus Psychomotor Models

We found that our models produced the best results for the psychomotor-based
Performance Retention metric, as opposed to the cognitive-based Knowledge Acquisition
and Knowledge Retention metrics. The Performance Retention models yielded generally
higher overall MCC scores, with five of the six models ranging from 0.517 to 0.869. In
contrast, four of the six Knowledge Acquisition models had overall MCC scores ranging
from 0.309 to 0.516 and the best Knowledge Retention model had an overall MCC score
of 0.430. The psychomotor-based Performance Retention metric also yielded the best
overall accuracy of 0.967, out of all 18 models evaluated, and the only perfect MCC score
of 1.000 for the velocity-based, linear-only HMD and controller input features model.

These results indicate that VR tracking data can be better used to predict psychomotor-
based learning and retention outcomes than to predict cognitive-based outcomes. This is
intuitive as VR tracking data is directly generated by psychomotor-based actions. Hence,
it is a more-direct representation of the psychomotor-based mental models that partici-
pants have.

These results also imply that VR technologies are most likely more useful for training
psychomotor-based skills, such as troubleshooting a surgical robot, as opposed to cognitive-
only skills, such as mathematical calculations. However, more research is necessary to
investigate these potential differences in usefulness. In particular, real-world efficacy
evaluations of skills transfer is necessary. In our research, we were only able to assess
psychomotor retention by having participants use the retention version of our VR training
application. Ideally, we would have assessed psychomotor retention by having participants
demonstrate a real-world transfer of those psychomotor-based skills to a physical surgical
robot and OR environment. However, this was not feasible due to the limited availability
of such robotic ORs in hospitals [19].

7.4. Limitations

In our ML experiments, we chose to omit predicting performance during the learning
session of our study. This decision was made because while there may be utility in such a
classifier, it would be trying to predict values derived in part from actions the participant
has already undertaken, and wouldn’t be as directly comparable.

Additionally, in this study, we performed PCA to reduce the dimensionality of our
input vectors before using them to train the SVM models. While this is a generally accepted
practice, for completeness, a future study would ideally also treat rotation algorithms for the
PCA, as well as other feature extraction techniques such as convex-hull representations [15],
and other types of ML models as hyperparameters, and evaluate performance among those.
The decision not to explore those here was due in part to the computational complexity of
such a broad exploration.

Finally, the positional data was originally encoded in terms of VR world space, and
while this remained consistent with the real-world space in terms of scale, orientation, and
being stationary, it decreased the model’s ability to encode salient features such as head-to-
hand distance. Directly encoding such salient features would likely have been beneficial
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for our models’ predictive power as Pfeuffer et al. [40] found. However, evaluating all
possible salient features would be intractable, and selecting a subset of features to evaluate
over may have introduced bias.

8. Conclusions

In this paper, we explored the feasibility of employing ML models based on different
sets of VR tracking features to predict learning and retention outcomes from a VR training
application. Our results show that such models can be used to predict such educational
outcomes with high degrees of accuracy. Furthermore, our results indicate that velocity-
based models are likely better predictors of learning and retention outcomes, particularly
cognitive-based outcomes, than position-based models. However, our results did not
indicate that any particular combination of linear-and-angular or linear-only conditions
yielded better results. Hence, we generally recommend investigating different linear
and angular combinations of input features, in addition to considering some features
not investigated in this work, such as head-to-hand distances. Finally, our results clearly
indicate that VR tracking features can be better used to predict psychomotor outcomes
than cognitive ones.
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