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Abstract: Amniotic Fluid (AF) refers to a protective liquid surrounding the fetus inside the amniotic
sac, serving multiple purposes, and hence is a key indicator of fetal health. Determining the AF levels
at an early stage helps to ascertain the maturation of lungs and gastrointestinal development, etc.
Low AF entails the risk of premature birth, perinatal mortality, and thereby admission to intensive
care unit (ICU). Moreover, AF level is also a critical factor in determining early deliveries. Hence, AF
detection is a vital measurement required during early ultrasound (US), and its automation is essential.
The detection of AF is usually a time-consuming process as it is patient specific. Furthermore, its
measurement and accuracy are prone to errors as it heavily depends on the sonographer’s experience.
However, automating this process by developing robust, precise, and effective methods for detection
will be beneficial to the healthcare community. Therefore, in this paper, we utilized transfer learning
models in order to classify the AF levels as normal or abnormal using the US images. The dataset used
consisted of 166 US images of pregnant women, and initially the dataset was preprocessed before
training the model. Five transfer learning models, namely, Xception, Densenet, InceptionResNet,
MobileNet, and ResNet, were applied. The results showed that MobileNet achieved an overall
accuracy of 0.94. Overall, the proposed study produces an effective result in successfully classifying
the AF levels, thereby building automated, effective models reliant on transfer learning in order to
aid sonographers in evaluating fetal health.

Keywords: amniotic fluid (AF); artificial intelligence; deep learning; transfer learning; ultrasound; clas-
sification

1. Introduction

Technological advances in the medical field have had a major impact on the treatment
of many conditions that were once thought to be incurable or irreversible. Certainly, a
fundamental step of any treatment is an adequate and correct diagnosis. Medical diagnostic
and therapeutic procedures were primitive and could not take into account the numerous
medical symptoms before the introduction of contemporary technologies. Fortunately,
modern diagnostics have made great advances [1]. However, it has some limitations.
Within the medical field, obstetrics and gynecology is a highly diversified discipline of
medicine that includes surgery, prenatal care, gynecological care, oncology, and female
preventive medicine [1,2]. More specifically, this paper deals with prenatal diagnostic
procedures, more specifically with the determination of the amniotic fluid level (AF).

AF is a liquid seen in the amniotic sac that envelops the developing fetus in the
uterus, serving a variety of roles, and is essential for embryonic development. Although,
complications might arise if the volume of AF within the uterus is either too little or too
high. Abnormal AF volumes can lead to significant complications including oligohydram-
nios (inadequate AF level) and polyhydramnios (excess AF level). Oligohydramnios is
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associated with a higher incidence of stillbirth or miscarriage [3]. Because the AF serves
an important role in the respiratory system growth during the second trimester, it can
sometimes result in anomalies including severe lung defects [3]. It can also cause umbilical
cord constriction and other complications. Polyhydramnios is also responsible for other
problems throughout pregnancy and childbirth. This condition is known to induce preterm
labor spasms, premature birth, trouble breathing, limited air flow to the fetus due to the
umbilical cord becoming caught underneath the fetus, and other complications [3].

The detection of AF is usually a time-consuming process, and it is patient specific.
Moreover, its measurement and accuracy are subject to human errors, as it heavily depends
on the sonographer’s experience [4]. The four-quadrant AF index (AFI) or the single
deep vertical pocket (SDP) approach are commonly used to determine the AF volume.
Sonographers locate an appropriate AF region and afterwards analyze the depth of the AF
region by finding a specific point to measure the AF levels. Traditional AFI assessment
is primarily dependent on the sonographer’s abilities and knowledge, regardless of the
fact that AFI and SDP techniques are proven to be reproducible and semi-quantitative [5].
Even after extended training, sonographers struggle to precisely quantify the AF level
in the fetus [4]. As a result, the entire examination is a time-consuming process that can
contribute to erroneous results. However, automating this process by developing robust,
precise, and effective methods for detection will be beneficial to the healthcare community.

Nevertheless, though some studies have already been conducted in relation to the AF
classification, limited research has been dedicated to classifying AF in US images using
transfer learning [1]. Hence, this study will significantly contribute to automating the
detection process, which will benefit physicians as the automated detection helps them to
assess fetal health and development as well as perinatal prognosis. Furthermore, accurate
detection of AF levels in a quick and efficient manner is very critical. Therefore, utilizing
transfer learning to detect AF levels with accurate results and by processing US data will
equip gynecologists with a great tool that will help in improving the accuracy and efficiency
of their diagnosis and thus will help to monitor fetuses’ health. This paper utilized several
transfer learning models such as Xception, DenseNet, InceptionResNet, MobileNet, and
ResNet to classify the AF levels as normal or abnormal. The dataset used consisted of 166
US images obtained from King Fahd Hospital of the University (KFHU) and Elite Clinic in
Dammam, Saudi Arabia. The paper makes the following contributions:

1. Applying transfer learning models to classify the AF levels as abnormal or normal,
using ultrasound images and achieving high predictive performance;

2. Develops a predictive model using the real dataset from the hospital in the Kingdom
of Saudi Arabia (KSA). As per the authors knowledge, the proposed study is the first
study related to the AF classification using the KSA hospital dataset;

3. Initially, the preprocessing was applied using various techniques such as cropping,
enhancing, and augmenting, etc., to build more robust predictive models;

4. Performs cross-validation and provides a comprehensive discussion on the obtained
results on classifying the AF levels using the US images.

The paper is structured as follows: Section 2 investigates the related studies in the
field of utilizing AI in AF detection. Section 3 presents the material and methods used in
classification of AF, which include processing of the dataset, classification models applied,
and the metrics used to evaluate the models. Section 4 presents the experimental setup,
while Section 5 contains the results and discussion. Finally, Section 6 gives a conclusion to
summarize the overall study as well as the intended future work.

2. Related Studies

A plethora of studies have been carried out that have focused on using AI methods to
detect AF. This section examines the theories and applicable concepts on the subject in the
present literature, as well as their findings in order to identify the gap in literature. However,
limited studies have focused on the classification on AF using US images/videos. Likewise,
Ayu et al. [6] used machine learning (ML) algorithms, namely, rule-based SDP and the
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Random Forest (RF) algorithm, in order to classify the AF into 6 groups: oligohydramnios
clear and echogenic, polyhydramnios clear and echogenic, and normal clear and echogenic.
The dataset comprised 95 US images acquired from a local hospital. Before SDP feature
extraction, the images were cropped and transformed from red–green–blue (RGB) to
greyscale during preprocessing phase. After training the classifiers, the accuracy of the
model was 0.9052, and was higher than that of previous research. Furthermore, Ayu
and Hartati [7] conducted another study utilizing a pixel-based classification method to
distinguish AF areas on US images with noise, distortions, low contrast, and fuzzy margins.
The images were classified into four classes including the AF, fetal body, placenta, and
uterus. The accuracy obtained using RF was 0.995, using 50 test US images. Finally,
Amuthadevi and Subarnan [8] deployed fuzzy techniques to measure the AF index and
the geometric properties of AF at different phases of gestation. The anomalies in head
circumference and infant weight, etc., were forecasted using the fuzzy techniques. The
AFI was classified as oligohydramnios, borderline, normal, or polyhydramnios. The
classification accuracy obtained was 0.925.

On the other hand, various research has employed AI algorithms to segment AF from
US images. Following this ideology, a DL model called AF-net was used to segment the
AF pockets, developed by Cho et al. [4]. The AF-net is a version of U-net, which combines
several ideas: dilated convolution, multiscale side-input and side-output layer using 435
US images dataset, and 5-folds cross-validation was employed. For AF segmentation, the
suggested model achieved a precision of 0.898 ± 0.111 and a dice similarity coefficient
(DSC) of 0.877 ± 0.086. Similarly, Sun et al. [5] attempted to estimate the AF volume from
US images by segmenting the AF using a dual path DL network, which was composed
of AF-net and an auxiliary network. The dataset contains 2380 US images, which were
preprocessed using the following methods: resizing, trimming, augmenting, normalizing,
and applying 5-fold cross-validation. The model achieved a DSC of 0.8599. Furthermore,
Li et al. [9] also deployed DL in order to segment the AF in the US images. The dataset
constituted US videos of 4 patients, where each video length was 20 s. Key frame extraction
images were selected; 900 training images and 400 testing images were collected. The
model achieved an accuracy of 0.93, by applying 3 inner layers to the kernel in the applied
encoder–decoder network.

In another study, Ayu et al. [10] employed 50 fetal B-Mode US images to carry out AF
segmentation. To perform the segmentation, a pixel classification centered on the RF was
utilized. For comparison, the images were first brought into two window-size proportions
(3 × 3 and 5 × 5). After that, multiple points pertaining to 3 classes—AF, fetal body, and
uterus—were labeled by a radiologist expert. The results demonstrated that images with
a window size of 5 × 5 reached an accuracy of 0.8586, and images with a window size of
3 × 3 scored an accuracy of 0.8145. Furthermore, Ayu et. al. [11] also conducted another
study where they performed segmentation using pixel classification by applying several
classifiers such as decision tree (DT), RF, naive bayes (NB), support vector machine (SVM),
and K-nearest neighbor (KNN). The dataset used comprised 55 US images, and the RF
classifier gave the best results, attaining a DSC of 0.876 and pixel accuracy of 0.857.

Additionally, Looney et al. [11] attempted to segment the AF, placenta, and fetus by
building a multiclass CNN model. In order to segment the placenta, 2093 images were used,
and fully CNN (FCNN) was deployed. The highest DCS of 0.85 was attained after 17,000
training steps for placenta segmentation. For multiclass segmentation, 300 images were
employed to combine a two-pathway hybrid model, and a DSC of 0.84 was obtained. Finally,
Anquez et al. [12] investigated the utero-fetal unit (UFU) segmentation by employing 19 3D
US images using the fuzzy technique. All these images belonged to the first trimester of
the fetal stage. Automating the fetal tissue and AF extraction was their primary goal. An
average accuracy of 0.89 was obtained in the study.

Most of the aforementioned studies focused on segmenting the AF from the US images.
Some of these studies achieved high DSC. For instance, Ayu et al. [13] obtained a DSC of
0.876. However, segmenting the AF alone does not help in estimating if the AF level in
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the fetus is in the normal range. We also need to model techniques that can successfully
classify by using the US images, as a normal AF level or not. There was, however, one
study that focused on calculating the AF index from the segmented AF. This study was
conducted by Cho et al. [4] by using US videos, and they achieved an overall precision of
0.898. Furthermore, among the studies that pursued classification, the highest accuracy
of 0.995 was obtained by Ayu and Hartati [7]. However, in this study, they did not focus
on classifying the AF levels in the US images. Rather, they focused on classifying the US
images into four classes: AF, fetal body, placenta, and uterus. Therefore, in the current
study we focused on classifying the US images as having normal AF or abnormal AF. To
accomplish this, the US images dataset was collected from a local hospital, and several
transfer learning models were deployed to develop a model that could make accurate
predictions. Hence, the proposed methods have successfully classified the AF images and
thereby aid the sonographers/physicians in determining fetal health.

3. Materials and Methods

This section provides a breakdown of the proposed methodology along with a compre-
hensive analysis of data preprocessing methods, data-partitioning techniques, classification
models applied, and evaluation metrics used. Figure 1 summarizes the methodology de-
ployed in this study. The dataset was first passed through the preprocessing steps, and then
for training, the model and the preprocessed images were split into a training set and test
set, with the training set further split into training and validation sets. The transfer learning
model was trained and validated by the training and validation sets. After training, the
model was evaluated with a test set and the results were collected. The section below
contains the details of proposed methodology steps.
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Figure 1. Proposed methodology.

3.1. Dataset Description

The US images are classified into two classes based on the AF levels: abnormal AF
and normal AF.

Abnormal AF: The abnormal AF corresponds to a patient suffering from oligohydram-
nios or polyhydramnios conditions. Our focal point of the research is recognizing the US
images having these abnormal AF levels.

Normal AF: Normal AF pertains to the patients not suffering from the aforementioned
conditions. The normal AF US images of patients are required to enable the classification
models to distinguish the abnormal from the normal ones.

Hence, as an initial step to develop the models to classify these AF levels in images,
we acquired the US images from King Fahd Hospital of the University (KFHU) and Elite
Clinic in Dammam, KSA. The US device that was used to collect the images was the GE
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Voluson P6, and we collected a total of 166 US images, among which 100 cases belonged to
normal AF levels and 66 cases belonged to abnormal AF levels.

3.2. Preprocessing

The preprocessing involved several steps to prepare the data to be ready for further
processing. The following steps were performed during preprocessing

3.2.1. Cropping and Enhancement

The first step after acquiring the images was cropping them in order to remove the
textual information in the US images, particularly the top right corner of each image, which
contains the patient’s name and gestational age, etc., as well as the scale present on the
left bar of each image. This information is removed to preserve the patient’s privacy. The
images were cropped using Python. This step removed the textual noise present on the
images.

The next step after removing the textual noise was enhancing the US images. Image
enhancement is typically carried out in order to improve the quality of the images. The
PIL library in Python contains an image enhancement algorithm. Hence, the images were
enhanced using the ImageEnhance method from the PIL library.

3.2.2. Augmentation

Augmentation in image processing is carried out in order to expand the size of the
dataset by generating new images from the original image dataset. The preprocessing
library in TensorFlow contains the ImageDataGenerator class, which can perform the pro-
cess of augmentation in real time while the model training is performed. This function
will perform random rotation, height shift, zooming, and rescaling, etc., thereby making
the model more robust by ensuring that it receives new variations of the images at each
epoch. An essential thing to be noted is that the ImageDataGenerator only returns the new
(transformed) images instead of adding to the original set of images. The reason behind
utilizing this in ours is that if the models were to see the original images multiple times,
it would end up suffering from the problem of overfitting. Furthermore, the ImageData-
Generator class also helps to save memory by loading all the images at once instead of
loading them in batches. Therefore, the process of augmentation was carried out using the
ImageDataGenerator class.

3.3. Classification Models

Transfer learning is the process of reusing an already trained model for another task.
In this paper we applied several transfer learning models. Below are the five main transfer
learning models that we applied, which yielded good results, as will be shown in the results
section.

3.3.1. Xception

A unique deep convolution method reliant on depthwise separable convolutions
proved to excel the regular Inception V3 regarding the ImageNet dataset, alongside superior
performance on a complex classifier dataset involving 350 million images with 17,000
classes [14]. The term Xception, which means “extreme inception”, thus stems from the
fact that the CNNs’ feature maps’ cross-channels and spatial correlations mapping can be
completely detached. Due to the depthwise separable convolution layers accompanying
the residual connections, the architecture is easily adaptable using high-level libraries such
as Keras and TensorFlow-Slim.

3.3.2. Resnet50V2

The winner of the ILSVRC 2015 classification task, residual network (ResNet), was
introduced by He K. et al. [15] to enhance the efficiency of CNN and accelerate the com-
putational time. ResNet can contain thousands of layers without negatively affecting the
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performance, making it ideal for image recognition, object localization and detection, and
even establishing acceptable accuracy for non-vision tasks. Furthermore, the model was
proposed to surpass the problem of the vanishing/exploding gradient in DNN by applying
shortcut connections—also known as residual blocks—for identity mapping, which does
not increase the parameter number nor the computational time. The goal was to stabilize
the error rate for the higher neural network layers and diminish the impacts on the lower
layers. For example, authors were reformulating the original mapping into M(a): =G(a) + a,
where M(a) is the resulted mapping, and a is the input for these layers. This reformulation
was considered to add a prerequisite for the degradation problem, which states that an
increase in the depth of the network increases the error rate on both training and testing
data. ResNet50V2 is one of the ResNet latest versions, with 50 layers deep and batch
normalization for each weight layer. The 50th layered model has the same architecture
as ResNet34 but adds an extra bottleneck block instead of 2 layers, resulting in achieving
higher accuracy than the ResNet34.

3.3.3. DenseNet121

Dense convolutional network (DenseNet) is an architecture that makes deep learning
networks much more efficient to train in comparison to the standard convolutional neural
network (CNN). In particular, in standard CNN each convolutional layer receives the input
from the previous layer. Contrastingly, in DenseNet each layer is connected to all other
layers in the network to maximum information flow between the layers. Each layer obtains
inputs from all the previous layers and passes on its own feature maps to all the layers after
that layer, in order to preserve the feed-forward nature. DenseNet combines the features by
concatenating them where the “ith” layer has “i" inputs and consists of feature maps of all
its previous convolutional layers. For “L” layers, there are L(L + 1)/2 direct connections
rather than just “I” connections as in standard CNN architectures. Thus, it requires fewer
parameters as there is no need to learn unimportant feature maps, and results in more
compact models and achieves high performances and better results across competitive
datasets [16].

3.3.4. MobileNet

MobileNet is a type of CNN architecture that was mainly designed to be utilized
for computer vision in mobile applications. It has been open sourced by Google and
can be used for training the classifiers faster. The MobileNet uses the mechanism of
depthwise separable convolutions, which entails splitting the computation into two main
steps: depthwise convolution and pointwise convolution. The depthwise convolution
first applies the same filter to each input channel [17]. Then, 1 × 1 convolution is applied
at the pointwise convolution step in order to combine the outputs from the depthwise
convolution step. Therefore, the depthwise separable convolution splits the architecture
into two layers, i.e., one for filtering and the other for combining. This separation of layers
dramatically reduces the model size and computation. Traditionally, the CNN architecture
consists of single 3 × 3 convolution layers, which is followed by batch normalization
and ReLu activation. However, MobileNet splits the convolutions into 3 × 3 depthwise
convolution, which is followed by 1 × 1 pointwise convolution.

3.3.5. InceptionResnetV2

This is a CNN model pretrained on around a million images from the ImageNet
database. Images can be classified into numerous categories, including keyboard, mouse,
and pencil, using its 164 layers deep network. With a 299-by-299 image input size, it has a
highly exclusive features’ representation capability. The two underlying constituents of
the network are the inception structure and residual connection. Degradation and time
elongation issues are prevented by the implementation of residual connections [18].
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3.4. Evaluation Metrics

To ensure the reliability and to demonstrate the proposed model’s performance, several
evaluation parameters were utilized. Accuracy, balanced accuracy, precision, recall, F1
score, and AUC–ROC are some of the commonly used performance metrics to measure
performance for similar models. Accuracy is the ratio of correctly predicted observation to
the total observations. To calculate an accuracy, first we need to calculate the true positive,
true negative, false positive, and false negative, and then utilize the following equation:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Precision can be calculated by finding the issue of correctly predicted positive obser-

vation to the total predicted positive observation, as shown in the following equation:

Precision =
TP

(TP + FP)

Moreover, to show how many actual positive cases we would be able to predict in our
model, recall will be calculated, which is the ratio of correctly predicted positive observation
to all observations and actual class using the following equation:

Recall =
TP

(TP + FN)

By calculating precision and recall, F-score, another useful tool, is calculated to evaluate
the model performance represented by the weighted average of precision and recall using
the following equation:

F-score =
2 × Recall × Precision
(Recall + Precision)

Additionally, balanced accuracy is calculated, which is balance accuracy, and is used
in binary and multiclass classification problems to account for the imbalance dataset. It is
calculated by the average of recall of each class.

The area under the curve (AUC), which measures the quality of the model predictions
and has a scale from zero to one, where the best value is 1 and the worst value is 0, is
also calculated. Additionally, AUC–ROC is typically used to measure performance for
classification problems. ROC (receiver operating characteristics) is a probability curve,
and AUC represents the degree of separability, which explains the model capability of
distinguishing between classes.

4. Experimental Setup

The study was implemented using Python programming language (ver. 3.7.12). Sev-
eral libraries were used for developing the model such as PIL (ver. 8.4.0), TensorFlow (ver.
2), Numpy (ver. 1.22.0), and Matplotlib (ver. 2.2). The experiments were performed on
the Google Colab with the GPU setting. The dataset was divided using five-fold cross-
validation for training and testing. The training dataset was further divided into training
and validation. The model optimization was performed using the Adam optimizer. Five
transfer learning models were trained such as MobileNet, InceptionResnetV2, DenseNet121,
ResNet50V2, and Xception. The results of each model will be discussed below.

5. Results and Discussion

To assess the performance of the applied models, the results of the test data were
compared with the results provided by the gynecologist from a local hospital. Since
five-fold cross-validation was applied as it yielded better results when compared with
holdout (train–test split), we recorded the performance metric values obtained at each
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fold. The average of the performance values was taken for each metric for each fold and
included the results for each model. These results are included in the respective subsections.
Furthermore, the loss and accuracy curve at each epoch was used to monitor and assess the
model’s performance.

5.1. MobileNet

The results obtained by the MobileNet model have been summarized in Table 1 below
across each fold. Among all the folds, the highest accuracy was achieved by the first fold.
However, most of the performance metrics gave similar values. The mean performance
using all the metrics have been included in the last column. It is observed that the model
achieved an overall average accuracy of 0.945, which means the model can correctly predict
94.5% of the test cases. Other metrics are also indicated in the last column. Figure 2 (a and
b) shows two plots, i.e., validation data accuracy at each epoch 2(a) and validation loss at
each epoch 2(b). From these curves we found that the performance varied at each epoch
but remained in the same ranges as the model was learning.

Table 1. K-folds performance results using MobileNet.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy 0.9706 0.9697 0.9091 0.9091 0.9697 0.9456
Bal-Accuracy 0.9722 0.9615 0.9115 0.9111 0.9444 0.9402

Precision 1 0.9524 0.9474 0.9412 0.96 0.9602
Recall 0.9444 1 0.9 0.8889 1 0.9467

F1 score 0.9714 0.9756 0.9231 0.9143 0.9796 0.9528
Auc roc 0.9722 0.9615 0.9115 0.9111 0.9444 0.9402
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5.2. DenseNet121

Table 2 below gives the performance results obtained by DenseNet121. In this model,
the final fold (fold 5) showed the highest performance. The mean values are added in the
last column, and as we can see, the accuracy achieved was 0.927, which is less than that
achieved by MobileNet, but the metrics values for both models are comparatively close.
Figure 3 (a & b) shows the validation accuracy (3a) and loss curves (3b) for DensNet121,
plotted at each epoch. It was observed that the accuracy gradually kept increasing at every
epoch, which indicates that the model was learning well during training. Moreover, the
loss increased till the 5th epoch, after which it decreased and stayed in the same range at
the end of the epochs.
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Table 2. K-folds performance results using DenseNet121.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy 0.9118 0.9091 0.9091 0.9394 0.9697 0.9278
Bal-Accuracy 0.9118 0.9065 0.9111 0.9524 0.9762 0.9316

Precision 0.85 0.9545 0.9412 1 1 0.9491
Recall 1 0.913 0.8889 0.9048 0.9524 0.9318

F1 score 0.9189 0.9333 0.9143 0.95 0.9756 0.9384
Auc roc 0.9118 0.9065 0.9111 0.9524 0.9762 0.9316
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5.3. InceptionResnetV2

Table 3 illustrates the performance results obtained by InceptionResnetV2. In this
model, the final fold (Fold 5) showed the highest performance. The mean values are
added in the last column, and we see that the accuracy achieved was 0.892, which was
less than that achieved by both MobileNet and DenseNet121. The validation accuracy
and loss curves for InceptionResNetV2 are illustrated in Figure 4 (a & b), plotted at each
epoch. From the figures, it has been found that the accuracy gradually kept increasing at a
fluctuating rate at every epoch, indicating that this model too was learning well during
training. Moreover, the average loss fluctuated up and downwards between the 5th and
10th epoch, after which it decreased and stayed the same until the end of the run.

Table 3. K-folds performance results using InceptionResnetV2.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy 0.8824 0.9091 0.8485 0.8788 0.9394 0.8916
Bal-Accuracy 0.8807 0.9117 0.8346 0.8665 0.9283 0.8844
Precision 0.8947 0.9444 0.8571 0.8571 0.9565 0.902
Recall 0.8947 0.8947 0.9 0.9474 0.9565 0.9187
F1 score 0.8947 0.9189 0.878 0.9 0.9565 0.9096
Auc roc 0.8807 0.9117 0.8346 0.8665 0.9283 0.8844
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5.4. ResNet50V2

The performance results obtained by ResNet50V2 are depicted in Table 4. In this
model, the final fold (Fold 5) showed the highest performance, and it reached 100% for
all the metrics. However, the difference between the metrics values was high at each fold.
The model was not consistent in learning. The mean values are added in the last column,
and the accuracy achieved was 0.862, which was less than the accuracy achieved by the
previous three models discussed. The validation accuracy and loss curves for ResNet50V2
are illustrated in Figure 5 (a & b). In these curves we see that the accuracy gradually kept
increasing from 15th epoch onwards. Moreover, the average loss decreased immediately at
the 5th epoch and stayed almost the same until the end of the run.

Table 4. K-folds performance results using ResNet50V2.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy 0.8529 0.7879 0.8182 0.8485 1 0.8615
Bal-Accuracy 0.8536 0.7688 0.8233 0.8182 1 0.8528
Precision 0.8947 0.7727 0.8824 0.8696 1 0.8839
Recall 0.85 0.8947 0.7895 0.9091 1 0.8887
F1 score 0.8718 0.8293 0.8333 0.8889 1 0.8847
Auc roc 0.8536 0.7688 0.8233 0.8182 1 0.8528
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5.5. Xception

Finally, Table 5 summarizes the performance results obtained by Xception. In this
model, the first fold (Fold 1) showed the highest performance, and the value difference was
inconsistent between each fold, meaning sometimes it decreased and sometimes there was
an increase. The mean values are added in the last column, and we see that the accuracy
achieved was 0.92, which was similar to that achieved by both MobileNet and DenseNet121.
The validation accuracy and loss curves for Xception are illustrated in Figure 6 (a & b).
Here, we see that the accuracy gradually kept increasing at a fluctuating rate at every epoch,
which indicates that the model was learning well. Furthermore, the average loss moved up
and down until the 10th epoch, after which it decreased and stayed in the same range until
the end of the run.

Table 5. K-folds performance results using Xception.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy 0.9706 0.9091 0.9697 0.8485 0.9091 0.9214
Bal-Accuracy 0.98 0.9056 0.9773 0.859 0.875 0.9194
Precision 1 0.8947 1 0.7647 0.875 0.9069
Recall 0.96 0.9444 0.9545 0.9286 1 0.9575
F1 score 0.9796 0.9189 0.9767 0.8387 0.9333 0.9295
Auc roc 0.98 0.9056 0.9773 0.859 0.875 0.9194
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Implementing AI techniques in fetal health has proven to exhibit significant results
for the diagnosis of major fetus health issues such as premature birth and perinatal mortal-
ity [19]. The first process of preprocessing involved the cropping of images for the removal
of patient information in the form of text, followed by other noise removal from various
locations within the image for clarification. Finally, augmentation was implemented for
the expansion of the dataset size using the ImageDataGenerator class available on the
TensorFlow library.

With five-fold cross-validation providing better results in comparison to holdout, its
performance metric values were recorded at each fold and its average calculated. The
MobileNet model’s first fold produced the highest accuracy and best overall performance,
with accuracy, precision, recall, and F1-scores of 0.94, 0.96, 0.94, and 0.95, respectively.

6. Conclusions

The classification of the AF level is a crucial method to diagnose fetus health and
development. Early diagnosis of normal AF levels can help in identifying major fetus
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health issues such as premature birth and perinatal mortality. Moreover, detection of
AF is a lengthy process that requires accurate measurements of patients’ US data. This
process requires experience to accurately measure the levels and avoid any errors, in order
for gynecologists to successfully assess the cases and ensure fetus health. Furthermore,
accurate detection of AF levels in a quick and efficient manner is very critical. Therefore,
utilizing AI to detect AF levels with accurate results and by processing US data will equip
gynecologists with a great tool, which will help in improving the accuracy and efficiency of
their diagnosis, and thus to monitor fetuses’ health.

In this paper, we utilized transfer learning models that analyzed US images to detect
the AF level. The model was trained and tested using a set of US images obtained from
KFHU and Elite Clinic. The models were evaluated using performance measures such as
accuracy, precision, recall, F1-score, balanced accuracy, and AUC-ROC, etc. The proposed
models development consisted of two phases: the first phase is preprocessing, and the
second phase is classification. In the first phase, starting with the cropping of the images
in order to remove the text labels visible on most of them, this process was then followed
by the removal of textual noise located in different locations within the images to further
clarify the image and remove any noise that might negatively affect the accuracy, then
enhancing the image to improve its quality and thus ensuring proper feature detection in
the next phase. Lastly came augmentation, which was used to expand the size of the dataset
using the ImageDataGenerator class available on the TensorFlow library. The second phase
is AF classification, which was conducted using TensorFlow’s five transfer learning models
that include Xception, MobileNet, InceptionResnetV2, DenseNet121, and ResNet50V2,
which are used to train the model on 50 epochs and used five-fold cross-validation on the
data and batch size of 16, in order to accurately classify the AF images to help diagnose
normal or abnormal AF levels. Upon analyzing the results, MobileNet gave us the best
performance, in which it achieved an accuracy, precision, recall, and f1-scores of 0.94, 0.96,
0.94, and 0.95 respectively.

By developing this model, we aim to help gynecologists and physicians to perform ac-
curate assessments of their cases and thus save the lives of fetuses and avoid premature birth
or any other medical complications. For future work, we plan to expand the score to multi-
class classification with three classes—normal, polyhydramnios, and oligohydramnios—
instead of a binary class classification that includes normal and abnormal, to provide
physicians and gynecologists with a more accurate prediction about the AF level diagnosis.
Multiclass classification was not implemented in the current study due to the very small
number of patients with oligohydramnios and polyhydramnios.
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