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Abstract: The extension of the fractional order derivative to the distributed order fractional derivative
(DOFD) is somewhat simple from a formal point of view, but it does not yet have a simple, obvious
analytic form that allows its fast numerical calculation, which is necessary when solving differential
equations with DOFD. In this paper, we supply a simple analytic kernel for the Caputo DOFD
and the Caputo-Fabrizio DOFD, which may be used for numerical calculation in cases where
the weight function is unity. This, in turn, could potentially allow faster solution of differential
equations containing DOFD. Utilizing an analytical formulation of simple physical systems with
phenomenological equations that include a DOFD, we show the relevant differences between the
Caputo DOFD and the Caputo-Fabrizio DOFD. Finally, we propose a model based on DOFD for
modeling composed materials that comprise different constituents, and show its compatibility
with thermodynamics.
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1. Introduction

The distributed order fractional derivative (DOFD) was introduced in 1967 [1] and, rightly,
received no attention from the scientific community, since the simpler derivative of fractional order
was being successfully used in several different fields of science, such as as a filter for studying spectral
properties, in diffusion, and in Maxwell equations [2,3]; Bagley and Torvik, in [4], developed a theory
to show the existence of the order domain and the solution of distributed order equations.

Then, interest slowly increased, with several interesting papers being published; of particular
note among them are Chechkin et al. [5], who applied DOFD to study retarding subdiffusion and
accelerating superdiffusion; Lorenzo and Hartley [6], who studied variable-order and distributed-order
fractional operators; Chechkin et al. [7] applied distributed-order time-fractional operators in the
fractional equations; Naber [8] studied distributed-order fractional subdiffusion; Kochubei [9] applied
distributed-order operators to the study of ultraslow diffusion; and Mainardi et al. [10] applied DOFD
to study the diffusion.

Recently, Jiao et al. [11] treated the problems of stability, simulation, applications and perspectives
of dynamic systems modeled with the use of this new operator, and Gorenflo et al. [12] (see also [13])
found a fundamental solution of a distributed order time-fractional diffusion equations.

The original definition of the fractional derivative of distributed order includes cases where the
derivative is affected by a weight function, which adds more difficulties to those that already exist
in the numerical computation of the derivative, including that of the computer time required for its
numerical estimation. In any case, in this work, we have observed that the DOFD is reduced to a
classical operator with a kernel.
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The purpose of this short article is to give an analytic expression for the DOFD in the case of
unity weight function, which, with the use of a simple convolution with a given transfer function,
may contribute to obtaining a faster numerical computation and more rapid solution of equations.

Moreover, it is convenient to note that the use of DOFD allows the expansion of memory operator
applications to new materials.

Indeed, in the last section, we consider a model for which the distributed-order fraction derivative
is used to represent constitutive equations describing the behavior of composite materials realized from
multiple physical constituents, such that the mesoscopic structure of some materials can be considered
as a set of sample materials, which we assume to be represented by materials that can be described
by a fractional derivative. Therefore, such composite materials can be represented by assembling the
singular components by a fractional derivative of a distributed order. Moreover, we prove that these
composed materials satisfy the Thermodynamic Principles, from which we obtain the existence of free
energy for the system.

2. The Caputo DOFD

The DOFD includes a weight function A(v) (see [2,13])

cDv
dw(t) =

d∫
c

A(v)Dvw(t)dv (1)

where 0 < c < d < 1, and

Dvw(t) = (1/Γ(1− v))
t∫

0

duw′(u)/(t− u)v (2)

The Laplace Transform (LT) of (1), exchanging the operator of LT with that of integration [4], is

LTcDv
dw(t) = LT

d∫
c

A(v)[Dvw(t)]dv =
d∫
c

A(v)dv
[
svW(zs)− (zs)−1+vw(0)

]
= W(zs)

d∫
c

A(v)(zs)vdv− w(0)
d∫
c
(zs)−1+v A(v)wdv

W(s) = LTw(t)

(3)

Here, z, with the dimension of time, is a normalization parameter used for the consistency of
the physical dimensions [3]. For purposes of formal simplification, we assume z = 1 in the following,
which does not limit our discussion.

In practice, it is often the case that one assumes A(v) = 1, which gives

LTcDv
dw(t) = LT

d∫
c
[Dvw(t)]dv =

d∫
c

dv
[
svW(s)− s−1+vw(0)

]
= W(s)

d∫
c

svdv− w(0)
d∫
c

s−1+vdv

= W(s)
(

sd − sc
)

/ ln s− w(0)
(

sd − sa
)

/s ln s

(4)

Setting
H(s) = [(s)d − (s)c]/s ln s (5)

LTh(t) = H(s)

we may write
LTcDv

dw(t) = sW(s)H(s)− w(0)H(s) = [sW(s)− w(0)]H(s)
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or
cDv

dw(t) = w′(t) ∗ LT−1(sd − sc)/s ln s = w′(t)× h(t) (6)

where we consider h(t) to be a pseudo-Green function of the problem when A(v) = 1 or the kernel of
Caputo DOFD.

In the following, we find the time domain expression of h(t) appearing in Equations (5) and (6)
required for the computation of cDv

dw(t).
We find first the following properties for H(s)

lim
s→∞

sH(s) = lim
s→∞

s(sd − sc)/s log s = ∞

lim
s→0

sH(s) = lim
s→0

s(sd − sc)/s log s = 0 (7)

which imply,
h(0) = ∞

h(∞) = 0

That is, the Caputo DOFD has a singularity in the origin.
In the following, we find the time domain expression of h(t) appearing in Equations (5) and (6)

required for the computation of cDv
dw(t) by integrating along the Bromwich-Hankel path

h(t) = −(1/2iπ){
0∫

∞
exp(−rt)dr/[rd exp(iπd)− rc exp(iπc)]r(ln r + iπ)+

−
∞∫
0

exp(−rt)dr/[rd exp(−iπd)− rc exp(−iπc)]r(ln r− iπ)}

or finally

h(t) = (1/π)
∞∫
0

exp(−rt){[ln r][rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]}dr/

r[(log r)2 + π2][r2d + r2c − 2rc+d cos(d− c)]
(8)

which is a pseudo-Green function of the DOFD order with a unity weight function.
Equation (6) implies that

cDv
dw(t) = (1/π)

∞∫
0
{[w(t)′ ∗ exp(−rt)]/r[(log r)2 + π2]}dr

{(ln r)[rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]}/
[r2d + r2c − 2rc+d cos(d− c)]

(9)

which is the explicit closed-form expression for the DOFD with a unity weight function.
Dividing the numerator and denominator of the integrand in Equation (9) by rd, we find

cDv
dw(t) = (1/π)

∞∫
0
{[w(t)′ ∗ exp(−rt)]/r[(log r)2 + π2]}dr

{(ln r)[(rc/rd) sin πc− sin πd] + π[(rc/rd) cos πc− cos πd]}/
[rd + r2c−d − 2rc cos(d− c)]

which implies that by increasing d, the integrand decreases; or that by interpreting d as a normalized
distance from the origin of the signal and the sensor, the signal decreases with increasing distance d.
In other words we have a model of decreasing signal with increases in both time and distance.

The time domain expression of the pseudo-Green function h(t) is shown graphically in Figure 1
with c = 0.8; d = 0.9; with c = 0.45; d = 0.55 and with c = 0.1; d = 0.2.
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Figure 1. The form of the pseudo-Green function h(t) of the Caputo DOFD for different values of the
couple (c, d) c = 0.8 ; d = 0.9 (triangles), c = 0.45; d = 0.55 (squares), c = 0.1; d = 0.2 (diamonds).

It may be useful to see the analytic form of the DOFD of some elementary functions often seen in
the literature. We consider the functions f (t) = cos kt, f (t) = exp(−at) and f (t) = t; finding respectively

cDv
d(cos kt) = (−k/π)

∞∫
0
{[k exp(−rt) + r sin kt− k cos kt]/r[(r2 + k2)]}

{(ln r)[rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]/r[(log r)2 + π2]}dr/
[r2d + r2c − 2rc+d cos(d− c)]

(10)

cDv
d exp(−kt) = (−k/π)

∞∫
0
{[exp(−kt)− exp(−rt)]/(r− k)]]}

{(ln r)[rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]/r[(log r)2 + π2]}dr/
[r2d + r2c − 2rc+d cos(d− c)]

(11)

and

cDv
dt = (1/π)

∞∫
0
{[(1− exp(−rt))/r]/[(log r)2 + π2]}dr

{(ln r)[rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]}/
[r2d + r2c − 2rc+d cos(d− c)]

(12)

It is obvious that the cDv
dw(t) of a constant is nil.

The cDv
dw(t) may be used in phenomenological equations for natural phenomena in order to

model memory. However, at this point, it is legitimate to ask about the differences between their
filtering performance and that of the simpler Dvw(t), as well as asking which one would be more
convenient, since both may be estimated numerically with roughly equal efficiency.

For a tentative comparison, we consider the very simple case of an input-output system with
memory alternatively represented by the Dvw(t) and the cDv

dw(t). Simply put, the cDv
dw(t) has two

free parameters, c and d, while the Dvw(t) has only v as a free parameter; this is the major formal
difference. In our case, because of the apparent complexity of both the problem and, possibly, of its
solution, we tentatively chose to use cDv

dw(t).
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3. Application to an Input-Output System with Memory Constitutive Equation

Let g(t) be the output and w(t) the input, and assume that they are related by

w(t) = ag(t) + b
d∫

c

D(v)g(t)dv (13)

W(s) = aG(s) + bG(s)
(

sd–sc
)

/ log s

G(s) = W(s) log s/(a log s + b(sd − sc)) (14)

where G(s) = LTg(t) and W(s) = LTw(t), and a and b are arbitrary constants.
In the case of elasticity, Equation (13) would be the stress–strain relation of the generalized Kelvin

Voigt type with g(t) strain and w(t) stress and a, b = gr cm−1 s−2; in the case of electric phenomena,
w(t) would be the applied electric field and g(t) the induction.

With W = 1—that is, w(t) = δ(t) in Equation (14)—we find the pseudo-Green function

G(s) = log s/(a log+b(sd − sc)) (15)

To compute g(t), we first see that the integral around s = 0 is nil, since 0 < c < d < 1, and then
integrate around the Bromwich-Hankel path finding.

g(t) = −(1/(2πi))
∫ ∞

0 (exp(−rt))dr
{(log r + iπ)/[a(log r + iπ) + b(rd(cos πd + i sin πd) + rc(cos πc + i sin πc))]+
−(log r− iπ)/[a(log r− iπ) + b(rd(cos πd− i sin πd) + rc(cos πc− i sin πc))]

(16)

In accordance with the extreme value theorem, it can also be seen that g(∞) = 0, g(0) = ∞.
With W = 1/s and Equation (14), we find the response to a constant stress

g(t) = −(1/(2πi))
∫ ∞

0 (1− exp(−rt))(dr/r)
{(log r + iπ)/[a(log r + iπ) + b(rd(cos πd + i sin πd) + rc(cos πc + i sin πc))]+
−(log r− iπ)/[a(log r− iπ) + b(rd(cos πd− i sin πd) + rc(cos πc− i sin πc))]}

(17)

With w = sin(ft) in (14), we find the response to a periodic stress

g(t) = (1/π)
∫ ∞

0 [( f exp(−rt) + r sin( f t)− f cos( f t))(dr/( f 2 + r2))]

b{(log r)(rd sin πd + rc sin πc)− π(rdcosπd + rccosπc)}/
{[a log r + brd(cos πd + rc cos πc)]2 + [aπ + b(rd sin πd + rc sin πc)]2}

(18)

4. The Caputo-Fabrizio DOFD

Concerning of the Caputo-Fabrizio DOFD (see [14]) we have

Dv
dw(t) =

d∫
c

A(v)Dvw(t)dv (19)

where 0 < c < d < 1, and

Dv f (t) = (1/(1− v))
t∫

0

(d f /du) exp(−v(t− u)/(1− v))du (20)
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The Laplace Transform (LT) of (1), exchanging the operator of Laplace Transform with that of
integration [4], is

LTcDv
dw(t) = LT

d∫
c

A(v)Dvw(t)]dv =
d∫
c

A(v)dv[sW(s)− w(0)]/[s + v(1− s)]

= W(s)
d∫
c

A(v)sdv/(s + v(1− s))− w(0)
d∫
c
(zs)−1+v A(v)/(s + v(1− s))dv

W(s) = LTw(t)

(21)

In practice, it is often the case that one assumes A(s) = 1, which gives

LTcDv
dw(t) = LT

d∫
c

Dvw(t)]dv =
d∫
c

dv[sW(s)− w(0)]/[v(1− s) + s]

= (W(s)/(1− s))
d∫
c

sdv/(v + s/(1− s))− w(0)
d∫
c
(1/(v + s/(1− s))dv

= (1/1− s)){sW(s)− w(0)}[log{(d + s/(1− s))/(c + s/(1− s))}]

(22)

Setting
H(s) = [log{(d + s/(1− s))/(c + s/(1− s))}]/(1− s) (23)

LTh(t) = H(s)

we may write
LTcDv

dw(t) = sW(s)H(s)− w(0)H(s) = [sW(s)− w(0)]H(s)

cDv
dw(t) = w′(t) ∗ LT−1[log{(d + s/(1− s))/(c + s/(1− s))}]/(1− s) (24)

LTcDv
dw(t) = sW(s)H(s)− w(0)H(s) = [sW(s)− w(0)]H(s)

where we consider h(t) a pseudo-Green function for the computation of the Caputo-Fabrizio DOFD
with A(v) = 1 or, in other words, h(t) may be considered the kernel of the Caputo-Fabrizio DOFD.
The time domain expression of the pseudo-Green function or kernel h(t) is shown graphically in
Figure 2.

Figure 2. The time domain expression of the pseudo-Green function or kernel h(t) is shown graphically
in the figure, with c = 0.8; d = 0.9; with c = 0.45; d = 0.55 and with c = 0.1; d = 0.2.

In the following, we find the time domain expression of h(t) appearing in Equations (27) and (28)
required for the computation of the cDv

dw(t) by integrating along the path of the complex plane with
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s = r exp(iθ) and setting θ = 3π/2 and θ = π/2, which is integrated over the interval [−∞, ∞] of the
imaginary axis

h(t) = (1/2iπ){
∞∫
0

exp(−rt)dr[log{(d− ir(1− d))/(c− ri(1− d))}]/(1 + ir)

+
0∫

∞
exp(−rt)dr[log{(d + ir(1− d))/(c + ir(1− d))}]/(1− ir)}

(25)

h(t) = (1/π)
∞∫
0

exp(−rt){[ln r][rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]}dr/

r[(log r)2 + π2][r2d + r2c − 2rc+d cos(d− c)]

which is a pseudo-Green function of Caputo-Fabrizio DOFD with unity weight function or its kernel.
Equation (29) implies that

cDv
dw(t) = (1/π)

∞∫
0
{[w(t)′ ∗ exp(−rt)]/r[(log r)2 + π2]}dr

{(ln r)[rc sin πc− rd sin πd] + π[rc cos πc− rd cos πd]}/
[r2d + r2c − 2rc+d cos(d− c)]

(26)

which is the explicit closed-form expression for the Caputo-Fabrizio DOFD with unity weight function.
A comparison between the kernels of the Caputo DOFD and of Caputo-Fabrizio DOFD in the

ranges 0.1–0.2, 0.45–0.55 and 0.8–0.9, as shown in the Figures 3–5, indicates that, for values of the
narrow intervals closer to unity, the two DOFDs are almost identical, which is not the case when the
interval is close to zero.

Figure 3. Comparison of the values of the kernels of Caputo DOFD and Caputo-Fabrizio DOFD when
the order is distributed in the interval of integration (0.1–0.2).

Figure 4. Comparison of the values of the kernels of the Caputo DOFD and the Caputo-Fabrizio DOFD
when the order is distributed in the interval of integration 0.45–0.55.
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Figure 5. Comparison of the values of the kernels of the Caputo DOFD and the Caputo-Fabrizio DOFD
when the order is distributed in the interval of integration 0.8–0.9.

5. Composite Materials by a DOFD

In this last section, we consider an application of DOFD for describing composite materials,
fitting together a variety of constituents with different proprieties. When they are combined by
a distributed fractional derivative, we obtain a material with new properties, compared to the
single components. Specifically, in this paper, we consider composite systems (see Jones [15]),
Schwartz [16]), and Vinson et al. [17]) whose constituents are materials with fading memory, which we
represent with a fractional derivative such that the stress components Tα are defined by the following
constitutive equation

Tα(x, t) = (1/(Γ(1− α)))

t∫
0

ε′(x, s)/(t− s)αds

with the strain
ε =

1
2

(
∆u + (∆u)T

)
where the vector u denotes the displacement.

So, for composite materials, we have the stress T(x,t) being defined by distributed-order fractional
derivative T(x, t) =c Dv

dε(x, t), where

cDdε(x, t) =
d∫

c

C(x, v)Dvε(x, t)dv

with C(x, t), a fourth order symmetric and positive tensor, and

Dvε(x, t) = (1/Γ(1− v))
d∫

c

ε′(x, s)/(t− s)vds

from which

T(x, t) =
d∫
c
(C(x, v)/Γ(1− v))

t∫
0

(
ε′(x, s)/(t− s)v)dsdv

=
t∫

0

d∫
c

(
C(x, v)/

(
Γ(1− v)(t− s)v)dv

)
ε′(x, s)ds

(27)

then

T(x, t) =
t∫

0

F(x, t− s)ε′(x, s)ds (28)
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where

F(x, t− s) =
d∫

c

dvC(x, v)/Γ(1− v)(t− s)v (29)

therefore, Equation (28) provides a classic memory relationship whose kernel is given by Equation (29).
Now, we study the case for which the stress components Tv are defined by the Caputo-Fabrizio

fractional derivative [13]

Tv(x, t) = (1/(1− α))

t∫
0

ε′(x, s)e−(v/(1−v))(t−s)ds (30)

Therefore, the stress tensor by the new fractional derivative in Equation (30) is given by

T(x, t) =
b∫
a
(C(x, v)/(1− v))

t∫
0

(
ε′(x, s)e−(v/(1−v))(t−s)

)
dsdv

=
t∫

0

(
b∫
a
(C(x, v)/(1− v))

(
e−(v/(1−v))(t−s)

)
dv

)
ε′(x, s)ds

So that the kernel F(x, t − s) in Equation (28) is defined by

F(x, t− s) =
b∫

a

dv(C(x, v)/(1− v))e−(v/(1−v))(t−s)dv

Then, for such a solid material, the differential problem on a smooth domain Ω ⊂ IR3 is given by

ρ(x)u(x, t) = ∇
t∫

0
F(x, t− s)ε′(x, s)ds + ρ(x) f (x, t)

u(x, 0) = u0(x), u∂Ω(x, t) = 0
(31)

where ρ(x) is the density and f (x, t) the body forces.
Finally, following [10], we study the thermodynamic conditions related to the constitutive

Equation (30) for which the state s is given by the history

σ(t) := ε(t − s)

The second Law of Thermodynamics for isothermal processes takes the form described in [18,19].

Dissipation Principle

There exists a state function ψ(σ(t)) called free energy, for which the following inequality holds:

d
dt

Ψ(x, t) ≤ T(x, t)
d
dt

ε(x, t) (32)

It is well known that, for a viscoelastic material, we have the following restriction from
Inequality (32) (see [17])

e(x)
t∫

0

F′(x, s) sin(ωs)ds e(x) < 0 (33)

for any ω > 0 and vectors e ∈ IR3.
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So that, if w = (t − s), we have

e(x)
t∫

0

d∫
c

(
vC(x, v)/wv+1Γ(1− v)

)
dv sin(ωs)ds e(x) > 0, for any ω > 0

from which, for any x ∈ Ω

d∫
c

(ve(x)C(x, v)e(x)/Γ(1− v))
∞∫

0

(
1/wv+1

)
sin(ωw)dwdv > 0, for any ω > 0

Finally when we use the Caputo-Fabrizio fractional derivative (30), from Dissipation Principle (32)
we have

d∫
c

(
ve(x)C(x, v)e(x)/(1− v)2

) ∞∫
0

e−(yv(1−v))W sin(ωw)dwdv > 0, for any ω > 0

6. Conclusions

In the 3 cases considered and illustrated in Figures 3–5, the values of the kernels of the Caputo
DOFD and of the Caputo-Fabrizio DOFD are compared. These values decrease monotonically by less
than 0.1 at unit time; however, the Caputo DOFD diverges at t = 0, while the Caputo-Fabrizio DOFD is
initially bounded, which has obvious implications, which need to be taken into account when selecting
the most appropriate fractional derivative for the problem under consideration. So, when the fractional
derivative is substituted by a distributed-order derivative, we may obtain the constitutive equation of
a material with new properties compared to those given by the singular components.
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