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Abstract: The authors present a model of heat conduction using the Caputo fractional derivative with
respect to time. The presented model was used to reconstruct the thermal conductivity coefficient,
heat transfer coefficient, initial condition and order of fractional derivative in the fractional heat
conduction inverse problem. Additional information for the inverse problem was the temperature
measurements obtained from porous aluminum. In this paper, the authors used a finite difference
method to solve direct problems and the Real Ant Colony Optimization algorithm to find a minimum
of certain functional (solve the inverse problem). Finally, the authors present the temperature values
computed from the model and compare them with the measured data from real objects.
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1. Introduction

Fractional calculus is a part of mathematical analysis and has a lot of applications in technical
science. One of the most popular books about fractional calculus is Reference [1]. References [2–4]
provide information about fractional calculus, fractional differential equations, approximations
of fractional derivatives and numerical methods. There are also a lot of articles about fractional
calculus—for example, [5–7].

Various phenomena in nature can be modeled using fractional derivatives [8–16]—for example,
in [9,11], the authors surveyed fractional-order electric circuit models, Reference [12] shows
applications of fractional derivatives in control theory, and, in [13,14,16,17], we can find information
about application fractional derivatives in heat conduction problems. In [16], the authors present an
algorithm to solve the fractional heat conduction equation. In the presented model, the heat transfer
coefficient is reconstructed based on measurements of the temperature. The direct problem is solved
by using the implicit finite difference method. To minimize the functional defining the error of the
approximate solution, the Nelder–Mead algorithm is used. In [18], the authors consider the inverse
problem of recovering a time-dependent factor of an unknown source on some sub-boundary for
a diffusion equation with time fractional derivative. The authors present two regularizing schemes in
order to reconstruct an unknown boundary source. Another paper where authors solved the inverse
problem with fractional derivatives is Reference [19]. Zhuang et al. considered a time-fractional
heat conduction inverse problem with a Caputo derivative in a three-layer composite medium.
To solve the direct problem, they used a finite difference method, and, for the inverse problem,
the Levenberg–Marquardt method was applied. The results show that the time-fractional heat
conduction model provides an effective and accurate simulation of the experimental data. In addition,
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in [20], it is considered an inverse fractional heat conduction problem. The authors show that the
model with fractional derivatives better describes the process of heat conduction in ceramics media.

In this paper, the authors consider the heat conduction inverse problem. A mathematical model
describing the heat transfer phenomenon in porous aluminum is given by fractional differential equation
with initial-boundary conditions. In this case, we used the Caputo fractional derivative. The algorithm
consists of two parts: solution of direct problem and solution of inverse problem by finding the minimum
of the functional. Additional information for the inverse problem was the temperature measurements
obtained from porous aluminum. The direct problem was solved using a finite difference method and
approximations of Caputo derivatives [17,21]. In the inverse problem, the heat transfer coefficient, thermal
conductivity coefficient, initial condition and order of derivative were sought. In order to do that, we need
to minimize the functional describing the error of approximate solution. The functional was minimized by
a Real Ant Colony Optimization algorithm [22,23].

More about heat conduction inverse problems can be found in [24–28]. Zielonka et al. in [25]
solved the one-phase inverse problem of alloy solidifying within the casting mould. The authors also
include their paper shrinkage of the metal phenomenon.

The investigated inverse problem consists of reconstruction of the heat transfer coefficient on the
boundary of the casting mould on the basis of measurements of temperature read from the sensor
placed in the middle of the mould. In [28], Stefan problems relevant to burning oil-water systems are
considered. The author used the heat balance integral method.

2. Fractional Heat Conduction Equation

In this section, we would like to present the fractional differential equation

c$
∂αu(x, t)

∂tα
= λ

∂2u(x, t)
∂x2 , (1)

defined in region D = {(x, t) : x ∈ [0, L], t ∈ [0, T], L, T ∈ R+}, where c is specific heat, $ is density of
material, λ is thermal conductivity coefficient, α is order of derivative and u is the function describing
the distribution of temperature. In literature, this equation is called the Time Fractional Diffusion
Equation (TFDE). For a more precise description of the model, we still need initial-boundary conditions.
In this case, we used a Neumann boundary condition for x = 0, and a Robin boundary condition for
x = L. Below, we present initial-boundary conditions:

u(x, 0) = f (x), x ∈ [0, L], (2)

− λ
∂u
∂x

(0, t) = q(t), t ∈ [0, T], (3)

− λ
∂u
∂x

(L, t) = h(t)(u(L, t)− u∞), t ∈ [0, T], (4)

where f is function describing initial condition, q is the heat flux, h is heat transfer coefficient and u∞

is ambient temperature. By solving models (1)–(4), we obtain the temperature values at the points
of the domain D. To model process of heat conduction in porous media, we used Caputo fractional
derivative of order α ∈ (0, 1), which, in our case, is defined by the formula [1]:

∂αu(x, t)
∂tα

=
1

Γ(1− α)

∫ t

0

∂u(x, s)
∂s

(t− s)−αds. (5)

In the next part of the article, we use the considered model to solve the fractional heat conduction
inverse problem.
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3. Formulation of the Problem

In an inverse problem, some information in the considered model is unknown; in our case,
we do not know: thermal conductivity coefficient λ, heat transfer coefficient h, initial condition f and
order of derivative α. We have additional information, called input data, which is the temperature
measurements. We denote it by:

u(xp, tj) = Ûj, j = 1, 2, . . . , N1, (6)

where N1 is number of measurements from thermocouples.
If we solve the direct problems (1)–(4) for fixed values of the sought parameters, then we obtain

calculated values of the temperature at certain fixed points of the domain D—in our case, we denote it
by Uj(λ, h, f , α). Using the calculated values of the temperature Uj(λ, h, f , α), input data Ûj, we create
functionals defining the error of approximate solution:

F(λ, h, f , α) =
N1

∑
j=1

(
Uj(λ, h, f , α)− Ûj

)2. (7)

By minimizing the functional (7), we find the approximate values of the sought parameters.
The measured temperatures (input data) Ûj were obtained from a sample of porous aluminum.

This sample was formed by pressurizing the powders’ aluminum of medium size 0.8 mm in the plate
hydraulic press. Powders were pressed at 150 bar pressure. Sample was heated to 300 ◦C at speed of
1 K/s and then cooled to ambient temperature. During that time, sample temperature measurements
were done, which measurements were used as input data for algorithm.

4. Method of Solution

The solution of the inverse problem can be divided into two parts: first—solution of direct
problems (1)–(4), and second—finding minimum of the functional (7).

4.1. Solution of the Direct Problem

In solving the inverse problem, we have to solve the direct problem many times. To solve direct
problems (1)–(4), we used implicit finite difference scheme. In order to do that, we create grid

S =
{
(xi, tk), xi = i ∆x, tk = k ∆t, i = 0, 1, . . . , N, k = 0, 1, 2, . . . , M

}
,

with size (N + 1)× (M + 1) and steps ∆x = L/N, ∆t = T/M. Caputo fractional derivative (5) is
approximated by the formula [17]:

∂αu
∂tα

(xi, tk) ≈ Dα
t uk

i = σ(α, ∆t)
k

∑
j=1

ω(α, j)
(
uk−j+1

i − uk−j
i
)
, (8)

where

σ(α, ∆t) =
1

Γ(1− α) (1− α) (∆t)α
,

ω(α, j) = j1−α − (j− 1)1−α.

We also need to approximate boundary conditions of the second and third kinds. The following
approximations were used:

− λ0
uk

1 − uk
−1

2∆x
= qk =⇒ uk

−1 = uk
1 +

2∆xqk
λ0

, (9)
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− λN
uk

N+1 − uk
N−1

2∆x
= hk(Uk

N − u∞) =⇒ uk
N+1 = uk

N−1 −
2∆xhk

λN
(uk

N − u∞). (10)

Using all approximations (8)–(10) and the differential quotient for the derivative of second order
with respect to space

∂2u
∂x2 (xi, tk) ≈

uk
i−1 − 2uk

i + uk
i+1

(∆x)2 ,

we get the following differential equations

k ≥ 1, i = 0:

(
σ(α, ∆t)+

2 a0

(∆x)2

)
uk

0−
2 a0

(∆x)2 uk
1 = σ(α, ∆t) uk−1

0 −σ(α, ∆t)
k

∑
j=2

ω(α, j)
(
uk−j+1

0 −uk−j
0
)
+

2 qk
c $ ∆x

,

k ≥ 1, i = 1, 2, . . . , N − 1:

− ai
(∆x)2 uk

i−1 +
(

σ(α, ∆t) +
2 ai

(∆x)2

)
uk

i −
ai

(∆x)2 uk
i+1

= σ(α, ∆t) uk−1
i − σ(α, ∆t)

k

∑
j=2

ω(α, j)
(
uk−j+1

i − uk−j
i
)
,

k ≥ 1, i = N:

− 2 aN

(∆x)2 uk
N−1 +

(
σ(α, ∆t) +

2 aN

(∆x)2 +
2

c $ ∆x
hk

)
uk

N

= σ(α, ∆t) uk−1
N − σ(α, ∆t)

k

∑
j=2

ω(α, j)
(
uk−j+1

N − uk−j
N
)
+

2
c $ ∆x

hk u∞,

where uk
i ≈ u(xi, tk), hk = h(tk), qk = q(tk) and ai =

λ(xi)
c $ is the thermal diffusivity coefficient. Solving

the system of equations gives us approximate values of function u in points of grid S. More about
stability of the presented method can be found in [17].

4.2. Minimum of the Functional

The second part of the presented algorithms is finding the minimum of the functional (7). In this
paper, we used the Real Ant Colony Optimization algorithm (Algorithm 1). The algorithm was inspired
by the behavior of swarm of ants in nature. Pheromone spots, which are L, are identified with solutions.
Firstly, they are distributed randomly in the considered area. Then, we rank them according to their
quality—better solution means stronger pheromone spot and greater probability to choose it by ant.
In this way, we create the solution archive. In every iteration, the one of M ants constructs one new
solution (new pheromone spot) using the probability density function (in this case, Gaussian function).
The ant chooses with the probability a pheromone spot (solution) and transforms it by sampling its
neighborhood using the Gaussian function. Then, the solutions archive is updated with new solutions
and sorted according to the quality; next, M worst solutions are rejected. The described algorithm was
adapted for parallel computing. For the description of the algorithm, we will introduce the symbols:

F(x) minimized function, x = (x1, . . . , xn) ∈ D
n dimension (number of variables)
nT number of threads
M = nT · p number of ants in population
I number of iterations
L number of pheromone spots
q, ξ parameters of the algorithm
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Algorithm 1: Parallel Real ACO algorithm

Initialization of the algorithm

1. Setting input parameters of the algorithm L, M, I, nT, q, ξ.
2. Randomly generate L pheromone spots (solutions) and assign them to set T0 (starting archive).
3. Calculate values of the minimized function F for each pheromone spot and sort the archive T0

from best to worst solution.

Iterative process

4. Assigning probabilities to pheromone spots (solutions) according to the following formula:

pl =
ωl

∑L
l=1 ωl

l = 1, 2, . . . , (11)

where weights ωl are associated with l-th solution and expressed by the formula

ωl =
1

qL
√

2π
· e
−(l−1)2

2q2 L2 .

5. Ant chooses a random l-th solution with probability pl .
6. Ant transforms the j-th coordinate (j = 1, 2, . . . , n) of l-th solution sl

j by sampling proximity
with the probability density function (Gaussian function)

g(x, µ, σ) =
1

σ
√

2π
· e
−(x−µ)2

2σ2 ,

where µ = sl
j, σ = ξ

L−1 ∑L
p=1 |s

p
j − sl

j|.
7. Repeat steps 5–6 for each ant. We obtain M new solutions (pheromone spots).
8. Divide new solutions on nT groups. Calculate values of minimized function F for each new

solution (parallel computing).
9. Add to the archive Ti new solutions, sort the archive by quality of solutions, remove M

worst solution.
10. Repeat steps 4–9 I times.

5. Results

In this section, we present the obtained results. We consider models (1)–(4) with the following data:

t ∈ [0, 71.82][s], x ∈ [0, 3.825][mm], c = 900
[

J
kg ·K

]
, $ = 2106

[
kg
m3

]
,

q(t) = 0
[

W
m2

]
, u∞ = 298 [K] , xp = 3.825 [mm].

In the presented model, we lack the following data:

• λ = a1

[
J

sα ·m·K

]
—modified thermal conductivity coefficient,

• f (x) = a2 [K]—initial condition,
• h(t) = a3t2 + a4t + a5

[
W

m2·K

]
—heat transfer coefficient,

• α = a6—order of derivative,

which is reconstructed based on measurements of temperature. We assume that

a1 ∈ [100, 300], a2 ∈ [350, 650], a3 ∈ [−10, 10], a4 ∈ [−5, 5], a5 ∈ [70, 200], a6 ∈ [0.01, 0.99].
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Solving the direct problem, we used two different grids 100× 1995 (∆x = 0.03825, ∆t = 0.036)
and 100× 3990 (∆x = 0.03825, ∆t = 0.018). In the case of the real ACO algorithm, we used the
following parameters:

L = 12, M = 16, I = 55, nT = 4, q = 0.9, ξ = 1.

The real ACO algorithm is probabilistic, so we decide to execute them ten times to check
the stability.

Table 1 presents values of reconstructed parameters a1, a2, . . . , a6 in the case of two different
grids. In both grids, parameters have similar values except parameter a1—the thermal conductivity
coefficient. For 100× 1995 grid, a1 is equal to 300 and, for 100× 3990 grid, the parameter has value
237.91. The initial condition is approximately equal to 569 K and the order of derivative is equal
to 0.20 (100× 1995) or 0.21 (100× 3990). As we can see in Table 1, if the 100× 1995 grid is used,
then, for the most of sought after parameters, the standard deviation is less than for the 100× 3990 grid.
This means that, for the first grid, the obtained results from the ACO algorithm were slightly less
dispersed than in the case of the second grid.

Table 1. Results of calculation for grids 100× 1995 and 100× 3990 (ai—reconstructed value of parameter,
σai —standard deviation (i = 1, 2, . . . , 6)).

100×1995 σai 100×3990 σai

a1 300.00 69.74 237.91 67.78
a2 569.73 2.02 566.74 3.80
a3 1.63 0.40 1.52 2.20
a4 4.72 0.67 5.00 4.27
a5 198.02 46.05 178.05 51.73
a6 0.20 0.05 0.21 0.09

value of the functional 246.98 352.88

In Figure 1, we can see plots of reconstructed function h for two grids. Both plots are similar.
The values of the function for the grid 100× 1995 are slightly larger than for the second grid. Table 2
presents errors of reconstruction temperature in measurement points. In both cases, these errors are
similar and temperature is reconstructed very well. Average errors are a little bit smaller in the case of
100× 3990 grid, but, in the case of maximal errors, it is otherwise.

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

time @sD

hH
tL

Figure 1. Plots of reconstructed function h for grid 100× 1995 (blue line) and grid 100× 3990 (red line).
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Table 2. Errors of temperature reconstruction in measurement point xp = 3.825 for grids 100× 1995
and 100× 3990 (∆avg—average absolute error, ∆max—maximal absolute error, δavg—average relative
error, δmax—maximal relative error).

100×1995 100×3990

∆avg[K] 4.92 4.77
∆max[K] 11.04 12.38
δavg[%] 1.06 1.02
δmax[%] 3.08 3.46

At the end of this section, we would like to present plots of reconstructed temperature and
distribution of errors of this reconstruction (Figures 2 and 3). Temperature reconstruction and
distribution of errors are very similar.
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Figure 2. (a) Measurements of the temperature (black line) and reconstructed temperature (blue line);
and (b) distribution of errors for this reconstruction (100× 1995) .
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Figure 3. (a) Measurements of the temperature (black line), reconstructed temperature (red line);
and (b) distribution of errors for this reconstruction (100× 3990).

6. Conclusions

In summary, the paper presents a fractional heat conduction equation with Caputo derivative.
Based on this equation, the inverse problem is solved using temperature measurements from porous
aluminum. Next, computed values of temperature were compared with real data. First of all,
the results obtained were very good. Average relative error of reconstruction was equal to 1.06%
for 100 × 1995 grid, and 1.02% for 100 × 3990 grid. More density grid gives us smaller relative
errors, but a little bit higher maximal errors. Using less density, grid results obtained from the ACO
algorithm were less dispersed. The sought order of fractional derivative is approximately 0.20. In the
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future, we would like to take under consideration other models of heat conduction using different
fractional derivatives.
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