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Abstract: The control of thermal interfaces has gained importance in recent years because of the high
cost of heating and cooling materials in many applications. Thus, the main focus in this work is to
compare the second and third generations of the CRONE controller (French acronym of Commande
Robuste d’Ordre Non Entier), which means a non-integer order robust controller, and to synthesize
a robust controller that can fit several types of systems. For this study, the plant consists of a
rectangular homogeneous bar of length L, where the heating element in applied on one boundary,
and a temperature sensor is placed at distance x from that boundary (x is considered very small
with respect to L). The type of material used is the third parameter, which may help in analyzing
the robustness of the synthesized controller. The originality of this work resides in controlling a
non-integer plant using a fractional order controller, as, so far, almost all of the systems where the
CRONE controller has been implemented were of integer order. Three case studies were defined in
order to show how and where each CRONE generation controller can be applied. These case studies
were chosen in such a way as to influence the asymptotic behavior of the open-loop transfer function
in the Black–Nichols diagram in order to point out the importance of respecting the conditions of
the applications of the CRONE generations. Results show that the second generation performs well
when the parametric uncertainties do not affect the phase of the plant, whereas the third generation is
the most robust, even when both the phase and the gain variations are encountered. However, it also
has some limitations, especially when the temperature to be controlled is far from the interface when
the density of flux is applied.

Keywords: CRONE controller; homogeneous plan diffusive interface; semi-infinite medium;
robust control

1. Introduction

The thermal application is a common application for control. It is used in several engineering
domains as the heating/cooling of houses [1,2], the control of the temperature inside the car [3,4]
or in the industrial machinery [5], and much more. In more details, the work in this field started in
the 1940s with the works of Jones [6] and a group of American electrical engineers [7]. Then, in the
1950s, the researchers were more involved in the control of thermal neutron reactors [8,9] and electric
cables dissipation [10,11]. These studies had increased since the end of the previous decade, when the
scientists stopped focusing on the study of the material properties, and started searching for more
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ecological systems to control the temperature within the building in order to reduce the oil and fuel
usage [12,13].

However, the work on diffusive interfaces was launched in the late 1970s and 1980s with the
works of Kumar, who modeled the thermal boundaries near an oil plant [14]. As for the others, they
worked on the modeling of diffusive interfaces at furnaces [15], boilers [16] and some geometric
shapes representing the separation medium [17,18]. In the last decade of the twentieth century, this
domain was investigated by lots of researchers who demonstrated that the relation between the
input flux and the output temperature is of a fractional order. From among them, we can recognize
the remarkable works of Trigeassou and his team [19–21], Battablia [22,23], the CRONE team of
Bordeaux university [24–26], the relevant modeling approach based on the space-fractional continuum
models [27–29], and much more.

As for the control, it was applied a long time ago, even before Christ, when Ktesibios (270 B.C.)
implemented the water clocks working on feedback control [30]. The contemporary control theory
was effectively launched in the middle of the twentieth century with the remarkable work of Bode,
Nichols, and Nyquist [31]. In its first years, the integer and linear order systems were treated on both
time and frequency domains.

As for fractional theory, it is relatively an old idea that dates back to the end of the seventieth
century, when some letters were exchanged between two well-known mathematicians at that epoch,
L’Hopital and Leibnitz in which they asked each other about the meaning of a derivative of order
0.5 [32]. Many mathematicians defined this type of derivative/integration as Liouville, Caputo, and
Riemann [33]. Nevertheless, these calculations remained theoretical until the last quarter of the
twentieth century, when Oustaloup was the first to design a fractional control of order 3/2 to control a
laser beam [34]. He was one of the first researchers to introduce the fractional calculus in engineering
domain applications [35–38]. Due to the obtained results, many other contributions appeared from
Ortigueira [39,40], Machado [41,42], and Vinagre [43,44].

Hence, this paper will present the control of a diffusive interface medium, consisting of a
homogeneous rectangular finite rod, by the CRONE controller. The novelty of this work is that
it presents a fractional order plant that will be controlled by a fractional order controller, who will
be, for the first time, real (when applying the second generation CRONE), and in a second time, this
controller will be complex (by applying the third generation CRONE). Added to that, the robustness
of these controllers will be studied when varying the bar metal, the position of the point where the
temperature is to be measured, the length of the bar, and so on. Thus, three case studies will be shown
in order to show the behavior of the open-loop system, and to indicate the conditions of application for
each CRONE generation. Since the objective of this paper is to point out the importance of applying
the CRONE controller to a fractional order plant, we were not interested in comparing the performance
of this controller to other ones.

For the remaining part of this paper, we will consider that the length of the bar is much more
important than the position of the temperature sensor. As for the user specifications, two main
constraints will be considered hereafter:

• A crossover frequency ωcg = 1 rad/s;
• A phase margin Mφ = 3 dB;

To do so, this paper will be divided as follows: in Section 2, the homogeneous finite and
rectangular bar will be presented, along with its mathematical modeling and its boundary conditions.
In Section 3, the different applied controllers will be introduced; an overview of the three CRONE
generations will also be proposed, along with the conditions of application of each generation.
In Section 4, the second CRONE generation will be presented along with two case studies: the first
one shows an ideal domain of application where the phase is constant and the gain varies whenever
plant parameters change. The second case presents both phase and gain variations, and the use of
the already synthesized controller appears to be no more robust. Hence, for this second case study,
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the third generation controller will be introduced in Section 5, and a performance analysis will be
presented. At the end, Section 6 will provide a conclusion and some future works to enrich this work.

2. Plant Modeling

The homogeneous diffusive interface medium will be presented in this part. The test bench is
constituted of a rectangular homogeneous rod with a square section S. It may consist of aluminum,
copper, or iron, and it is of a finite distance L, as shown in Figure 1. The characteristics of the medium,
its differential equations, and the boundary conditions, along with the features of the material used
will be proposed hereafter.
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where αd represents the thermal diffusivity of the material, and T(x,t) represents the temperature at 
the position x for time t. 
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2.1. Partial Differential Equations (PDE)

The input of this medium will be the density of flux ϕ(t) (which is equal to the flux φ(t) divided
by the section S of the source), whereas the output is the temperature at a location x. The partial
differential equations of this medium are shown in system (1), where the first equation shows the
temperature value for any value of x. As for the second equation, it represents the temperature
variation at the boundary where the heating element is applied.{

∂T(x,t)
∂t = αd

∂2T(x,t)
∂x2 , x > 0 , t > 0

−λ
∂T(x,t)

∂x = φ(t) , x = 0 , t > 0
, (1)

where αd represents the thermal diffusivity of the material, and T(x,t) represents the temperature at the
position x for time t.

In the second boundary equation, the flux is not applied, and the temperature along the bar at the
initial time (t = 0 s) is expressed by the following system:{

−λ
∂T(x,t)

∂x = 0 , x = L , t > 0
T(x, t) = 0 , 0 ≤ x < L , t = 0

. (2)

2.2. Plant Transfer Function

Based on the partial differential equations that represent the relation between the applied density
of flux ϕ(t) and the temperature variation T(x,t,L) within the diffusive interface medium of length L,
one can deduce the transfer function H(x,s,L) that models this system (interested authors can refer to
the following references for a detailed calculation of this transfer function [45,46]). Note here that the
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temperature varies with respect to the material used, the placement x of the temperature sensor, and
the length L of the rod. This transfer function H(x,s,L) is given by:

H(x, s, L) =
T(x, s, L)

ϕ(s)
= H0

1
s0.5

1

tanh
(√

s
ωL

) cosh
(√

s
ωLx

)
cosh

(√
s

ωL

) ,

H0 =
1

S ηd
, ηd =

√
λ ρ Cp, ωL =

αd
L2 , ωLx =

αd

(L− x)2 ,

(3)

where T(x, s, L) and ϕ(s) represent the Laplace transform of T(x,t,L) and ϕ(t) respectively, ηd is the
thermal effusivity, λ represents the thermal conductivity, ρ is the medium density, and Cp is the
medium heat.

From Equation (3), one can notice the fractional order operator (
√

s) residing in the hyperbolical
trigonometric functions, as well as the pure semi-integrator. This can confirm, once again, the novelty
of this work by applying a fractional order control (the CRONE controller) to, most importantly,
a non-integer order plant.

However, the expression of the transfer function H(x,s,L) can be reduced: in fact, as the position
of the temperature sensor is neglected with respect to the length of the bar (x << L), one can deduce
that ωLx ≈ ωL. Thus, Equation (3) can be written as follows, where this latter defines the validation
model of the system:

H(x, s, L) =
T(x, s, L)

ϕ(s)
= H0

1
s0.5

1

tanh
(√

s
ωL

) e−
√ s

ωx , (4)

where ωx = αd/x2.

2.3. Material Characteristics

As previously proposed, three materials will be used: copper (Cop), iron (Iro), and aluminum
(Alu). The last one will be considered for the nominal case. Table 1 shows the characteristics of the
three materials, along with the values of the two transitional frequencies ωL and ωx for three values of
the length, L, and the temperature sensor position, x.

Table 1. Physical characteristics of the used materials. Alu: aluminum; Cop: copper; Iro: iron.

Material
αd ηd H0 vL (rad/s) vx (rad/s)

m2/s W·K−1·m−2·s0.5 K·s0.5·W−1 L = 0.25 m L = 0.5 m L = 1 m x = 0 cm x = 0.5 cm x = 1 cm

Cop. 117 × 10−6 3.72 × 104 0.269 19 × 10−4 4.68 × 10−4 1.17 × 10−4 Infinite 4.68 1.17
Alu. 97 × 10−6 2.41 × 104 0.416 16 × 10−4 3.88 × 10−4 0.97 × 10−4 Infinite 3.88 0.97
Iro. 23 × 10−6 1.67 × 104 0.596 3.68 × 10−4 0.92 × 10−4 0.23 × 10−4 Infinite 0.92 0.23

When synthesizing the controllers, two case studies will be proposed based on the values of L
and x for the three material types. In the next sections, these case studies will be defined in more detail,
and the plant uncertainties will be modeled.

3. CRONE Controllers Presentation

The controllers that would be used in this application are the second and third generation CRONE
controllers. In the following, we will present each controller, and the method to synthesize it. The
two next sections will show the applications of the second and the third generations using two
different case studies. This will help the user understand the conditions in which to apply each of the
CRONE generations.



Fractal Fract. 2018, 2, 5 5 of 19

The CRONE controller is the first fractional order controller developed. It was launched in 1975,
and it was introduced using three generations. We will focus in this paper on the second and third
generations, knowing that the first two generations were treated in previous works [47,48]. However,
a brief overview over the three generations will be presented below.

The first generation Crone controller proposes to use a controller without phase variation around
crossover frequency ωcg. Thus, the phase margin variation only results from the plant variation. This
strategy has to be used when frequency ωcg is within a frequency range where the plant phase is
constant. In this range, the plant variations are only gain-like. This first generation uses the a priori
calculation where the controller transfer function is calculated directly based on the user specifications.

The second generation CRONE control is applied when the plant variations are gain-like around
the gain crossover frequency ωcg, and the plant phase variation is canceled by those of the controller.
Thus, there is no phase margin variation when the frequency of ωcg varies. Such a controller produces a
constant open-loop phase whose Nichols locus is a vertical straight line named the frequency template.
This controller is synthesized a posteriori, where its transfer function is deduced from the open-loop
transfer function.

The third generation Crone controller is used when the plant frequency uncertainty domains are
of various types (not only gain-like, but present both gain and phase variation). The vertical template
is then replaced by a generalized template or by a multi-template (or curvilinear template) defined
by a set of generalized templates. Here also, the transfer function is defined a posteriori based on the
open-loop behavior [49].

4. Second CRONE Generation

4.1. Introduction

As the transfer function of this generation is synthesized a posteriori, the transfer function of the
open-loop system is defined as follows (for frequencies in the range of [ωA, ωB]):

β(s) =
(

ωcg

s

)n
, (5)

where ωcg is the frequency for which the uncertainties do not lead to any phase variation, n ∈ R and
n ∈ [1,2].

The complementary sensitivity function T(s) and the sensitivity function S(s) are defined
as follows:

T(s) =
β(s)

1 + β(s)
=

1

1 +
(

s
ωcg

)n and S(s) =
1

1 + β(s)
=

(
s

ωcg

)n

1 +
(

s
ωcg

)n . (6)

Around the crossover frequency ωcg, the Black–Nichols plot of the open-loop transfer function
β(s) is a vertical asymptote with a constant phase equal to n, as shown in Figure 2. This asymptote
allows having [48]:

• a robust phase margin Mφ equal to (2−n)×π/2;
• a robust resonance factor QT, defined as follows:

QT =

sup
ω
|T(jω)|

|T(j0)| =
1

sin(nπ/2)
; (7)

• a robust gain module Mm, defined as follows:

Mm = inf
ω
|β(jω) + 1| =

(
sup

ω
|S(jω)|

)−1
= sin(nπ/2); (8)
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As for the control signal and the transient error, Equation (5) can be truncated in frequency, and a
low pass filter as well as an integrator must be added. Hence, the new form of the open-loop transfer
will appear as follows:

β(s) = β0

(
1 + s/ωl

s/ωl

)nl
(

1 + s/ωh
1 + s/ωl

)n

(1 + s/ωh )
−nh , (9)

where ωl and ωh represent the low and high transitional frequencies, n is the fractional order (varying
between 1 and 2) around the frequency ωcg, nl and nh are the system behavior at low and high
frequencies, and β0 is a constant value that assures a crossover frequency ωcg. It is expressed in
Equation (10):

β0 =
(
ωcg/ωl

)nl
(

1 +
(
ωcg/ωl

)2
)(n−nl)/2(

1 +
(
ωcg/ωh

)2
)(nh−n)/2

. (10)

Figure 3 shows the asymptotic behavior in a Bode diagram for this open-loop transfer function
β(s). The fractional order behavior is defined over the interval [ωA, ωB], and it belongs to the nominal
crossover frequency ωcgnom. In order to respect the robustness of the stability degree, it is necessary to
define the margins for ωcg, such as:

∀ωcg ∈
[
ωcgmin ; ωcgmax

]
, ωA ≤ ωcg ≤ ωB ⇒

{
ωA ≤ ωcgmin

ωB ≥ ωcgmax
. (11)

As shown in Figure 3, two new cutoff frequencies are introduced (ωl and ωh), which help getting
the fractional order behavior between ωA and ωB. Previous studies have shown that it is sufficient for
ωl to be one decade less ωB, whereas for ωl, it must be one decade above ωh [49].{

ωl = ωA/10
ωh = 10 ωB

. (12)

Thus, one can define ωcgnom as being the geometric median of ωl and ωh. Added to that, a new
parameter r, being the ratio of ωB and ωA, is introduced:{ √

ωl ωh = ωcgnom

r = ωB
ωA

. (13)
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As a consequence, ωl and ωh could be written with respect to ωcgnom and r as follows:{ √
ωl ωh = ωcgnom

ωh
ωl

= 100 r
⇒

{
ωl = ωcgnom/

(
10
√

r
)

ωh = ωcgnom 10
√

r
. (14)

Once the open-loop transfer function is calculated, one can conclude the CRONE controller
transfer function as being the ratio of the open-loop transfer function β(jω) over the nominal plant’s
transfer function P0(jω):

CF(jω) = β(jω)/P0(jω). (15)

A last step is always needed in order to pass from the fractional form CF(jω) to the rational form
CR(jω). Several methods could be applied in this case; however, one simple method is based on the
representation of the function using a recursive distribution of poles and zeros. Each pole and zero
form a cell. The higher the number of cells, the most accurate the results are, but the more complex
the transfer function would be. However, four to eight cells would be enough, as the fractional
frequency range is below three decades [50]. Another option exists in using the CRONE toolbox, which
can give the rational representation of the fractional form since it knows the frequency response of
CF(jω) [51,52].
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4.2. First Case Study

4.2.1. Plant Parameters

As the objectives of the second generation of the CRONE controller is to have a constant phase
with a variable gain when varying the parameters of the plant, the choice of the values of L and x is
crucial in order to apply this generation. Hence, these values are listed below:

- Aluminum, L = 1 m and x = 0.5 cm → ωL = 0.97 10−4 rad/s and ωx = 3.88 rad/s;
- Copper, L = 1.1 m and x = 0.55 cm → ωL = 0.97 10−4 rad/s and ωx = 3.87 rad/s;
- Iron, L = 0.49 m and x = 0.243 cm → ωL = 0.96 10−4 rad/s and ωx = 3.89 rad/s.
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Figure 4 shows the Bode diagrams for the three plants. The phase constancy for the three outputs
is well noted; however, the changes in the gain are also observed. Hereafter, the aluminum will be
considered the nominal case, whereas the copper and iron will be considered the extreme cases.

Fractal Fract. 2018, 2, 5 8 of 19 

 

Figure 4 shows the Bode diagrams for the three plants. The phase constancy for the three outputs 
is well noted; however, the changes in the gain are also observed. Hereafter, the aluminum will be 
considered the nominal case, whereas the copper and iron will be considered the extreme cases. 

 
Figure 4. Bode plots of H(x,jω,L) for aluminum (in blue), copper (in green), and iron (in red) for the 
first case study. 

4.2.2. Synthesis Model 

The plant transfer function H(x,s,L), which was already presented in Equations (3) and (4), 
could be written in another way in order to facilitate the computation of the controller transfer 
function. Thus, it could be expressed as follows based on the approximation for the tanh function. 
The new model P2(s) in Equation (16) will be considered as the synthesis model that will be easier to 
use in order to calculate the controller transfer function. Interested readers can refer to a previous 
work of the authors for more details about the calculations [53].  

( ) ( ) x

s

L

L e
s
sHsP ω

ω
ω −+=

5.0
*
02

1
, (16) 

where 

* 0
0 0.5=

ωL

HH . (17) 

Figure 5 represents the Bode plots of P2(jω) (in blue) and of H(x,jω,L) (in green) obtained with 
aluminum for L = 1 m and x = 0.5 cm. It is well noted the coherence of both plots (for the gain and the 
phase) in the frequency range around ωcg. 

10
-6

10
-4

10
-2

10
0

-50

0

50

Frequency (rad/s)

G
ai

n 
(d

B
)

 

 

10
-6

10
-4

10
-2

10
0

-135

-90

-45

00

Frequency (rad/s)

P
ha

se
 (

de
g.

)
Alu
Cu
Fer

Frequency area
of ωcg

Cop
Alu

Iro

Figure 4. Bode plots of H(x,jω,L) for aluminum (in blue), copper (in green), and iron (in red) for the
first case study.

4.2.2. Synthesis Model

The plant transfer function H(x,s,L), which was already presented in Equations (3) and (4), could
be written in another way in order to facilitate the computation of the controller transfer function.
Thus, it could be expressed as follows based on the approximation for the tanh function. The new
model P2(s) in Equation (16) will be considered as the synthesis model that will be easier to use in
order to calculate the controller transfer function. Interested readers can refer to a previous work of
the authors for more details about the calculations [53].

P2(s) = H∗0
(1 + s/ωL)

0.5

s/ωL
e−
√ s

ωx , (16)

where
H∗0 =

H0

ω0.5
L

. (17)

Figure 5 represents the Bode plots of P2(jω) (in blue) and of H(x,jω,L) (in green) obtained with
aluminum for L = 1 m and x = 0.5 cm. It is well noted the coherence of both plots (for the gain and the
phase) in the frequency range around ωcg.
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In order to get rid of the exponent, a Taylor development was needed for ez when z tends 
towards zero. 

10
-6

10
-4

10
-2

10
0

10
2

-50

0

50

Frequency (rad/s)

G
ai

n 
(d

B
)

 

 
P2(s)
H(x,s,L)

10
-6

10
-4

10
-2

10
0

10
2

-270
-225
-180
-135

-90
-45

00

Frequency (rad/s)

P
ha

se
 (

de
g.

)

Frequency area
of ωcg

Figure 5. Bode plots of P2(jω) (in blue) and of H(x,jω,L) (in green) obtained with aluminum for L = 1 m
and x = 0.5 cm.

4.2.3. Controller Transfer Function

As already discussed, the synthesis of the CRONE controller transfer function is done a posteriori.
Thus, we have first to compute the open-loop transfer function (Equation (9)), then by replacing the
plant’s transfer function by its value, we will obtain the controller transfer function, which could be
expressed as follows:

CF(s) = β0

(
1 + s/ωl

s/ωl

)nl
(

1 + s/ωh
1 + s/ωl

)n 1(
1 + s/ωh

)nh

s/ωL

H∗0 (1 + s/ωL)
0.5 e
√ s

ωx . (18)

Taking into consideration the specifications of the user guide, the different variables can be
defined. Thus,

- nl = 2, in order to assure a null training error;
- nh = 1.5, in order to limit the input sensitivity;
- QT = 3 dB or Mφ = 45◦ → n = (180◦−Mφ)/90◦ = 1.5;
- ωcgnom = 1 rad/s ;

So, taking into account the previous values, Equation (18) can be written as follows:

CF(s) = C0

(ωl
s

) (
1 + s/ωl

)2−n(
1 + s/ωh

)1.5−n
(1 + s/ωL)

0.5
e
√ s

ωx , (19)

where:
C0 =

β0 ωl
H∗0 ωL

. (20)

In order to get rid of the exponent, a Taylor development was needed for ez when z tends
towards zero.
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lim
z→0

ez = 1 + z +
z2

2!
+

z3

3!
+ . . . +

zk

k!
+ . . . =

∞

∑
k=0

zk

k !
, (21)

When truncated at order 2 and considering that z = (s/ωx)0.5, one can obtain:

e
√ s

ωx ≈ 1 +
(

s
ωx

)0.5
+

s
2 ωx

. (22)

So, the fractional approximated form C̃F(s) is defined by:

C̃F(s)= C0

(ωl
s

) (
1 + s/ωl

)2−n(
1 + s/ωh

)1.5−n
(1 + s/ωL)

0.5

(
1 +

(
s

ωx

)0.5
+

s
2 ωx

)

=
C∗0
s

(
1 +

(
s

ωx

)0.5
+

s
2 ωx

) (23)

where C∗0 = C0 ωl = 2.405 W · s−1 · deg−1, and ωx = 3.88 rad/s.
Referring to Equation (23), the controller is constituted of a simple integrator, which allows

removing the noise caused by the exponent around the crossover frequency ωcg. For the low
frequencies, the controller has an integrator behavior, whereas for high frequencies, it has a
proportional behavior.

In order to apply this controller, the rational form is needed. For this example, we will be using
the cascade representation, as shown in Equation (24). The use of the CRONE toolbox helps defining
the values of the poles and the zeros. The new approximated transfer function will be as follows:

CR(s) =
C∗0
s

3
∏
j=1

(
1 + s

ωzj

)
2

∏
j=1

(
1 + s

ωpj

) , (24)

where: 
ωz1 = 0.8 rad/s ωp1 = 1.25 rad/s
ωz2 = 6.5 rad/s ωp2 = 29 rad/s
ωz3 = 55 rad/s

. (25)

4.2.4. Performance Analysis

Concerning the behavior of the second generation CRONE controller applied to a plant where
the uncertainties are modeled only by gain variation and an invariable but non-constant phase for the
three plants, the following plots will resume the outcome.

Figure 6 represents the Bode diagrams for the different controllers transfer functions: the fractional
form C̃F(s) (in blue), and the rational form CR(s) (in green).

Figure 7 shows the open-loop Black–Nichols plots (a), the closed-loop step responses (b), and their
control inputs for a step input of 1 ◦C (c) for aluminum (in blue), copper (in green), and iron (in red)
for the CR(s) controller.
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Figure 6. Bode diagrams for the fractional controller C̃F(s) (in blue) and the rational form CR(s)
(in green).
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Figure 7. Open-loop Black–Nichols plots (a), closed-loop step responses (b), control inputs for a step
input of 1 ◦C (c) for aluminum (in blue), copper (in green), and iron (in red).
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As a conclusion, the exact coherence between the fractional and the rational transfer functions is
well noted (Figure 6). Concerning the robustness of the controller, one can see clearly that the three
open-loop transfer functions in the Nichols diagram are tangent to the same contour (3 dB). As for
the closed-loop step responses, all three outputs have the same first overshoot value and the same
damping ratio. Thus, we can confirm that the second generation CRONE controller is robust whenever
the conditions of application of this generation are met.

4.3. Second Case Study

In this second case study, we will choose L and x arbitrarily in such a way that the plant will
present both phase and gain variations when changing the parameters of the plant, and we will
apply the previously synthesized controller (Equations (24) and (25) to study the performance of the
new system.

4.3.1. Plant Parameters

The values of L and x chosen for this case study are as follows:

- Aluminum, L = 1 m and x = 0.5 cm → ωL = 0.97 10−4 rad/s and ωx = 3.88 rad/s;
- Copper, L = 1.1 m and x = 1 cm → ωL = 0.97 10−4 rad/s and ωx = 1.17 rad/s;
- Iron, L = 0.49 m and x = 0.1 cm → ωL = 0.96 10−4 rad/s and ωx = 23 rad/s.

Figure 8 shows the Bode diagrams for the three plants. Both the phase and the gain vary when
changing the parameters of the plant. As for the first case study, aluminum will be considered as the
nominal case, whereas copper and iron will be considered the extreme cases.
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Figure 8. Bode plots of H(x,jω,L) for aluminum (in blue), copper (in green), and iron (in red) for the
second case study.
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4.3.2. Synthesis Model

Based on the exact plant transfer function shown in Equation (4), the synthesis model of the plant
for this second case study can be approximated by the following transfer function:

P2(s) = H∗0
(1 + s/ωL)

0.5

s/ωL
e−
√ s

ωx , (26)

where the values of H∗0 , ωL and ωx remain unchanged as they were presented for the first case study
(refer to Sections 4.2.2 and 4.2.3).

4.3.3. Controller Transfer Function

As already presented, the controller synthesized for the first case study will be used for this
second case, as the nominal plant transfer function (e.g., the aluminum) remains the same. Thus,
the controller exact transfer function is the one presented in Equation (23), whereas its rationalized
form is shown in Equation (24).

4.3.4. Performance Analysis

Concerning the behavior of the second generation CRONE controller applied to a plant where the
uncertainties are modeled by gain and phase variation, the plots of Figure 9 will resume the outcome.

Figure 9 shows the open-loop Black–Nichols plots (a) and the closed-loop step responses (b) for
aluminum (in blue), copper (in green) and iron (in red) for the CR(s) controller.
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Figure 9. Open-loop Black–Nichols plots (a) and closed-loop step responses (b) for aluminum (in blue),
copper (in green) and iron (in red).

Concerning the robustness of this controller, one can see clearly that the three open-loop transfer
functions in the Nichols diagram are no more tangent to the same contour at 3 dB. As for the closed-loop
step responses, the first overshoot value and the damping ratio of the three systems are not constant
(we can notice that the first overshoot varies between 19% and 42%). Thus, we can confirm that the
second generation CRONE controller is no more robust whenever the conditions of the applied plant
are not verified.

However, we will use this second case study to calculate the third generation CRONE controller
and analyze its behavior.
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5. Third CRONE Generation

5.1. Introduction

The open-loop transfer function, when using the third generation CRONE controller, is defined as
being the real part of the fractional complex integrator. It is expressed as follows:

β(s) = Re/i

(ωcg

s

)n
, (27)

where n = a + ib ∈ Ci and s = +jω ∈ Cj. The real order a determines the phase placement in the Nichols
chart, whereas the imaginary part b shows its angle with respect to the vertical axis, as shown in
Figure 10.Fractal Fract. 2018, 2, 5 14 of 19 
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As the calculation of all of these parameters is very difficult because of the enormous number of 
parameters, the CRONE toolbox has been deployed. 
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As we will have an infinite number of asymptotes, the main objective of this CRONE controller
will be to optimize the parameters of the open-loop transfer function in a way that includes complex
and fractional order integration on a certain frequency range, thus:

β0(s) = βl(s)βm(s)βh(s), (28)

where βm(s) is the set of models defined within a frequency range, which allows us to write:

βm(s) =
N+

∏
k=−N−

C
sign(bk )

k

(
αk

1 + s/ωk+1
1 + s/ωk

)ak(
Re/i

{(
αk

1 + s/ωk+1
1 + s/ωk

)ibk
})−qksign(bk)

(29)

where:

αk =

(
ωk+1

ωk

)1/2
for k 6= 0 and α0 =

(
1 + (ωr/ω0)

2

1 + (ωr/ω1)
2

)1/2

(30)

and:

βl(s) = Cl

(
1 + s/ωN−

s/ωN−

)nl

and βh(s) = Ch

(
s

ωN+
+ 1
)−nh

, (31)

knowing that: {
N+, N− and qk ∈ N+

ωr, ωk, ωk+1, αk, Ck, Cl , Ch, ak and bk ∈ R.
(32)

As the calculation of all of these parameters is very difficult because of the enormous number of
parameters, the CRONE toolbox has been deployed.
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5.2. CRONE Toolbox

The main purpose of this toolbox is to calculate the CRONE controller transfer function based
on the plant transfer function, as well as the parametric uncertainties of the system. The toolbox can
specify which generation is the most suitable to answer the user guide specifications, and it can deliver
the controller transfer function in a rational form.

As we are limited in space, interested authors can refer to the following references for more
information concerning the toolbox and its characteristics [49,54–56].

5.3. Case Study

As already proposed, the second case study, which was proposed for the second CRONE
generation, will be treated for this generation. Thus, we will be dealing with a system where both
phase and gain are varying over the frequency range.

5.3.1. Plant Parameters

The plant parameters are the ones used for the second case study (refer to Section 4.3. Figure 8
showed the Bode diagram plots for the three plants. Here also, aluminum will be considered the
nominal case.

5.3.2. Synthesis Model

In order to synthesize the controller transfer function, the CRONE toolbox was used for the
third generation as the computation of the variable is difficult especially that the order is complex
and fractional.

Hence, when using the toolbox along with the same user specifications set in the previous
controller, the values of the variables of the open-loop transfer function are obtained as follow:

ω0 = 0.03896 rad/s q0 = 6
a0 = 1.4927 C0 = 13.217
b0 = −0.6496 K = 34.11
b′0 = −0.2379 ω1 = 74.092 rad/s

. (33)

5.3.3. Performance Analysis

Concerning the performance analysis for the third generation CRONE controller, Figure 11
represents the Bode diagrams for the rational controller CR(s) (a), the Nichols plot of the open loop (b),
the Bode gain diagrams for the sensitivity functions S(s) (c) and T(s) (d) (as presented in system (6)),
for aluminum (in blue), copper (in green) and iron (in red).

Figure 12 represents the closed step response for the temperature at location x and for time t (a),
and the corresponding control signals u(t) (b) for a step input of 1 ◦C. This will be applied for aluminum
(in blue), copper (in green), and iron (in red).

As for the results, Figure 11b shows that the three Nichols plots are tangent to the same contour
(3 dB) for a given gain, which may reflect the robustness of the controller. Almost the same results
appear when plotting the sensitivity functions where the resonance factor is constant for the three
plants (Figure 11c,d). Concerning the time domain responses, it is clear that the three plants have the
same first overshoot and the same damping factor, which can prove, once again, the robustness of the
third generation CRONE controller.
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Figure 11. Frequency responses for: Bode diagrams of the controller CR(s) (a), the Nichols plot of the
open-loop function (b), the sensitivity function S(s), and (c) complementary sensitivity function T(s)
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Figure 12. Time domain responses for: closed-loop step input regarding the temperature T(t,x) (a) and
the input control signal (b) for a step input of 1 ◦C for aluminum (in blue), copper (in green), and iron
(in red).
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6. Conclusions and Future Works

As a conclusion, the results show that the second generation CRONE controller is robust when
the variations in the plant are modeled with gain changes, whereas the phase remains the same for all
of the plants (even if not constant). Nevertheless, the third generation CRONE controller showed a
good robustness when changing the parameters of the plant and when encountering both gain and
phase variations.

As for the future works, lots of ideas come to mind in order to enrich this study. Below are some
of the proposed tasks:

- Implement this system on a real test bench;
- Study the accuracy of this system when varying the position of the temperature sensors; this

deviation is due involuntarily when implementing the test bench;
- Apply other regulators to control this fractional order plant as the sliding mode control (with its

multiple types), Hinf robust control, and much more;

- Introduce some estimators to evaluate the temperature value at some location where the
temperature sensor can’t be placed.

Author Contributions: Xavier Moreau and Roy Abi Zeid Daou conceived the simulator of the thermal diffusive
interface medium; Fady Christophy and Xavier Moreau designed the CRONE controllers and performed the
simulations; Roy Abi Zeid Daou and Xavier Moreau and analyzed the data; Roy Abi Zeid Daou and Xavier
Moreau wrote the paper.
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