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Abstract: Non-Markovian effects have a vital role in modeling the processes related with
natural phenomena such as epidemiology. Various infectious diseases have long-range memory
characteristics and, thus, non-local operators are one of the best choices to be used to understand the
transmission dynamics of such diseases and epidemics. In this paper, we study a fractional order
epidemiological model of measles. Some relevant features, such as well-posedness and stability of
the underlying Cauchy problem, are considered accompanying the proofs for a locally asymptotically
stable equilibrium point for basic reproduction number R0 < 1, which is most sensitive to the
fractional order parameter and to the percentage of vaccination. We show the efficiency of the model
through a real life application of the spread of the epidemic in Pakistan, comparing the fractional
and classical models, while assuming constant transmission rate of the epidemic with monotonically
increasing and decreasing behavior of the infected population. Secondly, the fractional Caputo type
model, based upon nonlinear least squares curve fitting technique, is found to have smaller residuals
when compared with the classical model.
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1. Introduction

Diseases are very much around and the burden for some of the infectious diseases has always
remained substantially high in human society. Diseases, such as smallpox, rubella, mumps, cholera,
measles, black plague, HIV/AIDS, malaria, influenza, Ebola, among others, keep epidemiologists,
ecologist, applied mathematicians, and statisticians altogether busy in mathematical modeling of these
infectious diseases. Epidemiological models are an important tool for health organizations, since they
provide information on the spread of diseases and allow the choice of the best strategies to deal with
them. Since the pioneering works of Kermack and McKendrick [1–3], numerous works on this subject
have arisen to study the dynamics of the spread of different diseases.

However, various researchers are concerned with the design of mathematical epidemiological
models with the tools taken from standard classical calculus, where one is restricted to use only
integer-order derivatives. On the other hand, classical epidemiological models when studied in
the domain of fractional calculus, wherein infinite degrees of freedom are available for the order of
differentiation, are proven to have better capability to capture the more accurate behavior for the
transmission dynamics of the epidemic under consideration while yielding comparatively smaller
amount of error associated with the nonlinear parameter estimation (see, e.g., [4–10]).
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One of those concerns is the behavior of measles propagation among human society. Despite
much progress in the development of new vaccines for the elimination and eradication of infectious
diseases, the disease of measles is still commonly found in many parts of the world. Anyone who is
not protected, through vaccination or past infection, is at risk of getting the disease, especially when
traveling abroad and thus putting many people (babies, in particular) at risk.

Motivated by the epidemiological model presented in [11], where a system of first order ordinary
differential equations (ODEs) is introduced to model measles transmission, we study its fractional
extension in the present research work. Each first order derivative x′ is replaced by the Caputo
fractional derivative of order α ∈ (0, 1) [12]:

CDα
0+x(t) =

1
Γ(1− α)

∫ t

0
(t− τ)−αx′(τ)dτ, t > 0,

where x : [0, b]→ R is a given function and Γ denotes the Gamma function. Also, to ensure that both
sides of the fractional differential equation have the same dimension, each dimensional parameter p is
replaced by pα (see [13] for an explanation). The parameters of the model are displayed in the Table 1.

Table 1. Parameters of the measles model.

β disease transmission rate Estimated
A birth rate Fixed
µ natural mortality rate Fixed
ρ percentage of vaccinated individuals Fixed
σ rate at which an exposed person becomes infective Fixed
γ rate an infected recovers Fixed
α fractional order parameter Estimated

The fractional version of the measles model with constant transmission rate β > 0 of the infection
is proposed as follows. 

CDα
0+S = Aα(1− ρ)− βα IS− µαS

CDα
0+E = βα IS− (σα + µα)E

CDα
0+ I = σαE− (γα + µα)I

CDα
0+R = Aαρ + γα I − µαR,

(1)

with the initial conditions S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, with S0, E0, I0, R0 ∈
R+

0 . The variables S, E, I, R represent the number of susceptible, exposed, infected, and removed,
respectively, at time t. The total population is denoted by N. Thus, CDα

0+N = Aα − µαN, and so the
size of the population is not constant in time.

The present paper is organized as follows: Section 2 investigates the existence and uniqueness
for the solution of the fractional measles model accompanying the discussion over feasible region,
well-posedness, basic reproduction number (R0) and stability of the equilibria. It also shows the
extent to which (R0) is sensitive to each parameter of the model. In Section 3, the measles model is
numerically simulated while considering constant transmission rate for monotonically increasing and
decreasing infection cases along-with the detailed discussion for the choice of parameters and their
estimation through nonlinear least squares technique. Finally, Section 4 concludes the major findings
of the present research analysis.

2. Analysis of the Model

Consider the set
Ω = {(S, E, I, R) ∈ (R+

0 )
4 : N ≤ Aα/µα}.

Theorem 1. With respect to system (1):

1. There exists a unique solution to system (1), and the solution is nonnegative.



Fractal Fract. 2019, 3, 53 3 of 7

2. The set Ω is invariant with respect to system (1).
3. limt→∞ N(t) = Aα/µα.
4. For all t > 0, I(t) ≤ I0 + σα‖E‖∞/(γα + µα).

Proof. The existence and uniqueness of solution for system (1) are a consequence of Theorem 3.1
in [14] (also [14], Remark 3.2). The nonnegativity follows from the fact that

CDα
0+S|S=0, CDα

0+E|E=0, CDα
0+ I|I=0, CDα

0+R|R=0

are all nonnegative, and using similar arguments as the ones used in Theorem 2 of [15]. To prove
item 2, since CDα

0+N = Aα − µαN, by Theorem 7.2 (and Remark 7.1) of [16], the population size is
given by

N(t) = N0Eα(−µαtα) +
∫ t

0
Aατα−1Eα,α(−µατα)dτ,

where N0 is the initial population number. With some computations, we arrive at

N(t) = N0Eα(−µαtα) +
∫ t

0
Aατα−1

∞

∑
k=0

(−1)kµkατkα

Γ(kα + α)
dτ

=
Aα

µα
+ Eα(−µαtα)

(
N0 −

Aα

µα

)
. (2)

Thus, if N0 ≤ Aα/µα, then for all t > 0, N(t) ≤ Aα/µα and we prove that Ω is invariant with respect
to system (1). Also, from the relation given in (2), item 3 is immediate. Finally, to prove item 4, from
the third equation of (1) and again ([16], Theorem 3.2), we conclude that

I(t) = I0Eα(−(γα + µα)tα) +
∫ t

0
σαE(t− τ)τα−1Eα,α(−(γα + µα)τα)dτ.

Using the relation Eα(−(γα + µα)tα) ≤ 1, we arrive at

I(t) ≤ I0 + σα‖E‖∞

∫ t

0
τα−1Eα,α(−(γα + µα)τα)dτ

= I0 +
σα‖E‖∞

γα + µα
(1− Eα(−(γα + µα)tα)) ≤ I0 +

σα‖E‖∞

γα + µα
.

The basic reproduction number of the infection is given by the quotient

R0 =
Aαβασα(1− ρ)

µα(σα + µα)(γα + µα)
,

and its value plays an important role to predict the stability of the system.

Theorem 2. The point PF = (Aα/µα(1− ρ), 0, 0, Aα/µαρ) is an equilibrium point of system (1). Also, PF is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. It is obvious that PF is an equilibrium point of system (1). The Jacobian matrix of system (1),
evaluated at PF, is

J(PF) =


−µα 0 −βα Aα/µα(1− ρ) 0

0 −σα − µα βα Aα/µα(1− ρ) 0
0 σα −γα − µα 0
0 0 γα −µα

 , (3)
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and the spectrum of matrix (3) is{
−µα,

−(B + C)±
√
(B− C)2 + 4D

2

}
,

where B = σα + µα, C = γα + µα, and D = Aαβασα/µα(1− ρ). Therefore, the eigenvalues are reals
and negative if D < BC, that is, R0 < 1. In such case, the equilibrium point is locally asymptotically
stable [17]. If R0 > 1, then one of the eigenvalues is positive and thus the equilibrium point is
unstable.

One important issue is the sensitivity analysis of the basic reproduction number. Since in many
situations we only know an estimation of the parameters, it is important to understand how these
approximations influence the value of R0. The normalized forward sensitivity index of the basic
reproduction number R0, with respect to a given parameter p, is given by [18] ∂R0

∂p ×
p

R0
. The values

of the parameters are fixed as (see Section 3 for an explanation) A = 374125, µ = 0.000525, ρ = 0.8,
σ = 2, and γ = 1.579. Also, we consider α = 0.5 and two values for β: β = 10−10 and β = 10−20.
The obtained results are displayed in Tables 2 and 3.

Table 2. Sensitivity analysis ofR0: β = 10−10.

Parameter Sensitivity Indices

α −1.411652563
β +0.5
A +0.5
µ −0.5169256402
ρ −4
σ +0.007971768371
γ −0.4910461282

Table 3. Sensitivity analysis ofR0: β = 10−20.

Parameter Sensitivity Indices

α −12.92457802
β +0.5
A +0.5
µ −0.5169256402
ρ −4
σ +0.007971768371
γ −0.4910461282

The parameter with the greatest influence on the value ofR0 , when β = 10−10, is the percentage
of vaccination ρ. Hence, it is very important to choose this value when we are modeling the dynamics
of the disease. Also, the fractional order α plays an important role in this study. However, when
β = 10−20, it is the fractional order that has most influence on the value of the basic reproduction
number.

3. Numerical Simulations

In this section, numerical simulations for both classical and fractional Caputo type model for
the measles epidemic proposed in this paper are carried out wherein classical model is simulated
under MATLAB ODE solver “ode45” and the fractional model under MATLAB FDE solver “fde12” [19].
Two cases are separately dealt with. In the first, the transmission rate β is estimated via nonlinear
least squares technique while taking the real data from September 2010–May 2011 in monotonically
increasing fashion. On the other hand, the second case estimates the transmission rate β while taking
the real data from May–December 2018 in monotonically decreasing fashion.
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In addition to this, health census in Pakistan estimates that around 80% of the population is
vaccinated against measles [20], so ρ = 0.8. The birth and death rates are 21.9 births/1000 population
and 6.3 deaths/1000 population for 2017 [21]. So, with a population around 205 millions individuals,
we fix A = 374,125 month−1 and µ = 0.000525 month−1. For the rates at which an exposed person
becomes infective and when an infected recovers from the disease, we consider the ones given in [11]:
σ = 2 month−1 and γ = 1.579 month−1. Remaining parameters for the measles model with increasing
and decreasing infection cases are estimated via nonlinear least squares curve fitting technique and
listed in the Table 4 along with the residual norms (E) which are smaller for the fractional Caputo type
measles model.

Table 4. Best fitted values of the parameters and corresponding residual errors.

Monotonicity Classical Fractional

Increasing
β = 1.220959× 10−8 β = 1.428694× 10−22

α = 1.0000 α = 3.557048× 10−1

E = 1.619008× 102 E = 8.407327× 101

Decreasing
β = 4.0415× 10−9 β = 4.5623× 10−11

α = 1.0000 α = 8.3680× 10−1

E = 9.1481× 102 E = 4.3283× 102

It can be observed from the Figure 1 that the best fitted curve is obtained via numerical simulations
for the fractional versions of the measles model whether the real monthly data follow increasing or
decreasing pattern.
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Figure 1. Profile of infected population from both classical and fractional measles model for the real
monthly data with monotonically increasing (a) and decreasing (b) fashion.

4. Conclusions

A number of mathematical models related with epidemics of different kinds are being proposed
to provide health organizations to decide effective strategies to control, eliminate and ultimately
eradicate the infectious diseases. However, most of the models are based upon the tools of integer
order differentiation and integration which are found to be unuseful in capturing the dynamics of a
disease that has non-Markovian characteristics. In this regard, new models with non-local operators
possessing memory effects are suggested in the literature.

In this present research work, an epidemiological model of measles epidemic has been
fractionalized under the Caputo type non-local operator and compared with its existing classical
version with the help of real data application. It has been found that the fractional versions, in cases
where the real data set is either monotonically increasing or decreasing, are better than its classical
version. This conclusion is based upon the residual error values obtained through nonlinear least
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squares curve fitting technique. Furthermore, the fractional Caputo measles model does have a unique
solution and its solutions lie the positively invariant region thereby making the model well-posed.
Stability analysis showed that the equilibrium point of the fractional model is locally asymptotically
stable when its basic reproduction number is less than unity otherwise unstable.
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