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Abstract: In this paper, we present a number of Chebyshev type inequalities involving generalized
integral operators, essentially motivated by the earlier works and their applications in diverse
research subjects.
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1. Introduction

Many integral inequalities of various types have been presented in the literature. Among them,
we choose to recall the following Chebyshev inequality (see [1]):

1
b− a

∫ b

a
f (x)g(x)dx ≥

(
1

b− a

∫ b

a
f (x)dx

)(
1

b− a

∫ b

a
g(x)dx

)
, (1)

where f and g are two integrable and synchronous functions on [a, b], a < b, a, b ∈ R. Here,
two functions f and g are called synchronous on [a, b] if

( f (x)− f (y))(g(x)− g(y)) ≥ 0 (x, y ∈ [a, b]).

In the case that we have − f and g (or similarly f and −g) the sense of the previous inequality is
the opposite.

Inequality (1) has many applications in diverse research subjects such as numerical quadrature,
transform theory, probability, existence of solutions of differential equations and statistical problems.
Many authors have investigated generalizations of the Chebyshev inequality (1), these are called
Chebyshev type inequalities (see, e.g., [2,3] or [4]).

We give the definition of a general fractional integral. We assume that the reader is familiar with
the classic definition of the Riemann integral, so we will not present it. Throughout the paper we
will suppose that the positive integral operator kernel T : I → (0, ∞) defined below is an absolutely
continuous function on interval I ⊆ R.

Definition 1. Let I be an interval I ⊆ R and a, b ∈ I. The generalized integral operators JT,a+ and JT,b− ,
called respectively, right and left, are defined for every locally integrable function f on I as follows:
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JT,a+( f )(x) =
∫ x

a

f (t)
T(t− a)

dt, x > a.

JT,b−( f )(x) =
∫ b

x

f (t)
T(b− t)

dt, x < b.

Note that in special cases, JT,a+ and JT,b− are equal to the following integrals:

JT,0+( f )(1) =
∫ 1

0

f (t)
T(t)

dt

and

JT,1−( f )(0) =
∫ 1

0

f (t)
T(1− t)

dt =
∫ 1

0

f (1− t)
T(t)

dt.

We say that f belongs to the function space L+
T [a, b] if

JT,a+( f )(b) < ∞,

similarly f belongs to L−T [a, b] if
JT,b−( f )(a) < ∞,

and f ∈ LT [a, b] if f ∈ L+
T [a, b] ∩ L−T [a, b].

It is easy to see that the case of the JT operators defined above contains, as particular cases,
the integral operators obtained from conformable and non-conformable local derivatives. For details
about the Riemann–Liouville fractional integrals (left-sided) of a function f of order α ∈ C with
Re(α) > 0 the reader can consult [5,6]. In [7], Belarbi and Dahmani established some theorems related
to the Chebyshev inequality involving Riemann–Liouville fractional integral operator. Recently, some
new integral inequalities involving this fractional integral operator have appeared in the literature,
see, e.g., [8–19].

Taking into account the previous research results and the generalized integral operator, we will
obtain some Chebyshev type inequalities, which contain many of the inequalities reported in the
literature as particular cases.

2. Main Results

Theorem 1. Let f and g be two functions from L+
T [a, b] which are synchronous on [a, b]. Then

JT,a+( f g)(b) ≥ [τ(b− a)]−1 JT,a+( f )(b) JT,a+(g)(b) (2)

where
τ(x) =

∫ x

0

ds
T(s)

.

Proof. Since f and g are synchronous on [a, b], we have

( f (u)− f (v))(g(u)− g(v)) ≥ 0; u, v ∈ [a, b]

or equivalently
f (u)g(u) + f (v)g(v) ≥ f (u)g(v) + f (v)g(u).

Multiplying both sides by 1
T(u−a) yields

f (u)g(u)
T(u− a)

+
f (v)g(v)
T(u− a)

≥ f (u)g(v)
T(u− a)

+
f (v)g(u)
T(u− a)

.
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Integrating both sides of the resulting inequality with respect to the variable u from a to b, gives us

∫ b

a

f (u)g(u)
T(u− a)

du +
∫ b

a

f (v)g(v)
T(u− a)

du ≥
∫ b

a

f (v)g(u)
T(u− a)

du +
∫ b

a

f (u)g(v)
T(u− a)

du.

From this, we have

JT,a+( f g)(b) + f (v)g(v)τ(b− a) ≥ g(v) JT,a+( f )(b) + f (v) JT,a+(g)(b). (3)

After multiplying the inequality by 1
T(v−a) and integrating with respect to v between a and b,

we get

JT,a+( f g)(b) τ(b− a) + τ(b− a)
∫ b

a

f (v)g(v)
T(v− a)

dv

≥ JT,a+( f )(b)
∫ b

a

g(v)
T(v− a)

dv + JT,a+(g)(b)
∫ b

a

f (v)
T(v− a)

dv,

that is
2 JT,a+( f g)(b) τ(b− a) ≥ 2 JT,a+( f )(b) JT,a+(g)(b)

and we have got (2).

Remark 1. Similar calculations as above shows that for any f , g ∈ L−T [a, b] synchronous on [a, b], we have

JT,b−( f g)(a) ≥ [τ(b− a)]−1 JT,b−( f )(a) JT,b−(g)(a). (4)

Remark 2. If we take T ≡ 1 in Theorem 1 (or in Remark 1), then inequality (2) (or (4)) reduces to the classic
inequality (1) of Chebyshev.

Remark 3. If we consider the kernel (α, β > 0)

T(x− t) = T(x− t, α, β) =
Γ(β)t1−α(

α
xα−tα

)β−1 , (5)

we obtain ([16], Theorem 5) that contains ([7], Theorem 3.1) as a particular case.

Theorem 2. Let f and g be two functions from L+
T1
[a, b] ∩ L+

T2
[a, b] which are synchronous on [a, b]. Then

τ2(b− a) JT1,a+( f g)(b) + τ1(b− a) JT2,a+( f g)(b)

≥ JT1,a+( f )(b) JT2,a+(g)(b) + JT1,a+(g)(b) JT2,a+( f )(b). (6)

where
τ1(x) =

∫ x

0

ds
T1(s)

and τ2(x) =
∫ x

0

ds
T2(s)

.

Proof. Writing T1 in place of T and τ1 in place of τ in (3) and then multiplying both sides by
1

T2(v−a) yields

JT1,a+( f g)(b)

T2(v− a)
+ τ1(b− a)

f (v)g(v)
T2(v− a)

≥ JT1,a+( f )(b)
g(v)

T2(v− a)
+ JT1,a+(g)(b)

f (v)
T2(v− a)

.

Integrating both sides of the resulting inequality with respect to the variable v between a and b
gives us (6).
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Remark 4. In case of T1 = T2, we obtain Theorem 1.

Remark 5. By taking the kernels (α, β, τ > 0)

T1(x− t) =
Γ(β)t1−α(

α
xα−tα

)β−1 and T2(x− t) =
Γ(β)t1−τ(

τ
xτ−tτ

)β−1 ,

we obtain ([16], Theorem 6) and hence ([7], Theorem 3.2) as a particular case.

Theorem 3. Let { fi}i=1,2,...,n be positive increasing functions from L+
T [a, b]. We have[

JT,a+

(
n

∏
i=1

fi

)
(b)

]
≥ [τ(b− a)]1−n

[
n

∏
i=1

JT,a+ ( fi) (b)

]
. (7)

Proof. We prove this theorem by induction on n ∈ N. For n = 1, (7) trivially holds. For n = 2,
(7) immediately comes from (2), since f1 and f2 are synchronous on [a, b]. Now assume that the
inequality (7) is true for some n ∈ N. Let f := ∏n

i=1 fi and g := fn+1. Observe that f and g are
increasing on [a, b], therefore (2) and the induction hypothesis for n yields

JT,a+

(
n

∏
i=1

fi fn+1

)
(b) ≥ [τ(b− a)]−1 JT,a+

(
n

∏
i=1

fi

)
(b) JT,a+( fn+1)(b)

≥ [τ(b− a)]−n
n+1

∏
i=1

JT,a+( fi)(b).

This completes the induction and the proof.

Remark 6. Taking kernel (5), we obtain ([16], Theorem 7), which is a generalization of ([7], Theorem 3.3).

Theorem 4. Let f , g : [0, ∞) → R, f , g ∈ L+
T [a, b] such that f is increasing and g is differentiable with g′

bounded below by m = inf
t∈[0,∞)

g′(t). Then we have

JT,a+( f g)(b) ≥ [τ(b− a)]−1 JT,a+( f )(b) JT,a+(g)(b)

− m
τ(b− a)

JT,a+( f )(b) JT,a+(t)(b) + m JT,a+(t f )(b),

where t(x) = x is the identity function.

Proof. Let p(x) = mx and h(x) = g(x)− p(x). Note that h is differentiable and increasing on [0, ∞).
Hence we can apply (2), and we obtain

JT,a+( f h)(b) ≥ [τ(b− a)]−1 JT,a+( f )(b) JT,a+(h)(b)

= [τ(b− a)]−1 JT,a+( f )(b) JT,a+(g)(b)

− [τ(b− a)]−1 JT,a+( f )(b) JT,a+(p)(b). (8)

Since
JT,a+(p)(b) = m JT,a+(t)(b)

and
JT,a+( f p)(b) = m JT,a+(t f )(b),
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(8) implies

JT,a+( f g)(b) = JT,a+( f h)(b) + JT,a+( f p)(b)

≥ [τ(b− a)]−1 JT,a+( f )(b) JT,a+(g)(b)

− [τ(b− a)]−1 JT,a+( f )(b) JT,a+(p)(b) + JT,a+( f p)(b)

≥ [τ(b− a)]−1 JT,a+( f )(b) JT,a+(g)(b)

− m
τ(b− a)

JT,a+( f )(b) JT,a+(t)(b) + m JT,a+(t f )(b),

where the desired result is obtained.

Remark 7. Using kernel (5), we obtain ([16], Theorem 8).

Remark 8. Our results contain those of [20] with the right choice of kernel T.

Theorem 5. Let f , g : [0, ∞)→ R, f , g ∈ L+
T [a, b] such that f and g are differentiable with f ′ bounded below

by m1 = inf
t∈[0,∞)

f ′(t) and g′ bounded below by m2 = inf
t∈[0,∞)

g′(t). Then we have

JT,a+(h1h2)(b)

≥ τ(b− a)−1 JT,a+( f )(b) JT,a+(g)(b)− m2

τ(b− a)
JT,a+( f )(b) JT,a+(t)(b)

− m1

τ(b− a)
JT,a+(g)(b) JT,a+(t)(b) +

m1m2

τ(b− a)
JT,a+(t)(b) JT,a+(t)(b)

+ m2 JT,a+(t f )(b) + m1 JT,a+(tg)(b)−m1m2 JT,a+

(
t2
)
(b),

where t(x) = x is the identity function.

Proof. Let p1(x) = m1x and h1(x) = f (x)− p1(x), similarly, p2(x) = m2x and h2(x) = g(x)− p2(x).
Since h1 and h2 is differentiable and increasing on [0, ∞), applying (2) gives us

JT,a+(h1h2)(b)

≥ [τ(b− a)]−1 JT,a+(h1)(b) JT,a+(h2)(b)

≥ [τ(b− a)]−1
[

JT,a+( f )(b)− JT,a+(p1)(b)
] [

JT,a+(g)(b)− JT,a+(p2)(b)
]

≥ τ(b− a)−1 JT,a+( f )(b) JT,a+(g)(b)− m2

τ(b− a)
JT,a+( f )(b) JT,a+(t)(b)

− m1

τ(b− a)
JT,a+(g)(b) JT,a+(t)(b) +

m1m2

τ(b− a)
JT,a+(t)(b) JT,a+(t)(b). (9)

Moreover,

JT,a+(h1 p2)(b) = m2 JT,a+(th1)(b) = m2 JT,a+(t f )(b)−m1m2 JT,a+

(
t2
)
(b) (10)

similarly,
JT,a+(h2 p1)(b) = m1 JT,a+(tg)(b)−m1m2 JT,a+

(
t2
)
(b) (11)

and
JT,a+(p1 p2)(b) = m1m2 JT,a+

(
t2
)
(b). (12)
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From the equality

f g = (h1 + p1)(h2 + p2) = h1h2 + h1 p2 + h2 p1 + p1 p2

we have

JT,a+( f g)(b) = JT,a+(h1h2)(b) + JT,a+(h1 p2)(b) + JT,a+(h2 p1)(b) + JT,a+(p1 p2)(b),

and this equality together with (9)–(12) implies the required result.

Remark 9. In case of m1 = 0, we obtain Theorem 4.

Remark 10. The results obtained in this work can be extended if we consider instead of f and g, − f and g or f
and −g, in the notion of synchronous functions, in which case the direction of the inequalities changes .

3. Conclusions

In this work, we have obtained the Chebyshev inequality from Theorem 1 within the framework
of generalized integrals. In addition to the observations made, which prove the strength of our results,
we would like to present a couple of variants of the classic Chebyshev inequality.

If we take kernel T = tα, α < 1, then we get

JT,a+( f g)(b) ≥ 1− α

(b− a)1−α
JT,a+( f )(b) JT,a+(g)(b).

In case of taking kernel T = eαt, α 6= 0, then we have the following variant of the
Chebyshev inequality:

JT,a+( f g)(b) ≥ α

1− e−α(b−a)
JT,a+( f )(b) JT,a+(g)(b).
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