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Abstract: In this paper, the performance of an analog PIλDµ controller is done for speed regulation
of a DC motor. The circuits for the fractional integrator and differentiator of PIλDµ controller are
designed by optimal pole-zero interlacing algorithm. The performance of the controller is compared
with another PIλDµ controller—in which the fractional integrator circuit employs a solid-state
fractional capacitor. It can be verified from the results that using PIλDµ controllers, the speed
response of the DC motor has improved with reduction in settling time (Ts), steady state error (SS
error) and % overshoot (% Mp).

Keywords: DC motor emulator; fractional PIλDµ controller; solid-state fractional capacitor; optimal
pole-zero interlacing algorithm; rise time; settling time; steady state error; % overshoot

1. Introduction

PIλDµ controllers exhibit promising features like minimizing the steady state error, robustness
to plant gain variations, disturbance rejection and faster response over PID controllers [1,2]. Some of
the works of PIλDµ controllers are reported in [3–18]. Similarly, the works on a DC motor can be
seen in [19–29]. Recent works of analog PIλDµ controller on a DC motor includes implementation
by Operational Transconductance Amplifiers (OTA) [30] or using CMOS op-amp [31]. Even though
the above methods can provide electronic tunability, it has disadvantages such as: restriction on the
maximum input signal that the circuits can handle (which is less than 1 V), requirement of more active
components, resistors and capacitors for its implementation and only simulation studies are published.
On the counterpart, a discrete version of the controller on a DC motor can be seen in [32,33] where
special care must be taken for choosing the following: sampling rate, A/D and D/A converters, type of
discretization rule used, skills in coding, computational and memory requirements. All the above
methods utilize frequency domain approach for designing the controller and for that, the model of the
plant is essential, and in [34], simulation studies on a model free technique for the design of a data
driven fractional PID controller is demonstrated. The algorithm uses iterative computation and hence,
it requires a computer.

From the above, it can be seen that the majority of the works done on a DC motor uses discrete
type fractional controllers and for analog implementation of PIλDµ controller, one needs op-amp/other
active elements and fractional order elements. The fractional order elements can be implemented either
by a multicomponent method (e.g., ladder circuits [35]) or single component fractional capacitors
(like the fractional capacitor reported in [36]). The major issue is that the single component fractional
capacitors (which reduces the circuit complexity) are not yet commercialized. So in this paper, we will
show the performance comparison of two types of analog PIλDµ controllers on a DC motor emulator
in real time. One PIλDµ controller is employing the commercially available op-amp, resistors and
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capacitors for its realization and it is compared with the controller implemented using a single
component fractional capacitor.

This paper is an extension of the work reported in [37]. In that paper, we have studied the
performance of a solid-state fractional capacitor based PIλDµ controller where the analog fractional
integrator has the stated fractional capacitor in the feedback path of the circuit. In this research work,
we will develop optimal pole-zero interlacing algorithm based analog Iλ and Dµ circuits; and the PIλDµ

controller based on this (termed as Type A controller) is implemented on hardware. The performance
of Type A PIλDµ controller is compared with the previously reported PIλDµ controller (named as Type
B: where fractional integrator employs solid-state fractional capacitor). The study is done on the speed
regulation of the DC motor emulator. Thus, the paper focuses on the comparison of the performance
of these two types of analog PIλDµ controllers (one by the multicomponent approach and the other by
a single component fractional capacitor) and present its advantages.

The paper is divided into six sections. Section 1 deals with the introduction. Section 2 describes
Type A and Type B PIλDµ controllers. The details of the hardware implementation and the tuning
algorithm for the fractional PID controller are given in Sections 3 and 4, respectively. Then, the results
are elaborated in Section 5 and the conclusion in Section 6.

2. Theory

2.1. DC Motor Emulator

The transfer function of the DC motor [37] under study is given as:

G(s) =
Vω(s)
Va(s)

=
1.91 × 106

s2 + 666.7s + 1.948 × 106 (1)

where Vω(s) is the voltage corresponding to speed and Va(s) is the armature input voltage to the DC
motor. Equation (1) is implemented using resistors, capacitors and op-amps to emulate the DC motor
which has a gain stage followed by two integration stages (as illustrated in Figure 1), and on this
emulated circuit, the comparison studies of Type A and Type B fractional PID controllers have been
carried out.
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Figure 1. Circuit diagram of DC motor emulator.

2.2. Type A and Type B PIλDµ Controllers

The block diagram of the controlled DC motor emulator is shown in Figure 2. As mentioned before,
the analog implementation of the fractional order PIλDµ controller is done by two methods: (1) Type
A controller, which employs the optimal pole-zero interlacing algorithm [26] for the design of both
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fractional integrator and differentiator circuits; and (2) Type B controller–here, the fractional integrator
block in Type A controller is replaced by a solid-state fractional capacitor [37] circuit. In the case of
Type A controller, for Iλ implementation, there are separate circuits for Ki and s−λ. However, for the Iλ

circuit of Type B controller, the gain is adjusted by the input potentiometer (R1), as shown in Figure 3.

Figure 2. Block diagram of the controlled DC motor emulator.

Figure 3. Circuit diagrams of fractional integrator (Kis−λ) for Type A and Type B controllers with
λ = 0.4.

In general, the control signal from PIλDµ controller is given as

U(s) = KpE(s) +
Ki

sλ
E(s) + KdsµE(s) (2)

where U(s) is the control signal, E(s) is the error signal, Kp, Ki and Kd are the proportional, integral and
differential gains and λ, µ are the fractional exponents of integrator and differentiator, respectively.
The description of Type A controller is provided in Section 2.3, which is followed by Type B controller
in Section 2.4.

2.3. Fractional PIλDµ Controller Using Optimal Pole-Zero Interlacing Algorithm (Type A Controller)

2.3.1. Optimal Pole-Zero Interlacing Algorithm Based Fractional Iλ Controller

The optimal pole-zero interlacing algorithm [26] tries to find the rational approximation of the
fractional operator in s-domain. It is one of the techniques available in the literature that can be used
for the realization of the fractional integral operator. The optimization function used is the rms error of
phase angle in the desired band of frequencies and the algorithm tries to find the poles and zeros such
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that the phase error is less than 1◦. If one uses ladder fractor, then the phase deviation that is obtained
will be greater than 1◦ for 12 resistor and 12 capacitor combination [35].

Now comparing with the other approximation methods like Charef [38], Oustaloup [39] and
Xue [19], these methods require a higher order of the polynomial and the phase error obtained is also
greater than 1◦. Considering the analog realization in [40], it requires three resistors, two capacitors and
one op-amp for one pole-zero implementation. For that case, the phase error >1◦ and the realization
have issues in low frequency operation.

Hence, from the above discussion, it can be specified that the order of the optimal pole-zero
interlacing algorithm is less when correlated with the other algorithms. Also, in optimal pole-zero
analog implementation, it requires three resistors, one op-amp and one capacitor for one pole-zero
combination. Thus, it requires fewer components in comparison to the implementation published
in [40]. Because of the above advantages, we will use the same for analog implementation of the
fractional PID controller.

Next, the approximated transfer function from the optimal pole-zero interlacing algorithm for
a fractional integrator with λ = 0.4 which replicates the solid-state fractional capacitor (fabricated by
the authors and reported in [41]) is given as:

CIA(s) =
(s + 9.64 × 104)(s + 1.077 × 104)(s + 1203)(s + 134.3)(s + 15)
(s + 4.173 × 104)(s + 4661)(s + 520.5)(s + 58.14)(s + 6.493)

(3)

The values of R’s and C’s for analog implementation of fractional integrator given by Equation (3)
is calculated based on the algorithm. It has five stages of pole-zero combination. The analog
implementation of the fractional integrator (Kis−0.4) requires 8 op-amps, 17 resistors and 6 capacitors,
as shown in Figure 3.

2.3.2. Fractional Differentiator (Dµ) Using Optimal Pole-Zero Interlacing Algorithm

The transfer function of fractional differentiator (with µ = 0.4) by the optimal pole-zero interlacing
algorithm is:

CDA(s) =
(s + 4.173 × 104)(s + 4661)(s + 520.5)(s + 58.14)(s + 6.493)
(s + 9.64 × 104)(s + 1.077 × 104)(s + 1203)(s + 134.3)(s + 15)

(4)

The circuit diagram of the fractional differentiator by optimal pole-zero interlacing algorithm is
similar to the fractional integrator circuit but the feedback impedance and input impedance of each
stage needs to be interchanged.

2.4. Fractional PIλDµ Controller Using Solid-State Fractional Capacitor (Type B Controller)

The details of the Type B controller using a solid-state fractional capacitor are provided
in [37]. The solid-state fractional capacitor (used in the fractional integrator circuit) has Constant
Phase (CP) = −31.55◦ ± 6.75◦ (taken as λ = 0.4) in the frequency range 15 Hz–1 kHz. The fractional
differentiator (implemented using optimal pole-zero interlacing algorithm) for this controller will have
the same transfer function as in Equation (4) but the Kd will be different.

3. Details of Hardware Implementation

The details of components and instruments employed for the hardware realization are listed
below.

1. Type of DC motor emulator: Armature controlled DC motor
2. Op-amp IC used for DC motor emulator and analog PIλDµ controller: TL084
3. Supply voltage for TL084 IC: ±12 V
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4. Reference signal: 1 Vp, 25 Hz square wave signal from an arbitrary function generator
(Model number: AFG 3052C, 50 MHz, 1 GS/s)

5. Oscilloscope for capturing output: Lecroy oscilloscope (Model number: Waverunner 604 zi,
400 MHz, 20 G/s).

4. Tuning PIλDµ Controllers

The tuning algorithm mentioned in [37] has been utilized here and is summarized as

1. The Simulink model (in MATLAB 2016b) of the controller DC motor system is generated with
an input of 1 V.

2. We define the step response requirements in “Check Response Characteristics” block of MATLAB
with rise time <1.98 ms, settling time <13 ms and overshoot ≤12%.

3. The variable set is designed with Kp = [0,10], Ki = [0,200] and Kd = [0,10]. These values are the
maximum gains from the analog circuit of PIλDµ controller, which provides a stable output.

4. Once the model is created, the pattern search optimization method [42] is run to obtain the tuned
parameters Kp, Ki and Kd for Type A and Type B controllers.

The parameters of Type A controller are obtained by the above algorithm. The tuning technique
provides the optimal values of the parameters satisfying the time domain specifications: rise time
<1.98 ms, settling time <13 ms and overshoot ≤12%.

5. Results and Discussion

The fractional integrator circuit obtained by optimal pole-zero interlacing algorithm has a constant
phase angle of −34.5 ± 1.40◦ in the frequency range of 10 Hz to 1 kHz. Whereas, for the fractional
differentiator, the constant phase angle is 31.48 ± 2.31◦ in the frequency range from 10 Hz to 900 Hz
(from the hardware implemented Dµ circuit). The tuning algorithm mentioned in Section 4 is run to
get the values of controller parameters. For Type A controller [Kp, Ki, Kd] = [3.45, 66.06, 1.67]; and the
values for the Type B controller are [Kp, Ki, Kd] = [3.45, 165.95, 2.52]. For both the controllers, it is
assumed that λ = µ = 0.4 as the hardware results shown in [37] are having the above-mentioned values
for λ and µ. The final control signal by Type A controller is given as:

UA(s) = 3.45 +
66.06
s0.4 + 1.67s0.4 (5)

whereas, the control signal by the Type B controller is as below:

UB(s) = 3.45 +
165.95

s0.4 + 2.52s0.4 (6)

There is a difference in the Ki and Kd values (in Equations (5) and (6)) as the solid-state fractional
capacitor is matching only the phase characteristics of the fractional integrator circuit by the optimal
pole-zero interlacing algorithm and there is a difference in their impedance characteristics, which have
caused the change in the controller gain values.

With the above-designed controllers, a square wave reference signal (Vre f = 1 Vp, 25 Hz) is given
to a cascaded fractional PIλDµ controlled DC motor emulator and the simulated as well as the real time
response graphs are plotted. The simulation (using Multisim) and experimental results for Type A
and Type B controlled DC motor emulator are shown in Figure 4, and the corresponding performance
metrics are tabulated in Table 1.
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(a) Simulation results from Multisim.
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(b) Experimental results from hardware setup.
Figure 4. Comparison of results. Vre f = reference signal, Vω = DC motor response, VωA = response
from Type A controlled DC motor and VωB = response from Type B controlled DC motor.

Table 1. Performance measures (in time domain) of the controlled DC motor obtained in simulation
(Multisim) and experimental setup.

Controller % Overshoot Tr Ts SS Error
Type (Rise Time) (Settling Time)

Multisim

DC motor 28.5% 1.79 ms 13.8 ms 54.2 mV
Type A controller 13.4% 0.8 ms 6.02 ms 23.1 mV
Type B controller 7.4% 0.8 ms 4.55 ms 16.3 mV

Experimental

DC motor 31.1% 1.9 ms 16.9 ms 67 mV
Type A controller 11.78% 0.580 ms 6.8 ms 12.4 mV
Type B controller 11% 0.58 ms 4.6 ms 12 mV

The simulation results are showing that Type B controller is better in terms of % overshoot,
settling time and steady state error (SS error). Whereas, from the experimental results, it is apparent
that the performance measures of Type A controller and Type B controllers are comparable. The
difference between the simulation and the hardware results are due to the tolerance of the components
used in the hardware.

5.1. Discussion on the Fractional PIλDµ Controller Designed by Pole-Zero Interlacing Algorithm

5.1.1. Fractional Integration of Type A Controller

The fractional integral action on the error signal for Type A controller is graphically shown in
Figure 5 (the zoomed version of the error signal is at the right bottom of the figure). The details of the
fractional integral action considering error voltage in each section (0-A, A-B, B-C) as sine waves are
tabulated in Table 2.
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Figure 5. Error voltage (e) and KiIλ voltage (VIA) of Type A controller.

Table 2. Details of fractional integration and fractional differentiation of Type A controller.

Section Frequency Calculated e VIA/VDA Actual Phase
(Hz) Gain Gain (in deg)

Fractional Integration (VIA)

0-A 106 5.63 2 Vp 10.44 Vp 5.24 −33
A-B 1000 2.83 155 mVp 548 mVp 3.53 −33
B-C 1500 1.87 35 mVp 106 mVp 3.08 −35.6

Fractional Differentiation (VDA)

0-A 106 17.34 2 Vp 10.44 Vp 5.09 33
A-B 1000 33.22 155 mVp 4.5 Vp 32.2 30.9
B-C 1500 33.8 35 mVp 1.26 Vp 36.11 29.7

From point C to t = 0.02 s, the output of the fractional integrator is illustrated by Figure 5 as in
that range, the error is not sinusoidal. The algorithm mentioned in Section 4 tries to find the gain Ki so
that the output from the fractional integrator has a value of around 1 V (as we are giving Vre f = 1 V) at
half the time period of the input signal.

The calculated gain (Table 2) is the ideal case and is not dependent on input amplitude with
its value equal to Ki× (2 × 3.14 × f )−λ. However, actual gain is influenced by the input amplitude
and saturation limit of the op-amp. For instance, if the gain is 5.63, for an input of 2 Vp, the output
amplitude should be 11.26 Vp and cannot be obtained in this case as the output is bounded to ±10.44 Vp

(the op-amp used to implement the circuit saturates at ±10.44 Vp). So, for each case, the actual gain
will not be equal to the ideal gain of the fractional integrator. It has been observed that with increase in
frequency, the calculated gain as well as the actual gain decreases.

5.1.2. Fractional Differentiation of Type A Controller

The fractional derivative action on the error signal is shown in Figure 6; and the details of the
fractional differentiation considering error voltage in each section (0-A, A-B, B-C) as sine waves are
given in Table 2. From point C to t = 0.02 s, the output of the fractional differentiator is graphically
shown in Figure 6.
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Figure 6. Error voltage (e) and KdDµ voltage (VDA) of Type A controller.

For the fractional differentiator also, the computed gain and the experimental gain are listed in
Table 2. The calculation of gain from a fractional differentiator is given by Kd× (2 × 3.14 × f )µ and it
is unrelated with input amplitude and saturation limit. However, experimental gain has an influence
from input amplitude as mentioned above. Due to which, the calculated gain and actual gain will not
be the same. The value of gain increases with increase in frequency for both the calculated gain and
the actual gain, that is, it follows the frequency characteristics of the differentiator.

The final controller output, which is the summation of controller efforts from the proportional,
fractional integrator and fractional differentiator, will be given to the DC motor emulator. It is
mentioned in Section 2 that the DC motor emulator has one gain stage and two integrators (see
Figure 1). From Figure 7, we can see that the output from the gain stage of the DC motor (VG) is the
square wave of small intervals, which makes the integrator-1 output (VI1) to charge to a lower voltage
and the output of integrator-2 (VωA) has a minor overshoot; hence making the output value close to 1 V.
The short interval square wave is produced from the fractional controller. Also, the saturation element
in the fractional controller and the DC motor emulator has an effect on reducing the % overshoot of the
DC motor. Whereas, the fractional integrator tries to reduce the steady state error in the speed response.
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Figure 7. Gain stage output (VG), Integrator-1 output (VI1) and Integrator-2 output (VωA) of a DC
motor with Type A controller.

The comparison results show that the performance measures are almost the same for Type A
and Type B controller but the number of components can be greatly reduced if one uses a Type B
controller (which employs the solid-state fractional capacitors). As mentioned before, the number
of components required for implementing fractional integrator (including Ki gain block) in Type A
controller are: 8 op-amps, 17 resistors and 6 capacitors and the fractional integrator in Type B controller
requires: one op-amp, one resistor and the solid-state fractional capacitor. From Table 1, it can be seen
that the performance of the DC motor has improved (decrease in Ts, % overshoot and steady state (SS)
error) when employing fractional PIλDµ controllers.
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6. Conclusions

In this paper, performance comparison of two types of analog PIλDµ controllers implemented
in hardware and tested on a DC motor emulator is presented. Type B controller uses a solid-state
fractional capacitor in the fractional integrator circuit and this controller has an advantage over Type
A controller by reducing the number of components in the hardware implementation; but both the
controllers’ performance measures are comparable. Hence, this study shows that if one does not have
a single component fractional capacitor, then also the same performance can be attained using the
optimal pole-zero interlacing technique. Apart from the above, it also validates the applicability of
the tuning algorithm for Type A controller, which was developed for the Type B controller by the
authors in their earlier work. As a future work, the fractional PIλDµ controllers can be implemented
on other systems employing the tuning algorithm proposed and also comparison studies with a
digital controller. In addition, analog implementation of PIλDµ controllers with other components,
which reduces the circuit complexity, needs to be explored.
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