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Abstract: This paper focuses on the sliding mode control (SMC) problem for a class of uncertain
singular fractional order systems (SFOSs). The uncertainties occur in both state and derivative
matrices. A radial basis function (RBF) neural network strategy was utilized to estimate the nonlinear
terms of SFOSs. Firstly, by expanding the dimension of the SFOS, a novel sliding surface was
constructed. A necessary and sufficient condition was given to ensure the admissibility of the SFOS
while the system state moves on the sliding surface. The obtained results are linear matrix inequalities
(LMIs), which are more general than the existing research. Then, the adaptive control law based on
the RBF neural network was organized to guarantee that the SFOS reaches the sliding surface in a
finite time. Finally, a simulation example is proposed to verify the validity of the designed procedures.

Keywords: singular fractional order systems; linear matrix inequality; adaptive RBF neural network;
sliding mode control

1. Introduction

Fractional order systems (FOSs) have been developed greatly in the past few decades. When the
fractional order α is equal to the integer, the FOSs reduce to integer order systems. Therefore, FOSs have
more extensive applications in real life, such as image processing [1], economics [2], and robotics [3].
Stability is fundamental to FOSs. A basic theorem of asymptotic stability for FOSs is first proposed
in [4] with fractional order 0 < α < 2. But it is difficult to use this theory to design controllers to
make the FOSs stable in practical application. So, many scholars have carried out further research
on FOSs. In [5], the Mittag–Leffler stability definition of FOSs is introduced and the fractional order
Lyapunov method is presented. Sabatier et al. propose the linear matrix inequalities (LMIs) condition
of asymptotic stability of FOSs in [6]. Necessary and sufficient conditions of robust stability and
stabilization of fractional order interval systems with fractional order α: 0 < α < 1 case and 1 < α < 2
case are developed in [7,8], respectively. Zhang et al. in [9] present a D-stability based LMI condition,
which does not include complex variables. Liang et al. in [10] introduce the bounded real lemma of
FOSs to solve H∞ control problem. In [11], Shen et al. analyze the nonlinear FOSs and put forward
some significant results.

In control systems, state variables often cannot represent physical variables in a natural way
to provide a mathematical model. This leads to a singular system model [12]. Therefore, singular
systems are necessary to be studied. In [13], the robust stabilization of uncertain singular time-delay
systems is considered, and sufficient conditions are given to ensure the system is regular, impulse-free,
and asymptotically stable. In [14], by designing the controller to convert the singular system into a
normal system, Ren et al. investigate the problem of guaranteed cost control for uncertain singular
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systems. The LMI condition for the H∞ control of discrete stochastic Markovian jump singular
systems with state delay is constructed in [15]. As for singular fractional order systems (SFOSs), many
important theoretical results have been published [16–18]. In [19], on the basis of [9], Three necessary
and sufficient conditions are introduced to solve the admissibility problem of SFOSs. In [20], Zhang et al.
investigate the problem of admissibility of T-S fuzzy SFOSs. A number of results about the output
feedback controller design for SFOSs are presented in [21–23]. In addition, Wei et al. in [24] consider
the observer design for uncertain SFOSs. When the uncertainties occur in derivative matrix E, any
small disturbance may destroy the admissibility of SFOSs, which has a more serious effect than the
disturbance in the system matrix. In [25], a proportional-plus derivative state feedback strategy is
proposed to make such systems admissible.

Sliding mode control (SMC) is a kind of special nonlinear control in essence. It has the
characteristics of fast response, insensitivity to parameter change and disturbance. Compared with
backstepping technique [26,27], the SMC scheme is an effective control way to deal with nonlinearities
and uncertainties of systems [28]. By design the integral sliding surface, Wang et al. in [29] study the
adaptive SMC for the T-S fuzzy singular systems. The SMC technique is used to control the horizontal
position of quadcopters [30,31]. The sliding mode fault tolerant control problem for nonlinear systems
with actuator faults is considered in [32–34]. SMC is also an effective control strategy for nonlinear
stochastic systems [35] and discrete systems [36]. On the basis of previous research, Edwards et al.
summarize the theory and application of SMC and put forward many important theories [37]. In terms
of FOSs, SMC for fractional order chaotic systems has been well investigated [38,39]. In [40], Wang et al.
find that the control law based on the fractional order reaching law can reduce the time for the FOSs
to reach the sliding surface. Li et al. in [41] design the sliding mode observer for SFOSs. However,
the references mentioned above are conservative to a certain extent. The restricted condition of the
nonlinear term of the system is required in these references. For example, in [41], the authors assume
that the nonlinear terms fi(t, x(t)) satisfy the norm bounded conditions || fi(t, x(t))|| ≤ β1i + β2i||y(t)||.
The restricted conditions are hard to achieve in practice. A radial basis function (RBF) neural network
strategy can be well combined with the SMC scheme to solve this defect [42]. It is noted that the
RBF neural network can approximate continuous nonlinear function with arbitrary precision [43].
The assumption that the norm of the nonlinear term is bounded can be removed. Song in [44] study the
adaptive RBF neural network SMC problem for singularly perturbed systems. In [45], the admissibility
of T-S fuzzy singular systems is considered by using a RBF neural network sliding mode observer.
The RBF neural network SMC problems are also studied for robot manipulators [46] and the fault
diagnosis of the quadcopter [47]. In summary, RBF neural network has been a very popular and
mature theory. This method in used in this paper.

Motivated by above discussions, the adaptive RBF neural network SMC scheme for SFOSs with
mismatched uncertainties is presented. The contributions of this paper are summarized as follows:

• A new necessary and sufficient condition for admissibility of SFOSs is presented, which contains
no equality constraints.

• By expanding the dimension of the SFOS, a new sliding surface is constructed.
• Based on RBF neural network method, f̂ (t, x(t)) is constructed to estimate the nonlinear term

f (t, x(t)). The restricted assumption that f (t, x(t)) is norm bounded in [41] is removed.
• The adaptive control law is exploited to guarantee that the SFOS reaches the sliding surface in a

finite time.

The paper is arranged as follows: The preliminaries are provided in Section 2. In Section 3,
the sliding mode control scheme is presented. In Section 4, a simulation example is given to prove the
validity of the proposed method. Finally, in Section 5, the conclusion is obtained.

Throughout this paper, Rn denotes the n-dimensional real vectors. Rn×m is the m by n real
matrices. MT is the transpose of matrix M. Tr(X) denotes the trace of matrix X. X > 0(< 0) means
that the matrix X is positive (negative) definite, sym(Y) denotes the expression Y + YT , ∗ indicates the
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symmetric part of a matrix, a = sin
( aπ

2
)

, b = cos
( aπ

2
)

, || · || denotes the Euclidean norm of vectors.
The αth order Caputo fractional derivative of f (t) is defined as

Dα f (t) =
1

Γ(n− α)

∫ t

0
(t− τ)α+1−n f (n)(τ)dτ,

where n− 1 < α < n, n ∈ N+ and Γ(·) is the Gamma function.

2. Preliminaries

Consider the nonlinear SFOS,

(E + ∆E)Dαx(t) = (A + ∆A)x(t) + B(u(t) + f (t, x(t)), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rl is the control input, and α (0 < α < 1) is the fractional
order, E ∈ Rn×n is a singular matrix such that rank(E) = r < n. A ∈ Rn×n, B ∈ Rn×l are constant
matrices. ∆A, ∆E ∈ Rn×n are uncertain matrices, which is assumed to be of the form

[∆A ∆E] = UF(σ)[V1 V2],

where U, V1, V2 are known constant matrices. The uncertain matrix F(σ) satisfies FT(σ)F(σ) ≤ I,
where σ ∈ Φ, Φ is a compact set in R. Besides, the unknown function f (t, x(t))∈ Rl represents the
nonlinear term. Let x(t) =

[
xT(t) DαxT(t)

]T , SFOS (1) is rewritten as

EDαx(t) = (A + ∆A)x(t) + B(u(t) + f (t, x(t))), (2)

where

E =

[
In 0
0 0

]
, A =

[
0 In

A −E

]
, ∆A =

[
0 0

∆A −∆E

]
, B =

[
0
B

]
, f (t, x(t)) = f (t, x(t)).

In order to design the sliding mode controller for system (2), we introduce following facts and
lemmas. Considering the unforced SFOS

EDαx(t) = Ax(t). (3)

(3) is denoted as the triple (E, A, α).

Definition 1 ([19]).

(1) SFOS (3) is regular if there exist a constant scalar s such that det(sαE− A) 6= 0.
(2) SFOS (3) is impulse free if deg(det(sE− A)) = rank (E).
(3) SFOS (3) is asymptotically stable if all the finite roots of det(sαE − A) satisfy

|arg(spec(E, A, α))| > α π
2 .

(4) SFOS (3) is admissible if it is regular, impulse free, and stable.

Since rank(E) = r, it is easy to obtain that there exist nonsingular matrices M, N ∈ Rn×n,
such that

MEN =

[
Ir 0
0 0

]
, MAN =

[
A1 A2

A3 A4

]
. (4)

It is noted that (3) is equivalent to{
Dαx1(t) = A1x1(t) + A2x2(t),

0 = A3x1(t) + A4x2(t),
(5)
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where x1 ∈ Rr, x2 ∈ Rn−r and
[

xT
1 (t) xT

2 (t)
]T

= N−1x(t). If A4 is nonsingular, system (5) is rewritten
by it equivalent representation

Dαx1(t) = (A1 − A2 A−1
4 A3)x1(t). (6)

Lemma 1 ([9]). When E = I, SFOS (3) is reduced to

Dαx(t) = Ax(t). (7)

System (7) is asymptotically stable if and only if there exist two matrices X, Y ∈ Rn×n, such that[
X Y
−Y X

]
> 0, (8)

aAX + bAY + aXAT − bYAT < 0. (9)

Lemma 2 ([19]). Let

Σ =

[
Λ1 Λ2

Λ3 Λ4

]
,

where Λ1, Λ2, Λ3, Λ4 are real matrices such that Σ + ΣT < 0. Then, Λ4 is nonsingular and

Λ1 + ΛT
1 −Λ2Λ−1

4 Λ3 −ΛT
3 ΛT

4 ΛT
2 < 0.

Lemma 3 ([7]). There hold

Ω + ΓFΘ + ΘTFTΓT < 0, FTF ≤ I

if and only if there exists a positive scalar ε such that

Ω + εΓΓT + ε−1ΘTΘ < 0, ε > 0,

where Ω, Γ, Θ, F are given matrices of appropriate dimension, and Ω is symmetric.

Lemma 4. The SFOS (3) is admissible if and only if there exist matrices P1 ∈ Rr×r, P2 ∈ R(n−r)×m and
P3 ∈ R(n−r)×(n−r) such that  P1+PT

1
2a

P1−PT
1

2b
PT

1 −P1
2b

P1+PT
1

2a

 > 0, (10)

MANP + PTNT ATMT < 0, (11)

where

P =

[
P1 0
aP2 aP3

]
, (12)

M, N ∈ Rn×n are defined in (4).

Proof. [Sufficiency:] If (4) and (10)–(12) hold, it is obtained from (11) that[
A1P1 + PT

1 AT
1 + aA2P2 + aPT

2 AT
2 aA2P3 + PT

1 AT
3 + aPT

2 AT
4

∗ aA4P3 + aPT
3 AT

4

]
< 0. (13)
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The 2-2 block in (13) gives
aA4P3 + aPT

3 AT
4 < 0,

hence, one has A4 is nonsingular. According to [19], SFOS (3) is regular and impulse-free. We define

Σ =

[
A1P1 + aA2P2 aA2P3

A3P1 + aA4P2 aA4P2

]
.

It follows from Lemma 2 that
sym((A1 − A2 A−1

4 A3)P1) < 0. (14)

We set P1 = aX + bY, where X is an symmetric matrix and Y is an antisymmetric matrix. It is
obtained that

P1 + PT
1

2a
= X,

P1 − PT
1

2b
= Y.

Thus, (10) is equivalent to (8). By Lemma 1, (14) together with (10) implies system (6) is asymptotically
stable. We have SFOS (3) is asymptotically stable.

[Necessity:] We assume that system (3) is admissible. According to [19], A4 is nonsingular and

arg
(

spec
(

A1 − A2 A−1
4 A3, α

))
> α

π

2
. (15)

By Lemma 1, there exist matrices X, Y ∈ Rr×r, such that (8) and (16) hold.

sym((A1 − A2 A−1
4 A3)(aX + bY)) < 0. (16)

Then, by setting P1 = aX + bY, we have (10) and (14) hold. Let

M1 =

[
Ir −A2 A−1

4
0 In−r

]
, N1 =

[
Ir 0

−A−1
4 A3 In−r

]
, Θ =

[
P1 0
0 −AT

4

]
, (17)

it follows that

M1MANN1Θ =

[
(A1 − A2 A−1

4 A3)P1 0
0 −A4 AT

4

]
. (18)

Since A4 is nonsingular, −A4 AT
4 is negative definite. According to (14), one has

sym(MANN1ΘM−T
1 ) < 0, (19)

where

N1ΘM−T
1 =

[
P1 0

−A−T
4 A3P− A−T

2 −AT
4

]
=

[
P1 0

a ∗ (−a−1 A−T
4 A3P− a−1 A−T

2 ) a ∗ (−a)−1 AT
4

]
. (20)

By selecting−a−1 A−T
4 A3P− a−1 A−T

2 = P2, (−a)−1 AT
4 = P3 and N1ΘM−T

1 = P, one has (11) holds.

Remark 1. Stability conditions obtained in [19,41] involve the unknown antisymmetric matrix X2. In effect,
these conditions contain an equality constraint that XT

2 = −X2. Lemma 4 obtained in this paper does not
contain equality constraint. Lemma 4 is more efficient and general than other theorems [19,24,41] because fewer
variables are introduced and the complex calculation is avoided successfully.
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3. Main Results

In order to presented SMC scheme for SFOS (2), the following sliding surface is constructed

s(t) = G EDα−1x(t)−
∫ t

0
G BKx(τ)dτ, (21)

where G = [G1 G2], G1, G2 ∈ Rl×n are given matrices. It is easy to see that G B = G2B. We choose the
appropriate matrix G2 so that det(G2B) 6= 0. K = [K1 0l×n] is a real matrix to be designed, K1 ∈ Rl×n.
When the SFOSs move on sliding surface, one has ṡ(t) = 0,

ṡ(t) = G EDαx(t)− G BKx(t) = 0, (22)

this together with system (2) gives

ṡ(t) = G(A + ∆A)x(t) + G Bu(t) + G B f (t, x(t))− G BKx(t) = 0. (23)

So the equivalent control law is obtained

ueq(t) = −(G B)−1G(A + ∆A)x(t)− f (t, x(t)) + Kx(t). (24)

By substituting (24) into system (2), we have the sliding mode dynamic (25)

EDαx(t) = (A + ∆A)x(t)− B(G B)−1(G A + G∆A)x(t) + BKx(t). (25)

Letting G̃ = I2n − B(G B)−1G, one has

G̃ =

[
In 0
0 In

]
−
[

0
B

]
(G2B)−1[G1 G2] =

[
In 0

−B(G2B)−1G1 In − B(G2B)−1G2

]
.

For notational simplicity, we set G1 = −B(G2B)−1G1, G2 = In− B(G2B)−1G2. Thus, (25) is rewritten as[
In 0
0 0

]
Dαx(t) =

[
0 In

G2 A + G2∆A + BK1 G1 − G2E− G2∆E

]
x(t). (26)

Remark 2. By choosing the appropriate matrix G1, we get that G1 − G2E − G2∆E is nonsingular.
The following theorem is presented to ensure that the sliding mode dynamic is admissible.

Theorem 1. System (26) is admissible if and only if there exist matrices P1, P2, P3 ∈ Rn×n, Z ∈ Rl×n and a
scalar ε > 0, such that (10) and the following LMI hold. aP2 + aPT

2 aP3 + PT
1 ATGT

2 + ZTBT + aPT
2 GT

1 − aPT
2 ETGT

2 PT
1 VT

1 − aPT
2 VT

2

∗ aG1P3 + aPT
3 GT

1 − aG2EP3 − aPT
3 ETGT

2 + εG2UUTGT
2 −aPT

3 VT
2

∗ ∗ −εI

 < 0, (27)

then, we can obtain K1 = ZP−1
1 .

Proof. Under the condition of Theorem 1 and using Schur complement Lemma, (27) is equivalent to[
aP2 + aPT

2 aP3 + PT
1 ATGT

2 + ZTBT + aPT
2 GT

1 − aPT
2 ETGT

2

∗ aG1P3 + aPT
3 GT

1 − aG2EP3 − aPT
3 ETGT

2

]
+ ε

[
0

G2U

] [
0 UTGT

2

]
+ε−1

[
PT

1 VT
1 − aPT

2 VT
2

aPT
3 VT

2

]
[V1P1 − aV2P2 − aV2P3] < 0

. (28)
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Now, by Lemma 3, it is easy to see that

sym

[
aP2 aP3

G2 AP1 + BZ + aG1P2 − aG2EP2 + G2∆AP1 − aG2∆EP2 aG1P3 − aG2EP3 − aG2∆EP3

]
< 0. (29)

Note that Z = K1P1, thus, (30) is obtained

sym(

[
0 In

G2 A + G2∆A + BK1 G1 − G2E− G2∆E

] [
P1 0
aP2 aP3

]
) < 0. (30)

Therefore, by Lemma 4, system (2) is admissible.

Remark 3. In [14,21], the admissibility problems are investigated for singular systems. However,
the proportional-plus derivative state feedback controller is designed so that the system is normalizable.
This control method is essentially a normal system solution approach instead of a singular system solution
approach. In this paper, the novel SFOS solution approach is proposed.

In what follows, the theorem is proposed make SFOSs satisfy the reaching condition. Besides,
an RBF neural network approach is employed to deal with the nonlinear function. The RBF network
structure with three hidden layers is shown in the Figure 1.

Figure 1. The radial basis function (RBF) network structure.

By the RBF neural network method, The nonlinear term f (t, x(t)) is modeled as

f (t, x(t)) = WTh(x(t)) + δ f , (31)

where W = [ w1 · · · wm ]T ∈ Rm×l is the optimal weight matrix, m is the number of
neuron nodes. h(x(t)) ∈ Rm is the output of the Gaussian type functions, h(x(t)) =

[h1(x(t)) h2(x(t)) · · · hm(x(t))]T , and

hj(x(t)) = exp

(
−
||x(t)− cj||2

µ2
j

)
, j = 1, 2, · · · , m, (32)

where cj = [cj1 cj2 · · · cjn]
T is the vector value of the center of the jth neuron and µj > 0 is the width

of the Gaussian basis function. δ f ∈ Rl is the approximation error of the network, which satisfies
||δ f || ≤ δ, δ is a known constant. We use Ŵ(t) to estimate W∗, and W̃(t) = Ŵ(t)−W represents the
estimation error. We set

f̂ (t, x(t)) = ŴT(t)h(x(t)) (33)

to approximate f (t, x(t)). The estimation error function between f (t, x(t)) and f̂ (t, x(t)) is defined as

e(t) = f (t, x(t))− f̂ (t, x(t)). (34)
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Theorem 2. System (1) moves to the sliding surface (21) in a finite time by the following adaptive SMC law:

u(t) = (G B)−1(G BKx(t)− G Ax(t)− ρ(t)
s(t)
||s(t)|| )− f̂ (t, x(t)), (35)

where
ρ(t) = λ + σ||G|| ||x(t)||, (36)

λ is a positive constant, σ is the bound of the norm of the uncertain matrix ∆A, which satisfies ||∆A|| ≤ σ.
The adaptive law is chosen as

˙̂W(t) = ωh(x(t))sT(t)G B, (37)

where ω is designed as a positive constant.

Proof. The Lyapunov functional candidate is designed as

V(t) =
1
2

sT(t)s(t) +
1

2ω
Tr(W̃T(t)W̃(t)). (38)

Taking derivative of V(t), (38) becomes

V̇(t) = sT(t)((G Ã + G̃ ∆Ã)x(t) + G Bu(t) + G B f (t, x(t))− G BKx(t)) +
1
ω

Tr(W̃T(t) ˙̂W(t)). (39)

According to (35) and (39), (40) is obtained

V̇(t) = sT(t)(G∆Ax(t)− ρ(t)
s(t)
||s(t)|| + G Be(t)) +

1
ω

Tr(W̃T(t) ˙̂W(t)). (40)

Thus, substituting (31), (33), (36), and (37) into (40), it follows that

V̇(t) = ||s(t)||||G||(||∆A|| − σ)||x(t)||+ sT(t)G B(WTh(x(t)) + δ f − Ŵ(t)Th(x(t)))
+ Tr(W̃T(t)h(x(t))sT(t)G B)− λ||s(t)||.

(41)

Considering that

sT(t)G BW̃T(t)h(x(t)) = Tr(sT(t)G BW̃T(t)h(x(t))) = Tr(W̃T(t)h(x(t))sT(t)G B). (42)

It follows from (41) and (42) that

V̇(t) ≤ −λ||s(t)||+ δ||G B|| ||s(t)||. (43)

Hence, by choosing the appropriate λ such that λ− δ||G B|| = φ > 0, (43) is rewritten as

V̇(t) ≤ −φ||s(t)|| < 0, ∀||s(t)|| 6= 0. (44)

Therefore, the state trajectory of system (1) with control law (35) converges to the sliding surface (21)
in a finite time.

4. Simulation Example

This example is utilized to prove the validity of theorems 1 and 2. We consider uncertain SFOSs (1)
with α = 0.6 and

E =

 1 0 0
0 1 0
0 0 0

 , A =

 −3 6 4
−1 3 2
3 5 4

 , B =

 1
1
1

 , U =

 1
0
0


T

,



Fractal Fract. 2020, 4, 50 9 of 13

V1 =
[

2 4 6
]

, V2 =
[

0.1 0 0
]

.

The system nonlinearity f (t, x(t)) is assumed to be x1 sin(x1(t)) and G1, G2 are chosen as G1 =[
1 1 1

]
and G2 =

[
1 1 2

]
, respectively. Now, it is obtained that a set of solutions to the

LMIs in (10) and (27) as follows

P1 =

 0.4894 0.0746 −0.2180
−0.0122 0.8121 −0.4094
−0.1631 −0.5117 0.4602

 , P2 =

 −0.8372 1.1917 6.7398
−1.2525 −0.6139 −0.8990
−6.7398 0.8990 −0.7791

 ,

P3 =

 −0.8398 −2.8558 −3.3495
0.2087 0.3848 −0.6844
8.5856 1.1226 2.9914

 , Z =
[

0.3528 0.4067 −2.1462
]

, ε = 1.3348.

Therefore, a desired matrix K1 is calculated as

K1 =
[
−3.7864 −7.3260 −12.9738

]
.

Thus, system (25) is admissible. By SMC law (35), system (1) moves to the sliding surface (21) in a
finite time.

Furthermore, we select
x(0) =

[
−1 −2 0.58

]T.

The neural network parameters are selected as m = 5, µj = 0.2, and cji is uniformly distributed in
[−2, 2]. The state response of system (1) with adaptive SMC law u(t) is displayed in Figure 2. Figure 3
shows the state response of system (1) without SMC law. Compared Figure 2 with Figure 3, it is easy
to see that the designed control scheme is effective. Figure 4 shows the surface function s(t). Figure 5
depicts the control input u(t). It is easy to see that the nonlinear term f (t, x(t)) is well estimated by
f̂ (t, x(t)) from Figure 6.
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Figure 2. x(t) for system (1) under control law (23).
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5. Conclusions

This paper investigated the issue of adaptive SMC for mismatched uncertain SFOSs. The new
necessary and sufficient condition for the admissibility of SFOSs is developed, which is strict LMIs.
The integral sliding mode surface with expanded dimension is constructed so that mismatched
uncertainty does not exist in the derivative matrix of the sliding mode dynamic. By RBF neural
network method, the adaptive control law is devised to make SFOSs satisfy the reaching condition.
The restrictive assumption that the nonlinearity f (t, x(t)) is norm bounded is removed. In the further,
the issues of SMC for SFOSs with time delay will be studied.
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