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Abstract: To study the peculiarities of anomalous consolidation processes in saturated porous (soil)
media in the conditions of salt transfer, we present a new mathematical model developed on the
base of the fractional-fractal approach that allows considering temporal non-locality of transfer
processes in media of fractal structure. For the case of the finite thickness domain with permeable
boundaries, a finite-difference technique for numerical solution of the corresponding one-dimensional
non-linear boundary value problem is developed. The paper also presents a fractional-fractal model
of a filtration-consolidation process in clay soils of fractal structure saturated with salt solutions.
An analytical solution is found for the corresponding one-dimensional boundary value problem in
the domain of finite thickness with permeable upper and impermeable lower boundaries.
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1. Introduction

The determination of the conditions for the safe functioning of industrial and domestic
wastewater storage facilities, as well as numerous other engineering facilities that pollute soils
and groundwater, are among the most important and relevant, primarily in the connection with
environment protection issues. This makes urgent the development of effective and reliable methods
for mathematical modeling of deformation and compaction (consolidation) dynamics in saturated
soils, particularly, in the foundations of hydraulic structures. Theoretical studies of the peculiarities of
filtration-consolidation dynamics in porous media are often reduced to the solution of boundary value
problems for the corresponding systems of partial differential or integro-differential equations [1–8].
In recent decades, a number of mathematical models in fractional-differential formulation have been
developed to study the features of anomalous consolidation processes taking into account memory
effects and spatial correlations [9–12].

In this paper, to simulate anomalous dynamics of filtration-consolidation processes in saturated
porous (soil) media in the conditions of salt transfer we use the fractional-fractal approach [13–15]
that allows taking into account temporal non-locality of processes in soils of fractal structure
in the corresponding mathematical models. We combine the space-fractal advection-dispersion
equation introduced in Reference [13] with time-fractional filtration-consolidation model studied
in References [10,12] obtaining a new fractional-fractal model of an anomalous process of
filtration-consolidation in a compacting soil of fractal structure. Comparing to the model studied
in Reference [13], the presented model is time-fractional and contains an equation for determining
a velocity field taking chemical osmosis [16,17] into account. For this new model we pose an
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initial-boundary value problem and present a finite-difference technique for its numerical solution.
We also obtain an exact solution of a similar model that is considered in the case when ultrafiltration
phenomenon [17] is taken into account but advection term can be neglected.

2. Fractional-Fractal Mathematical Model of Filtration-Consolidation Processes in Saline
Saturated Soils

Considering a non-local in time isothermal filtration-consolidation process in a soil of fractal
structure saturated with a salt solution, we start from the following generalizations of the Darcy’s and
Fick’s laws:

ux = D1−β
t

∂

∂xα
(−kH + νC) , (1)

qc = D1−β
t

(
−d∗

∂C
∂xα

+ CJ1−β
t ux

)
, (2)

where ux is the filtration rate, H(x, t) = p/γ is the water head, p is the pore pressure, γ is the liquid
density, C(x, t) is the concentration of salts in the liquid phase, k is the filtration coefficient, ν is
the coefficient of chemical osmosis [2], qc is the diffusion flow, d∗ is the coefficient of convective
diffusion [18], J1−β

t f (t) = 1
Γ(1−β)

∫ t
0 (t− τ)−β f (τ)dτ is the fractional Riemann-Liouville integral of

order 1− β, 0 < β ≤ 1, D1−β
t f (t) = d

dt Jβ
t is the operator of Riemann-Liouville fractional differentiation

of the same order with respect to the variable t [19–21], ∂
∂xα f (x) = lim

x1→x
f (x)− f (x1)

xα−xα
1

is the operator of the

fractal derivative [13–15], α > 0 is the fractal dimension.
The Equations (1) and (2) are obtained combining fractal-fractional generalizations of the

corresponding laws presented in Reference [14] and an approach for taking chemical osmosis into
account described in Reference [16].

Following the classical soil consolidation theory of V.A. Florin [5,8] we consider an approximation
of porosity change in the form ∂n

∂t ≈ 1
1+ê

∂e
∂t where n is the porosity of the medium, e is the coefficient of

porosity, ê is its average value. Further we use a generalized equation of filtration flow continuity [14]
for the case of fractal-structured media in the form ∂n

∂t = ∂ux
∂xα . Assuming [5,8] that changes in porosity

coefficient depend only on the sum of principal stresses and the strain-stress state of soil depends only
on hydraulic pressure, we obtain the following form of a linear law of compaction:

∂ux

∂xα
+

k
Cυ

∂H
∂t

= 0 (3)

Substituting Equation (1) into Equation (3) we get the equation for water head in the form

D(β)
t H =

∂

∂xα

(
∂

∂xα
(CυH − µC)

)
, (4)

where Cυ is the consolidation coefficient [5–8], µ = νCυ
k , D(β)

t f (t) =
1

Γ(1−β)
∂
∂t

(∫ t
0 (t− τ)−β f (τ)dτ − τ−β f (0)

)
is the operator of the regularized fractional

Caputo-Gerasimov derivative of the order β with respect to the variable t [19–21]. The usage
of the regularized derivative is here motivated by the known restrictions on initial conditions imposed
in the case then the non-regularized derivative is used [22,23]

From the generalized balance equation for salts in the liquid phase in a soil of fractal structure,
taking Equation (2) into account we obtain an equation for determination of salts concentration in
groundwater flow in the form

σD(β)
t C = d∗

∂

∂xα

(
∂C
∂xα

)
+

∂

∂xα
(kH − νC) · ∂C

∂xα
, (5)

where σ is the porosity of the medium [18].
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From Equations (4) and (5) when α → 1 we obtain a system of equations [24] of the
fractional-differential model of filtration-consolidation in a soil saturated with a salt solution without
considering its fractal properties. When α, β → 1 the system (4) and (5) becomes reduced to the
following well-known system of equations in the classical formulation [1,2]:

∂H
∂t

=
∂2

∂x2 (CυH − µC) ,

σ
∂C
∂t

= d∗
∂2C
∂x2 +

∂

∂x
(kH − νC) · ∂C

∂x
.

Using the representation of fractal derivative operator through integer-order derivative in the
form d

dxα f (x) = d
dx f (x) 1

αxα−1 [13–15] in Equations (4) and (5) and reducing similar terms, we obtain
the model’s system of equations in the following form:

D(β)
t H = Cυ

[
sα(x)

∂2H
∂x2 + rα(x)

∂H
∂x

]
− µ

[
sα(x)

∂2C
∂x2 + rα(x)

∂C
∂x

]
, (6)

σD(β)
t C = d∗

[
sα(x)

∂2C
∂x2 + rα(x)

∂C
∂x

]
+ sα(x)

∂υ

∂x
· ∂C

∂x
(7)

where
υ(x, t) = kH(x, t)− νC(x, t), rα(x) =

1− α

α2 x1−2α, sα(x) =
1
α2 x2(1−α).

Within the framework of such non-classical mathematical model, the fractional-differential
dynamics of a non-local in time filtration-consolidation process in a soil of fractal structure saturated
with a salt solution in the case of the domain of finite thickness l with permeable boundaries is
described in the domain Ω = {(x, t) : 0 < x < l, t > 0} by the system of Equations (6) and (7) with the
following boundary conditions:

H(0, t) = 0, H(l, t) = 0, H(x, 0) = H0, (8)

C(0, t) = C0, C(l, t) = 0, C(x, 0) = 0, (9)

where H0 is the initial value of water head, C0 is the value of salts concentration at the inlet of the
filtration flow.

3. Numerical Modeling of Fractional-Differential Consolidation Dynamics of a Saline Saturated
Soil Massif of Finite Thickness and Fractal Structure

Below we present a brief summary of a finite-difference technique for constructing an approximate
solution of the non-linear boundary value problem (6)–(9).

We define the grid domain

ωhτ =
{
(xi, tj) : xi = ih (i = 0, m + 1), tj = jτ (j = 0, n),

}

where h, τ are the grid steps with respect to the geometric variable and time, and discretize the
considered problem at the time step tj+1 and in the point xi, C = Cj+1

i = C(xi, tj+1), Ĉ = Cj
i using the

linearized Crank–Nicholson scheme as

σ∆(β)
t C = 0.5d∗

[
sα

(
Ĉx̄x + Cx̄x

)
+ rα

(
Ĉ0

x
+ C0

x

)]
+ 0.5sαυ0

x

(
Ĉ0

x
+ C0

x

)
, (10)

∆(β)
t H = 0.5Cυ

[
sα

(
Ĥx̄x + Hx̄x

)
+ rα

(
Ĥ0

x
+ H0

x

)]
−

−0.5µ
[
sα

(
Ĉx̄x + Cx̄x

)
+ rα

(
Ĉ0

x
+ C0

x

)] , (11)
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where [25] Cx̄x = 1
h2 (Ci−1 − 2Ci + Ci+1), C0

x
= 1

h (Ci+1 − Ci−1) and the same notations are used for H.

The operator ∆(β)
t u denotes a discrete analogue of the Caputo-Gerasimov fractional derivative

D(β)
t u and is defined as

∆(β)
tj+1

u ≈ uj+1 − uj

τβΓ(2− β)
+

j−1

∑
v=0

ω
(j)
v

uv+1 − uv

τ
, (12)

ω
(j)
v = τ1−β

Γ(2−β)

[
(j− v + 1)1−β − (j− v)1−β

]
, Γ(z) is the Euler’s gamma function [26,27]. Let us note

that in the class of sufficiently smooth functions we have D(β)
t u = ∆(β)

t u + O(τ) [19–21].
Taking Equation (12) into account in Equations (10) and (11) we reduce the solution of the

considered problem at the (j + 1)-th time step to the solution of the following systems of linear
algebraic equations:

Aj
iC

j+1
i−1 − Sj

iC
j+1
i + Bj

i C
j+1
i+1 = Fj

i (i = 1, m; j = 0, n), (13)

Ãj
i H

j+1
i−1 − S̃j

i H j+1
i + B̃j

i H j+1
i+1 = F̃j

i (i = 1, m; j = 0, n), (14)

Cj+1
0 = C0, Cj+1

m+1 = 0, C0
i = 0 (i = 0, m + 1; j = 0, n), (15)

H j+1
0 = 0, H j+1

m+1 = 0, H0
i = H0 (i = 0, m + 1; j = 0, n), (16)

where

Aj
i =

0.5
h

[
d∗

(
si

α

h
− ri

α

2

)
− si

α

4h

(
υ

j
i+1 − υ

j
i−1

)]
, Bj

i =
0.5
h

[
d∗

(
si

α

h
+

ri
α

2

)
+

si
α

4h

(
υ

j
i+1 − υ

j
i−1

)]
,

Sj
i = Aj

i + Bj
i +

σ

τβΓ(2− β)
,

Fj
i = σ

[
∑

j−1
v=0 ω

(j)
v

Cv+1
i −Cv

i
τ − Cj

i
τβΓ(2−β)

]
− 0.5d∗

h

[
si

α
h

(
Cj

i−1 − 2Cj
i + Cj

i+1

)
+ ri

α
2

(
Cj

i+1 − Cj
i−1

)]
−

− 0.5si
α

4h2

(
υ

j
i+1 − υ

j
i−1

) (
Cj

i+1 − Cj
i−1

)
,

Ãj
i =

0.5Cυ

h

(
si

α

h
− ri

α

2

)
, B̃j

i =
0.5Cυ

h

(
si

α

h
+

ri
α

2

)
, S̃j

i = Ãj
i + B̃j

i +
1

τβΓ(2− β)
,

F̃j
i = ∑

j−1
v=0 ω

(j)
v

Hv+1
i −Hv

i
τ − H j

i
τβΓ(2−β)

− 0.5Cυ
h

[
si

α
h

(
H j

i−1 − 2H j
i + H j

i+1

)
+ ri

α
2

(
H j

i+1 − H j
i−1

)]
+

+ 0.5µ
h

[
si

α
h

(
Cj+1

i−1 − 2Cj+1
i + Cj+1

i+1 + Cj
i−1 − 2Cj

i + Cj
i+1

)
+ ri

α
2

(
Cj+1

i+1 − Cj+1
i−1 + Cj

i+1 − Cj
i−1

)]
,

si
α = sα(xi), ri

α = rα(xi), υ
j
i = kH j

i − νCj
i .

The sums in Fj
i , F̃j

i are here considered to be equal to zero when j = 0.
Difference Equations (13) and (14) are three-point and can be effectively solved by the Thomas

algorithm [25] as follows:

Cj+1
i = ξ̃

j
i+1Cj+1

i+1 + ζ̃
j
i+1, H j+1

i = ξ
j
i+1H j+1

i+1 + ζ
j
i+1 (i = 1, m; j = 0, n),

ξ̃
j
i+1 =

Bj
i

Sj
i − Aj

i ξ̃
j
i

, ζ̃
j
i+1 =

ξ̃
j
i+1

Bj
i

(
Aj

i ζ̃
j
i − Fj

i

)
(i = 1, m; j = 0, n),

ξ
j
i+1 =

B̃j
i

S̃j
i − Ãj

iξ
j
i

, ζ
j
i+1 =

ξ
j
i+1

B̃j
i

(
Ãj

iζ
j
i − F̃j

i

)
(i = 1, m; j = 0, n).
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To determine the starting values of the coefficients, we use finite-difference analogues of the
boundary conditions (15) and (16) obtaining

ξ̃
j
1 = 0, ζ̃

j
1 = C0, ξ

j
1 = 0, ζ

j
1 = 0 (j = 0, n).

Recalling that the Thomas algorithm is stable when linear system’s matrix is diagonally
dominant [25], we can state that it is stable for the systems (13) and (14) for such existing values
of τ(h) that |Sj

i | > |A
j
i | and |Sj

i | > |B
j
i |.

4. Results of Numerical Experiments on Modeling the Dynamics of the Consolidation Process

Numerical modeling of the dynamics of water head and concentration fields according to the
presented mathematical model was performed for input data from Reference [2]. Some results obtained
with respect to the dimensionless variables x′ = x

x0
, t′ = t

t0
, C′ = C

C0
, H′ = H

H0
are shown in Figures 1–3.

Here C0 = 200 g/L, H0 = 10 m, x0 = 25 m, t0 = 60 days.
The analysis of numerical experiments’ results allows us to draw the following conclusions:

1. The general tendencies in the distribution of concentration and water head fields in the
consolidating soil massif modeled within the framework of the presented fractional-fractal model
is generally in concordance with the tendencies in the distribution of similar fields obtained using
the fractional-differential model [9,24] that takes into account memory effects, but not fractal
properties of the medium, as well as with the classical consolidation model [2].

2. A decrease of the fractal dimension α for 0 < α < 1 results in both an acceleration of salinization
processes in the compacting massif (Figure 2a), and an acceleration of water head dispersion in it
(Figure 2b), that is, to a reduction of the compaction time compared to the case when the process
is described by the fractional-differential model that takes only memory effects into account [24].

3. With an increase of the fractal dimension α for α > 1, the processes of salinization (Figure 3a) and
water heads dispersion (Figure 3b) significantly slow down compared to the case when these
processes are modeled using the fractional-differential mathematical model [9,24], which indicates
the presence of sub-diffusion properties in the presented fractional-fractal consolidation model.

Let us note that the above-described results are in good agreement with the results of
numerical modeling on the base of the fractal advection-dispersion equation that were obtained
in Reference [13] and show that the fractal formulation of the advection-dispersion equation describes
both super-diffusion and sub-diffusion processes. This conclusion also holds in the case of the
considered fractional-fractal mathematical model of filtration consolidation in porous media saturated
with salt solutions.
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dynamics posed within the framework of the fractional-fractal approach taking into account temporal
non-locality of the process of excess pressures dissipation in a soil of fractal structure. The solution is
obtained for a mathematical model of consolidation dynamics of a saline-saturated porous medium,
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In the case of a non-local in time isothermal filtration-consolidation process in a soil of fractal
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[14], an approach for chemical osmosis description from Reference [16] and ultrafiltration description
from Reference [17]:

qC = D1−β
t

(
−d∗

∂C
∂xα

+ CJ1−β
t ux + γdu

∂H
∂xα

)
, (17)

where du is the ultrafiltration coefficient, H is the water head, C is the concentration. Then, from the
corresponding generalized equation of salts balance in the liquid phase, taking Equation (17) into
account, we have an equation for the determination of salts concentration in the form

σD(β)
t C =

∂

∂xα

(
d∗

∂C
∂xα

+ C
∂

∂xα
(kH − νC)− γdu

∂H
∂xα

)
(18)

Figure 2. Dimensionless concentration C′ = C
C0

(a) and water head H′ = H
H0

, P = H ∗ g where P is the
pore pressure (b) depending on dimensionless space variable x′ = x

x0
in the dimensionless moments of

time t′ = t
t0
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5. Fractional-Fractal Model of Filtration-Consolidation Process in Clay Soils Saturated with Salt
Solutions: An Exact Solution of the Boundary-Value Problem

This section presents an exact analytical solution of a specific problem of anomalous consolidation
dynamics posed within the framework of the fractional-fractal approach taking into account temporal
non-locality of the process of excess pressures dissipation in a soil of fractal structure. The solution is
obtained for a mathematical model of consolidation dynamics of a saline-saturated porous medium,
specifically for a clay soil under the conditions of temporal non-locality of the process taking into
account fractal properties of a medium.

In the case of a non-local in time isothermal filtration-consolidation process in a soil of fractal
structure saturated with a salt solution, taking into account the phenomena of chemical osmosis
and ultrafiltration, we use the constitutive equation for diffusion flow in the form of the following
Fick’s law’s generalization obtained combining fractal-fractional generalization presented in Reference
[14], an approach for chemical osmosis description from Reference [16] and ultrafiltration description
from Reference [17]:
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5. Fractional-Fractal Model of Filtration-Consolidation Process in Clay Soils Saturated with Salt
Solutions: An Exact Solution of the Boundary-Value Problem

This section presents an exact analytical solution of a specific problem of anomalous consolidation
dynamics posed within the framework of the fractional-fractal approach taking into account temporal
non-locality of the process of excess pressures dissipation in a soil of fractal structure. The solution is
obtained for a mathematical model of consolidation dynamics of a saline-saturated porous medium,
specifically for a clay soil under the conditions of temporal non-locality of the process taking into
account fractal properties of a medium.

In the case of a non-local in time isothermal filtration-consolidation process in a soil of fractal
structure saturated with a salt solution, taking into account the phenomena of chemical osmosis and
ultrafiltration, we use the constitutive equation for diffusion flow in the form of the following Fick’s
law’s generalization obtained combining fractal-fractional generalization presented in Reference [14],
an approach for chemical osmosis description from Reference [16] and ultrafiltration description
from Reference [17]:

qC = D1−β
t

(
−d∗

∂C
∂xα

+ CJ1−β
t ux + γdu

∂H
∂xα

)
, (17)
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where du is the ultrafiltration coefficient, H is the water head, C is the concentration. Then, from the
corresponding generalized equation of salts balance in the liquid phase, taking Equation (17) into
account, we have an equation for the determination of salts concentration in the form

σD(β)
t C =

∂

∂xα

(
d∗

∂C
∂xα

+ C
∂

∂xα
(kH − νC)− γdu

∂H
∂xα

)
(18)

where D(β)
t is the operator of Caputo-Gerasimov fractional differentiation [19–21] of the order β,

0 < β ≤ 1, ∂
∂xα is the fractal derivative operator [13,15], α > 0 is the fractal dimension.

Equations (4) and (18) are the governing equations of the new fractional-fractal model that
describes the dynamics of a filtration-consolidation process in saline saturated soils in the conditions of
temporal non-locality taking into account their fractal properties, chemical osmosis, and ultrafiltration.

For the case of a clay soil with small filtration velocities, we follow Reference [17] and neglect the
corresponding second term in the right-hand side of Equation (18). As a result, we obtain a system of
equations in the form

D(β)
t H =

∂

∂xα

(
∂

∂xα
(CυH − µC)

)
, (19)

σD(β)
t C =

∂

∂xα

(
∂

∂xα
(d∗C− γduH)

)
. (20)

Here, when α = 1 we have the system of equations of consolidation theory without taking into
account medium’s fractal properties, but considering temporal non-locality of the process [9,10,24].
When α, β = 1 we obtain the system of consolidation equations for clay soil massif in the classical
formulation [17].

Within the framework of the mathematical model defined by Equations (19) and (20), the problem
of modeling the dynamics of an anomalous filtration-consolidation process in the domain of finite
thickness l with permeable upper boundary x = 1 and impermeable lower boundary x = l
(l > 1) is reduced to the solution for 0 < t < +∞ of the equations’ system (19) and (20) with
the following conditions:

H(1, t) = 0,
∂H
∂x

(l, t) = 0, H(x, 0) = H0, (21)

C(1, t) = C0,
∂C
∂x

(l, t) = 0, C(x, 0) = 0, (22)

where H0 is the initial value of water head, C0 is the value of salts concentration at the inlet of the
filtration flow.

Below we describe a technique for obtaining a closed-form solution of the boundary value
problem (19)–(22).

According to the d’Alembert’s method [28], multiplying Equation (19) by an undefined real
coefficient q and adding the result to Equation (20) we obtain

D(α)
t (qH + σC) =

∂

∂xα

(
∂

∂xα
((qCυ − γdu) H + (d∗ − µq)C)

)
. (23)

Further, in Equation (23) we set

qCυ − γdu = qr, d∗ − µq = σr, (24)

where r is the real constant determined as follows.
From Equation (24) we have the following quadratic equation to determine r:

σr2 − (d∗ + σCυ)r + Cυd∗ − µγdu = 0. (25)
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From it we obtain

r1,2 =
1

2σ
(d∗ + σCυ ±

√
∆), ∆ = (d∗ − σCυ)

2 + 4σµγdu > 0. (26)

The following two values of q correspond to the roots r = ri (i = 1, 2) of Equation (25) determined
according to (26):

qi =
d∗ − σri

µ
(i = 1, 2).

Let
ψi(x, t) = qi H(x, t) + σC(x, t) (i = 1, 2). (27)

Taking into account (23), (24), (27), for finding unknown functions ψi (i = 1, 2) we obtain the set
of equations

D(β)
t ψi = ri

∂

∂xα

(
∂

∂xα
ψi(x, t)

)
(i = 1, 2). (28)

Considering the boundary conditions (21) and (22), we have the corresponding boundary
conditions for the functions ψi (i = 1, 2) in the form

ψi(1, t) = σC0, ψ
′
ix
(l, t) = 0, ψi(x, 0) = qi H0 (i = 1, 2). (29)

Let us note that for physical correctness of the considered problems, the conditions ri > 0 (i = 1, 2)
must be satisfied. Making in the problems (28) and (29) a transition to homogeneous boundary
conditions using the substitutions

Ui(x, t) = ψi(x, t)− σC0 (i = 1, 2)

we obtain the following homogeneous boundary value problems for the determination of the functions
Ui(x, t) (i = 1, 2):

D(β)
t Ui(x, t) = ri

∂

∂xα

(
∂

∂xα
Ui(x, t)

)
(i = 1, 2), (30)

Ui(1, t) = 0, U
′
ix
(l, t) = 0, Ui(x, 0) = fi (i = 1, 2) (31)

where fi = qi H0 − σC0 and ri (i = 1, 2) are defined by (26).
Let us introduce a finite integral transform with respect to the geometric variable x in the form [29]

Ū(n)
i (t) =

∫ l

1
Ui(x, t)ϕ

(α)
n (x)

dx
x1−α

, (32)

where the eigenfunctions of the Sturm-Liouville problem and the corresponding eigenvalues are
as follows:

ϕ
(α)
n (x) = sin

[
λ
(α)
n (xα − 1)

]
, λ

(α)
n =

π(2n− 1)
2(lα − 1)

(n ∈ N). (33)

Applying the transform (32) and (33) to the problems (30) and (31), taking into account the
properties of the corresponding spectral boundary value problem [29]

x2a d2 ϕ

dx2 + ax2a−1 dϕ

dx
+ λ2 ϕ(x) = 0, ϕ(1) = 0, ϕ′(l) = 0, a = 1− α,

we obtain
D(β)

t Ū(n)
i (t) + ri

(
λ
(α)
n

)2
Ū(n)

i (t) = 0 (i = 1, 2; n ∈ N), (34)

Ū(n)
i (0) = θ

(n)
i (i = 1, 2; n ∈ N), (35)



Fractal Fract. 2020, 4, 59 9 of 11

where θ
(n)
i = (qi H0 − σC0)

∫ l
1 ϕ

(α)
n (x) dx

x1−α (i = 1, 2; n ∈ N).
Solutions of the problems (34) and (35) can be easily obtained by the Laplace transform

method [19–21] and have the form

Ū(n)
i (t) = θ

(n)
i Eβ(−ri

(
λ
(α)
n

)2
tβ) (i = 1, 2; n ∈ N), (36)

where Eβ(z) is the Mittag-Leffler function [27].
As the formula for the inversion of the used finite integral transform has the form [29]

Ui(x, t) =
2α

lα − 1

∞

∑
n=1

Ūn
i (t)ϕ

(α)
n (x) (i = 1, 2),

returning in (36) to the domain of originals with respect to the geometric variable we obtain

Ui(x, t) =
2α

lα − 1

∞

∑
n=1

θ
(n)
i Eβ(−ri

(
λ
(α)
n

)2
tβ)ϕ

(α)
n (x) (i = 1, 2), (37)

where ϕ
(α)
n (x) are defined by (33).

Transition to the water head and concentration functions is carried out according to the
following formulas:

H =
ψ1 − ψ2

q1 − q2
, C =

q1ψ2 − q2ψ1

σ(q1 − q2)
,

ψi(x, t) = Ui(x, t) + σC0 (i = 1, 2),

where Ui(x, t) (i = 1, 2) are defined by (37).
From the above-described relations, as a special case when α→ 1, we obtain the solution of the

corresponding consolidation problem in the fractional-differential formulation [9,10] without taking
into account fractal properties of a medium. When α, β→ 1, the found solution directly implies the
solution of the classical consolidation problem [17].

6. Conclusions

This paper is devoted to the mathematical modeling of anomalous filtration-consolidation
processes in fractal-structured soils saturated with salt solutions. For a theoretical description of the
peculiarities of these media’s dynamics, we proposed to use models built within the framework of the
fractional-fractal approach [13–15]. This makes it possible to take into account temporal non-locality of
the considered consolidation processes in soil massifs of fractal structure. In particular, we considered
the problem of modeling the dynamics of a non-local in time filtration-consolidation process in a
salt-saturated fractal medium in the case of the domain of finite thickness with permeable boundaries
presenting a technique for the numerical solution of the corresponding one-dimensional boundary
value problem.

We have also constructed the fractional-fractal model of a filtration-consolidation process in a clay
soil massif of fractal structure saturated with a salt solution. For this model, a closed-form solution of
the corresponding one-dimensional boundary value problem for the domain of finite thickness with
permeable upper and impermeable lower boundaries is obtained.
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