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Abstract: In this paper, wave propagation is considered in a medium described by a fractional-order
model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and
Machado. Although the relation of the derivative to causality is clearly specified in its definition,
there is no obvious relation between causality of the derivative and causality of the transfer function
induced by this derivative. Hence, causality of the system is investigated; its output is an electromag-
netic signal propagating in media described by the time-domain two-sided fractional derivative. It is
demonstrated that, for the derivative order in the range [1,+∞), the transfer function describing at-
tenuated signal propagation is not causal for any value of the asymmetry parameter of the derivative.
On the other hand, it is shown that, for derivative orders in the range (0, 1), the transfer function is
causal if and only if the asymmetry parameter is equal to certain specific values corresponding to the
left-sided Grünwald–Letnikov derivative. The results are illustrated by numerical simulations and
analyses. Some comments on the Kramers–Krönig relations for logarithm of the transfer function are
presented as well.

Keywords: fractional derivatives; Ortigueira–Machado fractional derivative; Grünwald–Letnikov
fractional derivative; Maxwell’s equations; causality

1. Introduction

Fractional-order (FO) Maxwell’s equations [1–4] represent a generalization of classical
electromagnetism with the use of FO derivatives, which provides new interesting solutions
constituting intermediate cases between the ones already existing in physics. However, the
main advantage of FO modelling stems from the possibility to describe the evolution of
electromagnetic systems with memory, which are usually dissipative and very complex [5].

Unfortunately, although several attempts have been made [6–9], it is not clear which
definition of the FO derivative should be used in electrical sciences. Recent discussion
in literature [10] suggests that pointing out which definition of the FO derivative can
be applied in electrical sciences is of the utmost importance. Therefore, in this paper,
we employ a very general definition of the FO derivative, i.e., the two-sided Ortigueira–
Machado derivative [6,11], which unites the ideas of forward and backward differentiations,
and employs two parameters, i.e., the derivative order and the asymmetry parameter.
Therefore, this definition of the FO derivative covers the cases of the left- and right-sided
Grünwald–Letnikov derivatives, the Liouville and Liouville–Caputo derivatives (both
left- and right-sided), the symmetric two-sided derivative and the anti-symmetric two-
sided derivative, see [6] (Table 1). Hence, the application of this derivative to the analysis
of physical problems allows one to select the FO derivative definition which is the most
suitable one for the considered physical problem. For this purpose, we consider the classical
problem of plane-wave propagation in the media described by FO model (FOM) [12],
employing the two-sided Ortigueira–Machado derivative. Assuming that the definition of
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the FO derivative should satisfy the semigroup property and the trigonometric functions
invariance [9], we are able to demonstrate that causal solutions to this problem are obtained
only for the derivative parameters corresponding to the left-sided Grünwald–Letnikov
fractional derivative (or equivalently to the Marchaud derivative).

2. Basic Notations

Let us introduce the notation used in the paper. The imaginary unit is denoted as
j =
√
−1. The real part of the complex number s ∈ C is denoted as <s, whereas its imaginary

part is denoted as =s. The right half-plane is denoted as C+ = {s ∈ C : <s > 0}. The
branch of the complex logarithm is selected so ln(Aejφ) = ln A + jφ, where A ∈ (0,+∞) and
φ ∈ (−π, π). The power of the complex number sα for α > 0 is defined on the complex right
half-plane C+ as

sα = |s|αejφα (1)

where s = |s|ejφ and φ ∈ (−π
2 , π

2 ). Consequently, one obtains

(jω)α = |ω|αejαsgn(ω) π
2 . (2)

We refer to the Fourier and Laplace transformations of the real function f : R → R.
Because both definitions appear in various versions in the literature, it is necessary to be
very precise here. The employed definition of the Fourier transformation of the integrable
function f (t) follows the one given in [6,11]

F ( f )(ω) =

ˆ +∞

−∞
f (t)e−jωtdt (3)

and

F−1(F)(t) =
1

2π

ˆ +∞

−∞
F(ω)ejωtdt. (4)

Consequently, the (two-sided) Laplace transformation for the locally integrable func-
tion f : R→ R is given by

L{ f (t)} =
ˆ +∞

−∞
f (t)e−stdt. (5)

Hence, if an imaginary axis lies in the region of convergence of the Laplace transform,
one obtains (3) from (5) when s = jω.

3. Fractional Calculus

The concept of fractional integrals and derivatives has a very long history and many
different approaches. Classical attitudes are presented in well-known and widely-cited
monographs [13–16]. Among the most important definitions, we should mention the
Riemann–Liouville derivative (with a finite or an infinite base point), the Caputo derivative
(with a finite or an infinite base point), and the Grünwald–Letnikov derivative (with
the equivalent representation known as the Marchaud derivative). There are plenty of
other definitions—for further details, we refer the reader to the review papers [17–20].
Furthermore, various definitions of the fractional derivative and integral are applied to
electromagnetism and electrical circuits. Therefore, we have recently decided to put this
situation in order by analysing the FO derivatives existing in literature from the point
of view of electromagnetism and circuit theory [7–9]. As a result of our investigations,
advantages of the Grünwald–Letnikov and Marchaud derivatives presented below have
been demonstrated in applications related to electrical sciences. It stems mainly from their
properties, which are presented below.
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3.1. Grünwald–Letnikov and Marchaud Derivatives

The Grünwald–Letnikov derivative of the order α > 0 is given by the discrete formula
(refer to [15] (Formula (20.7)))

Dα f (t) = lim
h→0+

1
hα

∞

∑
m=0

(−1)m
(

α

m

)
f (t−mh) (6)

where (α
m) =

α(α−1)...(α−m+1)
m! . The formula above presents the so-called left-sided version

of this derivative (also referred to as backward differentiation).
The corresponding right-sided version of the Grünwald–Letnikov derivative (also

called forward differentiation) is given by

Dα f (t) = lim
h→0+

1
hα

∞

∑
m=0

(−1)m
(

α

m

)
f (t + mh). (7)

The left-sided definition looks at past times, whereas the right-sided version looks
into the future.

On the other hand, the Marchaud definition for α ∈ (n− 1, n) is given by

Dα f (t) =
{α}

Γ(1− {α})

ˆ +∞

0

f (n−1)(t)− f (n−1)(t− τ)

τ1+{α} dτ (8)

where {α} = α− (n− 1) and f is assumed to be sufficiently smooth, e.g., f ∈ Cn−1(R) with
f (n−1) bounded. The definition of the Marchaud derivative is equivalent to the Grünwald–
Letnikov definition (for a broad class of functions, covering periodic functions and Lp(R)
functions for p ∈ [1,+∞), please refer to Theorems 20.2 and 20.4 in [15]). The recent survey
paper [21] discusses both approaches in detail. For a historical perspective, one is referred
to [22].

The most important properties of the (left-sided) Grünwald–Letnikov and Marchaud
derivatives are as follows:

1. Compatibility with IO Derivative (see [16] (Formula (2.28)))

Dα f (t) =
dα

dtα
f (t), α ∈ N. (9)

2. Linearity
Dα(a f (t) + bg(t)) = aDα f (t) + bDαg(t). (10)

3. Semigroup Property (see [16] (Section 2.6.1))

DαDβ f (t) = DβDα f (t) = Dα+β f (t), α, β > 0. (11)

4. Trigonometric Functions Invariance (see [16] (Formula (2.65)))

Dαejωt = (jω)αejωt. (12)

5. Laplace Transform (see [16] (Sections 2.7.3 and 2.8))

L{Dα f (t)} = sαL{ f (t)}, <s > 0. (13)

6. Fourier Transform (see [16] (Section 2.7.4))

F{Dα f } = (jω)αF{ f }. (14)
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3.2. Two-Sided Ortigueira–Machado Derivative

In recently published papers [6,11], the concept of a two-sided unified derivative is
introduced. It joins the ideas of the forward and backward differentiations. This defini-
tion contains, as special cases, the left- and right-sided Grünwald–Letnikov derivatives.
Furthermore, it is introduced in the frequency domain through the properties of the
Fourier transformation of the derivative. The definition may also be formulated in the
time domain (for different attitudes, please refer to Formulas (35) and (39) in [6]), but the
frequency-domain definition may be applied directly to numerical simulations that are
presented below.

The definition employs parameters α (derivative order) and θ (asymmetry parameter),
and is formulated by means of an appropriate behaviour of the Fourier transform. Formula
(28) in [11] (see also Definition 2 in [6]) defines the derivative Dα

θ f (t) of the function f : R→ R
by

F (Dα
θ f )(ω) = |ω|αej π

2 θsgn(ω)F ( f )(ω) = (jω)αej π
2 (θ−α)sgn(ω)F ( f )(ω). (15)

According to Table 1 in [6], the definition of the Ortigueira–Machado derivative covers
the cases of the left-sided Grünwald–Letnikov derivative (θ = α), the right-sided Grünwald–
Letnikov derivative (θ = −α), the Liouville and Liouville–Caputo derivatives (both left-
and right-sided), the symmetric two-sided derivative (θ = 0), and the anti-symmetric
two-sided derivative (θ = ±1). Hence, the application of this derivative to the analysis
of physical problems allows one to select the FO derivative definition which is the most
suitable one for the considered physical problem. The most important properties of the
two-sided Ortigueira–Machado derivative may be summarized as follows:

1. Linearity
Dα

θ (a f (t) + bg(t)) = aDα
θ f (t) + bDα

θ g(t). (16)

2. Semigroup Property (see Property 3 following Definition 3.1. in [11])

Dα
θ Dβ

η f (t) = Dα+β
θ+η f (t). (17)

3. Trigonometric Functions Invariance (see Property 1 following Definition 3.1 and Formula
(29) in [11])

Dα
θ ejωt = |ω|αej π

2 θsgn(ω)ejωt = ej π
2 (θ−α)sgn(ω)(jω)αejωt. (18)

4. Fourier Transform

F{Dα
θ f } = (jω)αej π

2 (θ−α)sgn(ω)F{ f }. (19)

In our considerations of FO Maxwell’s equations, we assume that the asymmetry
parameter θ depends on α in a specific way, i.e.,

θ = θ(α) = Θ · α (20)

where Θ ∈ R. First of all, one should notice that no generality is lost for α 6= 0 because, for a
fixed α > 0, any θ may be represented as θ = Θα for an appropriate selection of Θ ∈ R. The
other motivation for this idea is the fact that we cannot see any natural interpretation of the
asymmetry parameter (as an independent parameter) in the time-derivative in Maxwell’s
equations. Hence, it is natural to relate the two parameters by some (linear) relationship.
In addition, last but not least, one of the important properties of the fractional-derivative
operators used in electromagnetism and circuit theory is the semigroup property (we refer
the reader again to [7–9]). For the fixed Θ ∈ R, one may look at the semigroup property in
a more direct way, i.e.,

Dβ

θ(β)
Dα

θ(α) f (t) = Dβ+α

θ(β)+θ(α)
f (t) = Dβ+α

Θ(β+α)
f (t). (21)
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Having the parameter Θ fixed, we can use the notation

Dα
Θ f (t) = Dα

Θα f (t). (22)

Following the convention used in (22), the semigroup property is satisfied in its
pure form

Dα
ΘDβ

Θ f (t) = Dβ
ΘDα

Θ f (t) = Dα+β
Θ f (t), α, β > 0. (23)

In this convention, the two important properties may be formulated as follows:

• Trigonometric Functions Invariance

Dα
Θejωt = |ω|αej π

2 Θαsgn(ω)ejωt = ej π
2 (Θ−1)αsgn(ω)(jω)αejωt. (24)

• Fourier Transform

F{Dα
Θ f } = (jω)αej π

2 (Θ−1)αsgn(ω)F{ f }. (25)

4. Propagation of Electromagnetic Waves in Media Described by FOM

In [12], the model of propagation of a monochromatic plane wave is presented for
isotropic and homogeneous media described by FOM and the Marchaud derivative in the
time domain. The property of the trigonometric functions’ invariance (12) is required to
obtain the solution in the phasor domain. Our aim is to follow a similar idea employing
the two-sided Ortigueira–Machado derivative.

In this section, propagation of the plane wave is analysed for the media described by
FOM. We assume that the considered medium is isotropic and homogeneous. For the sake
of brevity, we assume that the current density is related to the electric-field intensity by the
classical Ohm’s law, with the conductivity σ1 = 0, and there is no current or charge sources
in the considered space. Therefore, one can formulate Maxwell’s equations based on E and
H fields only as

∇ · E = 0 (26)

∇× E = −µγDγ
t H (27)

∇ ·H = 0 (28)

∇×H = εβDβ
t E. (29)

Let us consider the monochromatic plane wave propagating along the z direction with
the frequency ω, refer to Figure 1.

Figure 1. Considered plane wave propagating in medium described by FOM.

In this case, we can use phasor representation for the electromagnetic field, i.e.,

E = <(Ẽejωt) (30)

H = <(H̃ejωt) (31)
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where Ẽ = Ẽ(x, y, z) and H̃ = H̃(x, y, z) are electric and magnetic field phasors which
are functions of spatial variables (x, y, z) only. Then, taking the complex representation of
electric and magnetic fields E = Ẽejωt and H = H̃ejωt, one can write (26)–(29) as

∇ · Ẽ = 0 (32)

∇× Ẽ = −µγej π
2 (Θ−1)γ sgn(ω)(jω)γH̃ (33)

∇ · H̃ = 0 (34)

∇× H̃ = εβej π
2 (Θ−1)β sgn(ω)(jω)βẼ. (35)

Because ∇×∇× Ẽ = ∇(∇ · Ẽ)−∇2Ẽ, one obtains the following diffusion-wave
equation in the frequency domain:

∇2Ẽ− µγεβ(jω)2νejπν(Θ−1)sgn(ω) = 0 (36)

where ν = β+γ
2 . Because (jω)2ν = |ω|2νejπνsgn(ω), one can denote ξ2 = µγεβ|ω|2νejπνΘsgn(ω),

and the previous equation can be written as

d2Ẽ
dz2 − ξ2Ẽ = 0. (37)

The general solution to (37) is given by

Ẽ = Ẽ+e−ξz + Ẽ−eξz. (38)

Considering wave propagation in the z+ direction only, the propagation constant ξ
depends on the choice of ν and Θ parameters, and is selected as the one with a positive real
part. This leads to the solution with attenuated propagation of the signal in the direction of
increasing z. Hence, one obtains

• if cos(π
2 νΘ) > 0, then ξ = |ω|ν

cµε
ej π

2 νΘsgn(ω)is taken

• if cos(π
2 νΘ) < 0, then ξ = − |ω|

ν

cµε
ej π

2 νΘsgn(ω) is taken.

The case when the real part is equal to zero, i.e., cos(π
2 νΘ) = 0, is not considered

below because it does not lead to attenuated signal propagation. Hence, we further assume
that cos(π

2 νΘ) 6= 0.
Finally, the formula in the time domain can be written as

e(z, t) = <{F−1{Ẽ+e−ξz}}. (39)

Moreover, one can notice that the transfer function in the frequency domain for the
considered system is given by

GΘ,ν(ω) = e−ξz (40)

where

ξ(ω) = sgn(cos(
π

2
νΘ))

1
cµε

(jω)νej π
2 ν(Θ−1)sgn(ω) = sgn(cos(

π

2
νΘ))

1
cµε
|ω|νej π

2 νΘsgn(ω). (41)

Eventually, GΘ,ν may be written as

GΘ,ν(ω) = e
−sgn(cos( π

2 νΘ)) z
cµε

(jω)νej
π
2 ν(Θ−1)sgn(ω)

= e
−sgn(cos( π

2 νΘ)) z
cµε
|ω|νej

π
2 νΘsgn(ω)

. (42)

5. Causality

As it has been thoroughly explained in [6], the definition of the two-sided derivative
introduced by Ortigueira and Machado starts from a certain mixture of the forward (also
called causal) and backward (also called anti-causal) derivatives. This mixture is actually
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neither causal nor anti-causal, hence the name acausal is suggested by the authors. There-
fore, from the time-domain perspective, the two-sided derivative of the function f in the
time point t0 looks both in the past and in the future relative to t0.

Below, we ask about causality of the transfer function GΘ,ν in the frequency domain,
which strongly depends on the definition of the derivative (including the parameters ν and
Θ). However, one should note that this is not the question about causality of the derivative.
There is no obvious relation between causality of the derivative and causality of the transfer
function induced by the derivative definition. Hence, the influence of the parameter Θ on
causality of the transfer function is surely worth investigating. This is the issue addressed
in this section.

Let us formulate basic definitions. The function f : R → R is causal if its support
supp( f ) ⊂ [0,+∞), i.e., if f (t) = 0 for t ∈ (−∞, 0). The Fourier transform F = F ( f ) is
called a causal transform if the function f is causal.

The first observation is related to periodicity of the transfer function GΘ,ν(ω) with
respect to Θ. It is obvious that

GΘ,ν(ω) = GΘ+4k/ν,ν(ω) (43)

for any k ∈ Z. The next observation is related to another symmetry with respect to Θ. This
symmetry shows that, if GΘ,ν(ω) is a causal transform, then surely G−Θ,ν(ω) is not.

Lemma 1. Let z > 0 and ν, Θ > 0. Then,

gΘ,ν(t) = g−Θ,ν(−t) (44)

where gΘ,ν = F−1(GΘ,ν).

Proof. Let z > 0, ν ∈ (0, 1) and gΘ,ν = F−1(GΘ,ν). As one can notice,

G−Θ,ν(ω) = GΘ,ν(−ω). (45)

By the well-known property of the Fourier transformation, one obtains

F−1(G−Θ,ν)(t) = F−1(GΘ,ν)(−t), (46)

which completes the proof.

The concept of causality and causal transforms is generally well-understood for L2

functions. Two classical theorems are used as the main mathematical tools for the analysis of
causality in the frequency domain, i.e., the Titchmarsh theorem and the Paley–Wiener theorem.

The Titchmarsh theorem (originally proven in [23]) is formulated below as in Nussen-
zveig’s book [24] (Theorem 1.6.1), with slight modifications related to the change in the
Fourier-transformation definition. For more information on the history of this theorem and
its background, one is referred to [25].

Theorem 1. If a square-integrable function G(ω) fulfills one of the four conditions below, then it
fulfills all four of them:

(i) The inverse Fourier transform g(t) of G(ω) vanishes for t < 0:

g(t) = 0 (t < 0).

(ii) G(v) is, for almost all v, the limit as u → 0+ of an analytic function G̃(u + jv) that
is holomorphic in the right half-plane and square integrable over any line parallel to the
imaginary axis: ˆ ∞

−∞
|G̃(u + jv)|2dv < C (u > 0).
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(iii) <G and =G verify the first Plemelj formula:

<G(ω) = − 1
π

 +∞

−∞

=G(ω′)

ω′ −ω
dω′. (47)

(iv) <G and =G verify the second Plemelj formula:

=G(ω) =
1
π

 +∞

−∞

<G(ω′)

ω′ −ω
dω′. (48)

The integrals in (47) and (48) should be understood in the principal value sense, i.e.,

 +∞

−∞

f (t)
x− t

dt = lim
ε→0+

ˆ
|x−t|≥ε

f (t)
x− t

dt. (49)

Formulas (47) and (48) are usually referred to as the dispersion relations or the Kramers–
Krönig (K–K) relations. Formally, if one deals with functions from L2(R), these relations
should be considered as valid for almost all ω ∈ R. In practical terms, when continuous
functions are considered, one may often replace the almost everywhere equality with the
equality for all ω ∈ R.

If the function G(ω) is the Fourier transform of the real-valued function g(t) (it is
hermitian, i.e., it has an even real part and an odd imaginary part), then the K–K relations
(47) and (48) can be represented for almost all ω ∈ R by the following integrals on (0,+∞):

<G(ω) =
2
π

 +∞

0

τ=G(τ)

ω2 − τ2 dτ (50)

=G(ω) = −2ω

π

 +∞

0

<G(τ)

ω2 − τ2 dτ. (51)

One should note that, in Nussenzveig’s book, the procedure with subtractions for
not L2–integrable functions (or even for distributions) is also described. The idea behind
this method (as described in Section 1.7 of [24]) is that, if F(ω) = G(ω)/(jω), F ∈ L2(R)
satisfies the K–K relations, then not only F is causal but G (which should be treated as a
tempered distribution, not necessarily as an L2 function) is causal as well.

The next theorem is characterization of the modulus of the complex-valued L2 function,
which may be a causal Fourier transform.

Theorem 2 (Paley–Wiener, [26] (Theorem XII)). Let φ(ω) be a real nonnegative function, not
equivalent to 0 and belonging to L2(R). A necessary and sufficient condition that there should exist
a real- or complex-valued function g(t), vanishing for t ≤ t0, for some number t0, and such that
the Fourier transform G(ω) = F (g(t))(ω) should satisfy |G(ω)| = φ(ω), is that

ˆ +∞

−∞

| ln(φ(ω))|
1 + ω2 dω < +∞. (52)

One should note that the Paley–Wiener theorem does not state that the complex-valued
function G(ω) is a causal transform. It states that, for the modulus φ(ω) satisfying (52), the
causal transform G(ω) exists with the same modulus. It also states that, if φ(ω) = |G(ω)|
does not satisfy (52), then G(ω) is surely not a causal transform. This theorem is a valuable
tool which may be used to prove that the transfer function is not a causal transform. This is
the case of ν ≥ 1 for the considered transfer function in the frequency domain.

Theorem 3. If ν ≥ 1 and cos(π
2 νΘ) 6= 0, then GΘ,ν(ω) is not a causal transform.
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Proof. Let us notice that

φΘ,ν(ω) = |GΘ,ν(ω)| = e
−sgn(cos( π

2 νΘ)) z
cµε
|ω|ν cos( π

2 νΘ)
. (53)

Then,
| ln φΘ,ν(ω)| = z

cµε
|ω|ν| cos(

π

2
νΘ)|. (54)

Hence, if only cos(π
2 νΘ) 6= 0, then there is

ˆ +∞

−∞

| ln(φΘ,ν(ω))|
1 + ω2 dω = +∞. (55)

Let us assume now that ν ∈ (0, 1). First, we are going to prove that, in some cases, the
transfer function is causal.

Theorem 4. If ν ∈ (0, 1), cos(π
2 νΘ) 6= 0 and 1

2 (Θ− 1)ν ∈ Z, then the transfer function is a
causal transform.

Proof. Let us observe that, if
1
2 (Θ− 1)ν = k ∈ Z (56)

then cos(π
2 Θν) = cos(π

2 (Θ− 1)ν + π
2 ν) = cos(kπ + π

2 ν). Because π
2 ν < π

2 , one can notice
that sgn(cos(π

2 Θν)) = (−1)k. One can also notice that

ej π
2 ν(Θ−1)sgn(ω) = ejkπsgn(ω) = (−1)k. (57)

Then, the function
G̃Θ,ν(s) = e

− z
cµε

sν

(58)

defined for s ∈ C+ is the holomorphic extension of GΘ,ν(ω) and such that

lim
u→0+

G̃Θ,ν(u + jω) = GΘ,ν(ω). (59)

Moreover, one can notice that, for the fixed u > 0
ˆ ∞

−∞
|G̃Θ,ν(u + jω)|2dω =

ˆ ∞

−∞
e
−2 z

cµε

√
u2+ω2ν

cos(νatan ω
u )

dω. (60)

This integral is bounded, hence the condition (ii) of Theorem 1 is satisfied. It means
that GΘ,ν(ω) is a causal transform, which completes the proof.

Now, we are going to state a certain non-causality result. We are going to show that
the K–K relation (50) is not satisfied for certain values of ν ∈ (0, 1) and Θ ∈ R. Before that,
one should notice that

<GΘ,ν(ω) = e−c| cos( π
2 νΘ)||ω|ν cos

(
−sgn(cos(

π

2
νΘ))c|ω|ν sin(

π

2
νΘ)

)
(61)

=GΘ,ν(ω) = e−c| cos( π
2 νΘ)||ω|ν sin

(
−sgn(cos(

π

2
νΘ))c|ω|ν sin(

π

2
νΘ)

)
(62)

where c = z
cµε

.

Lemma 2. If ν ∈ (0, 1), cos(π
2 νΘ) 6= 0 and 1

2 (Θ− 1)ν 6∈ Z, then the relation (50) is not satisfied
for ω = 0.
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Proof. It is clear that <GΘ,ν(0) = 1. The left side of the Equation (50) is equal to

2
π

ˆ ∞

0

e−c| cos( π
2 νΘ)|τν

sin
(
sgn(cos(π

2 νΘ))cτν sin(π
2 νΘ)

)
τ

dτ. (63)

Substituting x = c| cos(π
2 νΘ)|τν, one obtains

2
πν

ˆ ∞

0

e−x sin
(

sgn(cos(π
2 νΘ))x sin( π

2 νΘ)
| cos( π

2 νΘ)|

)
x

dx =
2

πν

ˆ ∞

0

e−x sin
(

x tan(π
2 νΘ)

)
x

dx = (64)

2
πν

atan(tan(
π

2
νΘ)).

The last equality is the consequence of
´ ∞

0
e−x sin(ax)

x dx = atan(a) (see Formula 3.941
in [27]).

In particular, if 2
πν atan(tan(π

2 νΘ)) 6= 1, then the Equation (50) is not satisfied for
ω = 0. Hence, one obtains

tan(
π

2
νΘ) 6= tan(

πν

2
) (65)

π

2
νΘ 6= πν

2
+ kπ

ν(Θ− 1)
2

6= k

for any k ∈ Z.

Theorem 5. If ν ∈ (0, 1), cos(π
2 νΘ) 6= 0 and 1

2 (Θ− 1)ν 6∈ Z, then the transform GΘ,ν(ω) is
not causal.

Proof. In general, violation of any of the conditions (47) and (48) for the transform GΘ,ν
at a single point does not prove that the transform is not causal. This is because the
equalities in (47) and (48) are in L2 sense; hence, such equalities are valid almost everywhere.
Fortunately, it appears that, in certain cases, it may be shown that the relations (47) and
(48) are valid for all ω ∈ R.

First, let us notice that GΘ,ν is a locally Hölder continuous function, as the super-
position of the Hölder function ω 7→ |ω|ν with a locally Lipschitz function. The result
of Wood [28] (Theorem I) (see also [29] (Section 3.4.1)) says that when =GΘ,ν is a locally

Hölder function, such that the integrals
´ +∞

M
=GΘ,ν(ω)

ω dω and
´ −M
−∞

=GΘ,ν(ω)
ω dω exist for

certain M > 0, then also the integral

 +∞

−∞

=GΘ,ν(τ)

τ −ω
dτ (66)

is a Hölder continuous function. When both <GΘ,ν(ω) and the function

HΘ,ν(ω) =

 +∞

−∞

=GΘ,ν(τ)

τ −ω
dτ (67)

are continuous, then the relation (47) is satisfied for all ω ∈ R. The same is true for (50);
hence, the violation of (50) in one point proves that GΘ,ν is not a causal transform.

5.1. K–K Relations for Logarithm

The idea to check the K–K relations for the logarithm of the transfer function was
introduced as a concept of the logarithmic Hilbert transform [30]. In practical terms, these
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relations may be given as a certain integral equality between the phase velocity vph and the
attenuation constant ζ (see [31] (Egn. (3)))

1
vph

=
2
π

ˆ ∞

0

(
ζ(ω′)− ζ(ω)

) dω′

ω′2 −ω2 . (68)

One should note that the above formula is a representation of (47) and (48) for the her-
mitian function L(ω)/(jω). The same relations between the phase velocity and the attenu-
ation constant are concluded in [32] directly from physical properties. In [12] (Appendix B),
this type of relation is also verified for the media described by FOM with the Marchaud
derivative of the order ν ∈ [1/2, 1].

Nevertheless, the K–K relations for the logarithm (68) are not based on the if and
only if the relationship with causality (as is the case for the transfer function itself by the
Titchmarsh Theorem 1). The situation is more complicated. Let us (not in a very formal
way) review these two possibilities.

When the transfer function G(ω) has no zeros, then its logarithm is well-defined
and one may ask if the K–K relations (with subtractions) are valid for L(ω) = ln G(ω).
If this is the case, then one may show that L(ω) may be extended to the function L̃(s)
holomorphic in C+, as in (ii) of Theorem 1. Then, G̃(s) = eL̃(s) is a holomorphic extension
of the function G(ω) to the half–plane C+ (extension in the sense of (ii) in Theorem 1).
However, it does not necessarily mean that G(ω) is a causal transform. One may not forget
about the important assumption of having the function G̃(s) square integrable on vertical
lines {σ + jω : ω ∈ R} for fixed σ > 0.

Hence, the K–K relations for the logarithm of the transfer function imply causality of
the transfer function G(ω) only, when the holomorphic extension of the logarithm of the
transfer function satisfies appropriate growth conditions. Formally, these conditions alone
do not allow us to draw any causality conclusions.

Let us now assume that G(ω) is a causal transform, and ln G(ω) exists. Then, one
should note that the K–K relations for the logarithm of the transfer function are not neces-
sarily satisfied. The K–K relations for the logarithm are satisfied when the holomorphic
extension of the causal transform (in the sense of (ii) in Theorem 1) has no zeros in the
right half-plane. In this case, if L(ω)/(jω) is an L2 function, one has a natural candidate
for the holomorphic extension of L(ω)/(jω) into the right half-plane. If one may show
that this extension satisfies all the assumptions of (ii) in Theorem 1, the K–K relations for
the logarithm are surely satisfied. Hence, violation of the K–K relations for the logarithm
of the transfer function, as given by (68), does not seem to be a sufficient condition for
non-causality. In other words, showing that (68) is violated does not imply lack of causality.

In general, there is no direct way to conclude that if the K–K relations for the logarithm
(in the form (68)) are not satisfied, then G(ω) is not a causal transform. Anyway, the next
Theorem shows an interesting property, even if it is not a formal proof of non-causality.

Theorem 6. Let us assume that ν ∈ (0, 1) and cos(π
2 νΘ) 6= 0. For the transfer function GΘ,ν

given by (42), the relation (68) is satisfied if and only if 1
2 ν(Θ− 1) ∈ Z.

Proof. The attenuation constant and the phase velocity are given by

ζ(ω) = <(ξ(ω)) (69)

vph =
ω

κ(ω)
(70)

where κ(ω) = =(ξ(ω)) and ξ(ω) are given by (41). In the integration range, the function ζ
can be written as

ζ(ω) = sgn(cos(
π

2
νΘ))

1
cµε

cos(
π

2
νΘ)ων, (71)
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whereas
κ(ω) = sgn(cos(

π

2
νΘ))

1
cµε

sin(
π

2
νΘ)ων. (72)

Hence, one obtains (following the lines of Appendix B in [12])

2
π

ˆ ∞

0

(
ζ(ω′)− ζ(ω)

) dω′

ω′2 −ω2 = sgn(cos(
π

2
νΘ))

1
cµε

cos(
π

2
νΘ) tan(

π

2
ν)ων−1. (73)

On the other hand,

vph =
ω

κ(ω)
= sgn(cos(

π

2
νΘ))

cµεω1−ν

sin(π
2 νΘ)

. (74)

One can notice that, in general, the relation (68) does not apply. The equality is
obtained when

tan(
π

2
νΘ) = tan(

π

2
ν), (75)

so, when 1
2 ν(Θ− 1) = k ∈ Z.

6. Numerical Simulations

Computations of plane-wave waveforms in the distance z are executed in accordance
with the same algorithm as described in Section 4.2 in [12] (see the scheme in Figure 6 in
the above-mentioned paper). Actually, the algorithm is the direct implementation of (39).
The simulation is executed in accordance with the following steps:

• er(t) is the time-domain waveform of the propagating signal in z = 0
• the analytic signal ea(t) = er(t) + jei(t) is obtained with the use of the Hilbert trans-

formation ei(t) = H[er(t)]
• Ẽ+(ω) is the Fourier transformation of the analytic signal ea(t)
• Ẽ+(ω) is multiplied by e−ξz

• the time-domain waveform er(z, t) of the signal in the distance z is the real part of the
inverse Fourier transformation of Ẽ+(ω)e−ξz.

In our simulations, the sampling time is set to Ts = 1/(50 fmax), where fmax = 720×
1012 Hz. It means that Ts = 2.78× t10−17 s.

The simulations are executed for square-pulse excitation of the length ∆t = 536× Ts =
1.49× 10−14 s, starting at the time t0 = 4024× Ts = 1.12× 10−13 s. The measurement is
performed at the observation point L = 10−6 m. The length of the entire input signal is
equal to 8196× Ts. The results of the simulation are presented in Figures 2 and 3.

Remark 1. In [12], limitation of the sampling time Ts is considered (see Formulas (48) and (49)
therein). One may follow the same idea in this context and observe that the transformation of [12]
(Equation (48)) leads to inequality similar to [12] (Equation (49)), i.e.,

z
cµε

(
2π

Ts

)ν

sin
(π

2
νΘ
)
≥ 2π. (76)

Our computation parameters satisfy the condition (76).
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Figure 2. Waveforms of signals propagating in FOM with ν = 0.98. (a) reference model (ν = 1 in vacuum). (b) Θ = 0.5.
(c) Θ = 0.9. (d) Θ = 1 (i.e., Grünwald–Letnikov derivative). (e) Θ = 1.1. (f) Θ = 1.5.
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Figure 3. Waveforms of signals propagating in FOM with ν = 1.02. (a) reference model (ν = 1 in vacuum). (b) Θ = 0.5.
(c) Θ = 0.9. (d) Θ = 1 (i.e., Grünwald–Letnikov derivative). (e) Θ = 1.1. (f) Θ = 1.5.

7. Discussion

Let us collect the obtained results in terms of causality for the FO derivative alone and
the considered system. Figure 4a presents values of the input parameters ν and θ = Θ · ν,
for which the two-sided derivative is causal, anti-causal, or acausal. For values of the
parameters ν and θ between the lines, the derivative is neither causal nor anti-causal
(i.e., it is acausal and requires, for derivative computations, values of the input function
simultaneously from the past and the future). An analogous presentation of the results for
the system response of wave propagation in the media described by FOM is presented in
Figure 4b. That is, values of the input parameters ν and θ, for which the system response
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is causal, are presented. In both cases, dotted lines show the values of parameters not
considered in the present paper (i.e., when the propagating signal is not attenuated).

As one can see, the characteristics in Figure 4a,b look the same for ν ∈ (0, 1) (please
note that, from the perspective of system analysis, the anti-causal system is just non-causal).
However, outside this range, although the derivative is causal, the transfer function induced
by this derivative is not causal. It demonstrates that one can obtain a frequency response
of a system which is not causal, using the FO derivative, which is causal.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

(a)

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

(b)
Figure 4. Values of input parameters ν and θ = Θν for which (a) two-sided derivative is either causal or anti-causal and
(b) system response is causal. (—-) Causal. (—-) Anti-causal. Dotted lines (- - -) represent values not considered in the
paper (no attenuation of propagated signal). For values of parameters ν and θ between the lines, it is acausal (derivative) or
non-causal (system).

As it can be seen, for the fractional-derivative order in the range (1,+∞), the transfer
function describing signal propagation is not causal for any value of the asymmetry
parameter of the derivative. However, as proven above, for derivative orders in the range
(0, 1), the transfer function is causal if and only if the asymmetry parameter is equal to
certain specific values corresponding to the left-sided Grünwald–Letnikov derivative (or
equivalently to the Marchaud derivative).

Lack of causality for some parameter values does not mean that the two-sided deriva-
tive may not be used in FOMs of electromagnetism. It is just a strong indication that the
asymmetry parameter θ(α) 6= α in fractional time derivatives leads to a non-causal transfer
function. In the case of spatial derivatives in FOMs of electromagnetism (not considered in
this paper), there is no physical requirement that the solution support should be within the
range of positive values of the spatial variable. Hence, for spatial derivatives, none of the
asymmetry patterns supported by the selection of the parameter θ may be a priori excluded.

8. Conclusions

In this paper, signal propagation is analysed in terms of causality for the media
described by FOM, based on the two-sided Ortigueira–Machado derivative. For the
fractional derivative orders ν ≥ 1, it is shown that the transfer function of the system (with
attenuated signal propagation) is not causal for any value of the asymmetry parameter.
On the other hand, for the derivative orders ν ∈ (0, 1), causality of the transfer function
is proven for certain values of the asymmetry parameter, corresponding to the left-sided
Grünwald–Letnikov derivative (or equivalently to the Marchaud derivative). It is shown
that the considered electromagnetic system is not causal for other values of the derivative
order ν. Numerical simulations illustrating these results are also presented in the paper.

Finally, assuming that the definition of the FO derivative should satisfy the semigroup
property and the trigonometric functions’ invariance, we are able to prove that causal
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solutions to the problem of wave propagation in the media described by FOM are obtained
only for the derivative parameters corresponding to the left-sided Grünwald–Letnikov frac-
tional derivative (or equivalently to the Marchaud derivative), demonstrating advantages
of these derivatives in electrical sciences.
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