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Abstract: Tree precise classification and identification of forest species is a core issue of forestry
resource monitoring and ecological effect assessment. In this paper, an independent tree species
classification method based on fractal features of terrestrial laser point cloud is proposed. Firstly, the
terrestrial laser point cloud data of an independent tree is preprocessed to obtain terrestrial point
clouds of independent tree canopy. Secondly, the multi-scale box-counting dimension calculation
algorithm of independent tree canopy dense terrestrial laser point cloud is proposed. Furthermore, a
robust box-counting algorithm is proposed to improve the stability and accuracy of fractal dimension
expression of independent tree point cloud, which implementing gross error elimination based on
Random Sample Consensus. Finally, the fractal dimension of a dense terrestrial laser point cloud of
independent trees is used to classify different types of independent tree species. Experiments on nine
independent trees of three types show that the fractal dimension can be stabilized under large density
variations, proving that the fractal features of terrestrial laser point cloud can stably express tree
species characteristics, and can be used for accurate classification and recognition of forest species.

Keywords: independent tree; dense terrestrial laser point cloud; fractal feature; fractal dimension;
tree species classification

1. Introduction

Plants play an important role in the whole ecosystem because of their important
impact on the ecological environment [1–3]. Tree species classification is the first basic work
for correct understanding and research of trees [4–6]. It is also the core issue of remote
sensing monitoring of forestry resources and ecological effect assessment [7,8]. Urban
ecological construction and greening are important aspects of urban development [9].
This process not only considers the number of trees planted, but also fully considers
the allocation of plant species to optimize urban environment from biomass and carbon
balance [10–12]. At the same time, in the construction of smart cities and smart gardens,
tree species classification is also important for automatic tree modeling [13].

Research on the identification and classification of tree species has focused on the
appearance characteristics of plants, especially in the early period, mainly using 2D images
of trees to identify tree species by extracting the shape of tree leaves. Guyer et al. [14]
extracted 17 features to describe leaf shape in 1993 to classify plants. Abbasi et al. [15,16]
used multi-scale curvature space to describe the boundaries and shapes of leaves and
other features to classify chrysanthemums. Fu et al. [17] carried out a preliminary study
on automatic plant classification in 1994. Qi et al. [18] established a plant classification
recognition model to study plant classification by extracting leaf size, leaf shape, circularity
parameters and leaf margins. In 2003, Wang et al. [19] proposed a new shape description
method, CCD (centroid-countour distance), which can describe shape more effectively
from a global perspective. However, because some plants and their varieties have similar
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leaf shapes, it is limited and difficult to use computer graphics and image recognition
methods to classify and recognize plants simply according to their leaves.

In the past decade, Light Detection and Ranging technology has been widely used
in the field of agricultural and forestry vegetation remote sensing [20–23] due to its high-
precision and high-density 3D spatial information acquisition capability. High density
terrestrial laser point clouds data can obtain accurate horizontal and vertical vegetation
distribution structure [24–27]. It can provide not only stand-scale vegetation parameters,
but also individual-tree-scale vegetation parameters. It plays an important role in vegeta-
tion survey, identification of complex tree species, inversion of vegetation parameters such
as leaf area index (LAI) and chlorophyll content in canopy, analysis of forest stock, biomass
and carbon sequestration potential [28,29]. It is an appropriate method to use fractal theory
to analyze, process and classify the laser point cloud structure of independent tree, because
of the remarkable scattering and non-linearity.

The research results of fractal theory and fractal technology in remote sensing field
show that, fractal is very suitable for object expression with nonlinear and self-similar
characteristics [30–32]. In fact, fractal dimension has been widely used to generate ex-
pressions of different types of trees in the field of forest visual computing, forest tree
species simulation and forest modeling expression. L-system (Lindenmayer system) is an
algorithm proposed by Aristid Lindenmayer in 1968 [33,34]. It can describe processes such
as the growth of plants. References [35,36] used L-system to simulate the basic shape of
trees, stochastic L-system to simulate the growth of apical buds, and control the growth
direction of branches to simulate the phototaxis and geotaxis of tree growth. Iterated
function system (IFS) theory, introduced by Zadeh [37], is an extension of fuzzy set theory
and more suitable for explaining human thinking than fuzzy set theory. IFS theory is a pow-
erful way to deal with uncertainty and vagueness, and was introduced by Atanassov [38].
Zhong et al. [39] constructed tree mathematical model, proposed a three-dimensional tree
simulation method, and constructed a visualization system based on IFS theory [40]. Wang
Xiaoming [41] put forward tree simulation methods based on skeleton customization and
particle system model, the branch and leaf model was generated by particle system method,
and the branch growth model was achieved based on these static models.

It can be seen that fractal dimension values are widely used in ecology, but inde-
pendent tree species classification based on fractal characteristics of terrestrial laser point
clouds is less studied. Zheng et al. [42] used terrestrial laser point cloud data to calculate
the fractal dimension of tree canopy, but only sparse point cloud data was used, and there
was no validation of whether the fractal value remained stable during the decline of point
cloud data. In this study, by using the dense terrestrial laser point cloud data of different
types of independent tree species, the fractal algorithm is used to calculate the fractal
dimension of terrestrial point clouds data and achieve the classification of independent
tree species according to the fractal characteristics of natural tree canopy.

2. Materials and Methods

The ractal analysis method was introduced to tree species classification using terrestrial
laser point clouds in this study. Point clouds of trees were obtained by using terrestrial
laser scanner, and fractal dimension values of point clouds of different tree species were
calculated. The classification of tree species could be achieved according to the fractal
dimension features. The whole technical process is shown in Figure 1.

2.1. Independent Tree Point Cloud Acquisition and Preprocessing

3D terrestrial laser scanner (TLS) is an efficient method to acquire accurate field data
and measure parameters of low-stature vegetation, such as coverage, leaf area index (LAI),
and tree height, because it has strong penetration and is not influenced by the light, location
and weather [43–45]. We scanned the trees using the RIEGL VZ-400i TLS (Horn, Austria)
mounted on a tripod. The VZ-400i TLS has a field view of 360◦ horizontal (H) × 100◦

vertical (V), a laser pulse repetition rate of up to 1.2 MHz, and an accuracy of ±5 mm at a
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range up to 400 m, with a customizable scan spacing. This TLS unit acquires terrestrial laser
point clouds at a speed up to 500,000 points per second. In this paper, a RIEGL VZ-400i
TLS was used to obtain point clouds of three Gingko trees with leaves, three Photinia trees
and three Cypress trees, as shown in Figure 2.
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The measurement range, scanning angle and laser beam’s penetration ability of the
laser scanner are limited, so obtaining complete 3D spatial information of objects at one scan
is not feasible. In order to obtain more complete 3D spatial information, it is necessary to
select a suitable and visible angle around trees to conduct multi-station scanning. Multiple
scanning stations help reduce the occlusion caused by rugged terrain and improve the
density of point clouds [46]. Prior to the scan, 4 surveyor’s poles were uniformly placed
along contour line of valley slope to help conduct point cloud registration. After rough
registration, multi-station point clouds would be spliced optimally by using Iterative
Closest Point (ICP) algorithm [47]. Spliced point cloud data would be clipped according to
the range of the tree, and only point clouds of the canopy would be reserved, while point
clouds of unrelated objects would be removed. During the multi-station scanning process,
the overlapping area of the tree would generate repeated points because of multiple scans.
Therefore, duplicate points that are in the individual tree point cloud need to be removed,
and the final terrestrial point clouds of an individual tree could be obtained.

2.2. Box-Counting of Terrestrial Point Clouds

The box-counting dimension is the most widely-used fractal dimension calculation
method [48–51]. The box-counting dimension is one of the most popular fractal dimensions,
which is applicable to simple fractals as well as complex fractals. The essence of box-
counting dimension is to change the degree of coarse visualization to measure the figure,
usually starting from counting large boxes, and then decreasing the scale of boxes, only
counting those “non-empty” boxes [52]. Let n in N, F be a non-empty bounded subset
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in Rn, and NL(F) be the smallest number of cubes (in Rn) of side L that cover F [53]. The
box-counting dimension of F was defined by Equation (1):

dimBF = lim
L→0

logNL(F)
−logL
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In this study, considering the characteristics of terrestrial laser point cloud data of
individual trees, we use multi-scale cube coverage that based on the range of an individual
tree, to calculate the fractal dimension of an individual tree. The schematic diagram is
shown in Figure 3.

In Equation (1), reference [53] indicated that if the limit exists, to calculate the limit
when L→ 0 , we only have to consider the limit of any descending series Li, which satisfy
Li+1 ≥ cLi, when it approach 0, and c satisfy 0 < c < 1, especially when δk = ci. In this
study, considering the dividing process would be performed on whole terrestrial point
clouds iteratively, so the number of iterations of spatial divisions (Iterator) need to be
determined by the shortest side length (Lmin) of the bounding rectangle of the terrestrial
point clouds and the initial side length (L0) of the box. Using the simplest linear sequence,
the number of iterations Iterator was determined by Equation (2):

Iterator =
Lmin

2× L0
(2)
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and the side length of box Li at iteration i was determined by Equation (3):

Li = L0 × i(i = 1, 2, 3 . . . , Iterator) (3)
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After specifying the way and step of box-dividing, the main process of calculating the
fractal dimension of terrestrial point clouds is shown in the Figure 4.
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First of all, parameters of the bounding box of an individual tree’s point cloud need
to be obtained, and these parameters can help determine the spatial range of the point
cloud of an individual tree and the coordinates of the start point of the spatial box. Then,
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the initial side length of the box would be set. Considering that point cloud data has high
accuracy and large density, the initial side length of the box cannot be set with a large value.
In this paper, we set the initial side length of the box to 0.01 m. We use an integer that is not
greater than the quotient of the half of the shortest side length divided by the initial side
length as the number of iterations, it can effectively avoid the excessively small number of
spatial dividing boxes or only one box containing all point cloud data, which were caused
by excessively large number of iterations. During the process of each iteration, the space
that the point cloud of an individual tree took up was first divided by spatial boxes, whose
side length was Li. Then, we would determine the number of boxes that contained point
clouds (SLi (D)) and recorded the reciprocal of side length ( 1

Li
). The logarithms of SLi (D)

and 1
Li

became the coordinates of a point, Mi

(
ln
(

1
Li

)
, ln
(
SLi (D)

))
, in the point set of the

double logarithmic scatter plots (log-log plot M).

2.3. Box-Counting Dimension Fitting Based on RANSAC Gross Error Elimination

The point set of the double logarithmic scatter plots was obtained after completing
dividing spatial box for Iterator times. Points in the point set were fitted with a straight
line by using the least squares method, and the slope of the fitted line was the fractal
dimension. Considering that the slope of the fitted straight line was the fractal dimension
of an individual tree, the dimension of an individual tree could not be infinite. y = kx + b
was used to obtain the equation of the fitted straight line.

Random Sample Consensus algorithm (RANSAC) was first proposed by Fischler
and Bolles [54] in 1981. This algorithm calculated parameters of a mathematical model
according to a set of sample data, which contained abnormal data, and thus valid sample
data would be extracted from the data set while abnormal sample data would be eliminated.
RANSAC could help eliminate abnormal data from the point set of the log-log plot during
the straight-line fitting process, and therefore more accurate and more robust fractal
dimension of the terrestrial point clouds of an individual tree would be obtained.

When the RANSAC algorithm was used to eliminate abnormal data from the point
set of the log-log plot, it is necessary to fully consider the characteristics of the point set to
set proper number of iterations and other parameters. Characteristics of the point set of the
log-log plot were as follows:

1. Data in the point set of the log-log plot only conform to linear models;
2. There is no same point in the point set of the log-log plot. Each point in the point set

corresponded to a spatial partition, and side length of the box in each partition was
different (the side length would be monotonically increasing from initial side length
as the iterative spatial partition proceeds). Accordingly, the abscissa of every point
in the point set of the log-log plot was different, and parameters of the straight line
could be fitted from any two points in the point set;

3. The spatial extent of the terrestrial point clouds of an individual tree was limited,
so the number of points in the point set of the log-log plot would not be excessively
large.

The RANSAC algorithm could obtain all possible linear models in the point set of the
log-log plot during the iterative process, and the number of iterations could be calculated
by using Equation (4):

C2
Num =

Num× (Num− 1)
2

(4)

The flow chart of the method of calculating box-counting dimensions of point clouds
based on the RANSAC gross error elimination algorithm, is shown in Figure 5.
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Figure 5. The method of calculating the box-counting dimension based on the RANSAC gross error
elimination algorithm.

2.4. Evaluating Indicator

The slope of the straight line, namely the box-counting dimension, and the intercept
of the line could be obtained by The Least Squares Approximation. The accuracies of
these two parameters would be calculated by multiplying the arithmetic square root of the
diagonal elements in co-factor matrix (

(
AT A

)−1) of ∆ by root mean square error (RMSE)
with unit weight (δ̂o). δ̂o could be obtained by Equation (5). The relevant formula derivation
and symbolic expression can be seen in the basic principle of Least Squares Approximation.

δ̂o =

√
VTV

Iterator− 2
(5)

3. Results
3.1. Fractal Dimension of Three Ginkgo Trees

Fractal dimensions of three Ginkgo trees with foliage were calculated by setting the
initial side length of the box to 0.01 m. The log-log scatter plots were presented in Figure 6,
the fitting results based general least squares method were presented in Table 1, and the
results based on the RANSAC gross error elimination algorithm were presented in Table 2.
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Figure 6. Double logarithmic scatter plots of three Ginkgo trees with foliage.

Table 1. Fractal dimensions calculation results of Ginkgo trees with foliage.

Category
The Serial Number of Ginkgo Trees

1 2 3

The number of points in point clouds 522865 888394 1209585
The number of points in the double

logarithmic plot 309 346 445

The slope of the fitted straight line 2.093 2.091 2.106
The intercept of the fitted straight line 5.392 5.466 5.690

RMSE of the slope 0.0093 0.0064 0.0058
RMSE of the intercept 0.0091 0.0064 0.0064

RMSE of the unit weight 0.1586 0.1152 0.1208

Table 2. Calculation results of box-counting dimensions of point clouds by using the method based
on which was RANSAC gross error elimination algorithm.

Category
The Serial Number of Ginkgo Trees

1 2 3

The number of points in point clouds 522865 888394 1209585
The number of points in the double

logarithmic plot 309 346 445

The distance threshold of RANSAC 0.01 0.01 0.01
The used data ratio of RANSAC 0.540 0.462 0.375

The slope of the fitted straight line 2.246 2.208 2.211
The intercept of the fitted straight line 5.448 5.497 5.761

RMSE of the slope 0.0016 0.0017 0.0013
RMSE of the intercept 0.0011 0.0011 0.0012

RMSE of the unit weight 0.0134 0.0140 0.0137

It can be seen from Table 1 that the value of fractal dimension of Ginkgo trees with
foliage fluctuated around 2.09. The number of points in the point cloud of No.1 tree is the
least, and the number of points in its corresponding double logarithmic points set (M1)
was 309 and the precision was relatively the lowest. While the number of points in the
point cloud of No.3 tree is the most, and the number of points in its corresponding double
logarithmic points set (M3) was 421 and the precision was relatively the highest.
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By comparing Tables 1 and 2, it was clear that the RMSEs of the unit weight, the slope
and the intercept of the straight line, which was fitted by the double logarithmic points
set, were greatly improved after introducing the RANSAC algorithm to eliminate the gross
error, and the accuracy and the robustness of the fractal dimension of the terrestrial point
clouds of an individual tree were also improved.

3.2. Effect of Point Cloud Density on Fractal Dimension

The results showed that point cloud density had a certain influence on the accuracies
of the slope and the intercept of the fitted straight line. Because of the difference in the
age, size and density of the trees, the range and density of the scanner, and the accuracy
parameters, the number and density of point clouds collected from the same tree species
and different tree species, even the same tree at different times are different. It is necessary
to explore the influence of the number and density of the point cloud of the independent
tree on the fractal dimension.

The effects of number and density of terrestrial point clouds on the fractal dimension
were investigated using ginkgo and photinia trees 1 to 3. During the random down
sampling process, the number of point clouds in the point cloud data is down sampled
to one-half each time until the number of point clouds is less than 10,000 points. The
RANSAC initial distance threshold is 0.001, and the iteration threshold step is 0.001. The
data usage ratio is not less than 50% of the original double logarithmic points.

3.2.1. The Experimental Results of the Ginkgo Trees

The fractal dimension results of the ginkgo trees 1 to 3 with different number and
density are shown in Table 3.

Table 3. Fractal dimension of ginkgo tree 1 with different number and density of point clouds.

Number Number of
Point Clouds

Ginkgo 1 Ginkgo 2 Ginkgo 3

Slope RMSE of
Unit Weight Slope RMSE of

Unit Weight Slope RMSE of
Unit Weight

0 1209585 - - 2.200 0.0166 2.213 0.0205
1 522865 2.243 0.0124 2.195 0.0162 2.207 0.0205
2 261432 2.241 0.0126 2.176 0.0175 2.203 0.0200
3 130716 2.225 0.0144 2.184 0.0163 2.196 0.0192
4 65358 2.216 0.0145 2.151 0.0180 2.184 0.0201
5 32679 2.215 0.0130 2.121 0.0181 2.167 0.0200
6 16339 2.186 0.0148 2.111 0.0172 2.165 0.0214
7 8169 2.179 0.0174 2.076 0.0183 2.13765 0.0222

According to Table 3, it can be concluded that the fractal dimension values are de-
creasing as the number of point clouds decreases rapidly, and RMSE slope, intercept and
unit weight are also reducing. The trend of the fractal dimension with point cloud down
sampling of ginkgo trees 1 to 3 is shown in Figure 7.

Figure 7 shows that the fractal dimension values of the three ginkgo trees remain
stable overall during the point cloud data down sampling process, especially when the
number of point clouds is down sampled to half of the original data for the first time.
Since the fact that the amount of data measured twice is doubled is rare in actual data
collection, the geometric dimension method based on the RANSAC iteration threshold is
robust. After down sampling of the original data fifth times, the fractal dimension values
showed a relatively large decrease. We show the independent tree canopy point clouds
data after the last down sampling in Figure 8. These point clouds cannot fully describe the
spatial structure of the independent tree compared with the initial point cloud data of the
independent tree canopy.
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3.2.2. The Experimental Results of the Photinia Trees

The fractal dimension results of the photinia trees 1 to 3 with different number and
density are shown in Table 4.

Table 4. Fractal dimension of photinia tree 1 with different number and density of point clouds.

Number Number of
Point Clouds

Photinia 1 Photinia 2 Photinia 3

Slope RMSE of
Unit Weight Slope RMSE of

Unit Weight Slope RMSE of
Unit Weight

0 2816299 2.505 0.0161 2.538 0.0126 2.468 0.0196
1 1408149 2.495 0.0164 2.545 0.0126 2.445 0.0186
2 704074 2.500 0.0157 2.526 0.0129 2.469 0.0173
3 352037 2.482 0.0168 2.519 0.0135 2.465 0.0167
4 176018 2.484 0.0157 2.513 0.0121 2.455 0.0164
5 88009 2.461 0.0171 2.510 0.0113 2.440 0.01703
6 44004 2.458 0.0187 2.505 0.0147 2.425 0.0159
7 22002 2.428 0.0204 2.483 0.0141 2.413 0.0171
8 11001 2.407 0.0207 2.463 0.0171 2.364 0.0154
9 5500 2.337 0.0227 2.419 0.0187 2.379 0.0174
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According to Table 4, it can be concluded that as the number of point clouds decreases
rapidly, the fractal dimension decreases wholly, but increases slightly in very few places.
At the same time, the RMSE of slope, intercept and the accuracy of unit weight are also
reducing. The accuracy reduces rapidly especially in the sixths and ninth groups. The
trend of the fractal dimension of the photinia trees 1 to 3 with point cloud sampling is
shown in Figure 9.
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The photinia tree is more complex than the ginkgo tree since its trunk begins to have
multiple main branches near the ground, which makes it have a sudden change in the
numerical calculation and precision of the fractal dimension. As the number of point clouds
decreases, low-density point clouds are not sufficient to accurately describe the complex
three-dimensional structure of the heather tree, but it can be stable in a certain range when
the number of point clouds is sufficient. When the number of point clouds is too small,
the number of point clouds contained in the non-empty box is too small during the space
division process, so that the number of non-empty boxes is related to the number of point
clouds, and the number of samples used to fit the line is also reducing, so that the fractal
dimension accuracy is decreasing.

In summary, the fractal dimension of terrestrial point clouds of tree canopy is related
to the number and density of the point cloud. When the laser point cloud data and density
can describe the canopy structure features, the box-counting dimension method based on
the RANSAC algorithm can robustly calculate the fractal dimension value of terrestrial
point clouds. The number of terrestrial point clouds data in the controllable number of
point clouds, and the fractal dimension values can be stable within a certain range. The
fractal dimension values of different ginkgo and photinia trees are distributed in different
numerical intervals, and the fractal dimension values of the same tree species are close.

4. Discussion and Conclusions

According to the fractal characteristics of the natural tree canopy, this paper pro-
poses an independent tree species classification method based on the fractal expression
of terrestrial point clouds. Firstly, dense terrestrial laser point clouds data of different
types of independent trees are obtained by multi-station scanning with terrestrial laser
scanner. Then, the fractal dimension values of terrestrial point clouds data are calculated
by box-counting fractal method using RANSAC gross error elimination. Finally, the fractal
dimension is used to classify different tree canopy morphological species. The experimental
results show that the fractal dimension can describe the characteristics of different types of
independent trees, and can effectively achieve the tree species classification of independent
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trees. It verified the feasibility and validity of the fractal theory to introduce the dense
terrestrial laser point clouds feature expression. It has broad application prospects for the
recognition of 3D spatial morphology of vegetation and dense terrestrial laser point clouds
data intelligent processing.

Unlike the tree species classification research based on 2D image [14–16,19], this
paper collects terrestrial point clouds data, which has richer morphological structure
information compared with image data and can better reflect the structural characteristics
of independent trees. This paper classifies tree species based on fractal dimensional
features of tree crowns, which is simpler and ensures accuracy compared with other tree
species classification methods that extract features such as tree trunk skeleton and leaf
shape [55,56]. Compared with random forest, support vector machines, decision tree and
other methods [55,57–59] that need to collect a large amount of sample data for pre-training,
this paper does not have a training process, the preliminary workload is small, does not
require a large amount of sample data, and costs less in labor and time. In addition, the
tree species classification by using Bayes classifier or linear discriminant analysis is not
effective when the number of trees is small [60,61]. From Tables 1 and 2, it can be seen
that the box-counting dimension fitting based on RANSAC gross error elimination method
used in this paper has stronger robustness and is less affected by the number of trees.

The fractal characteristics of three fractal ginkgo trees, three photinia trees and three
cypress trees were calculated according to the proposed method. In the calculation, the
RANSAC algorithm uses the initial distance threshold of 0.001, the iteration threshold
step size is set to 0.001, and the RANSAC data usage ratio is not less than 50% of the
original double logarithmic points set. The results are shown in Table 5. In the table the
“NofPC” means the number of points in point clouds; the “NofLP” means the number of
points in the double logarithmic plot; the “DTofR” means the distance threshold setting
in RANSAC; the “URofR” means the data usage ratio of RANSAC; the “FD” means the
fractal dimension; and the “RMSE” means the RMSE of fractal dimension.

Table 5. Fractal dimension calculation results of ginkgo, photinia and cypress trees.

Category
Ginkgo Trees Photinia Trees Cypress Trees

1 2 3 1 2 3 1 2 3

NofPC 522865 888394 1209585 2816299 2822194 2989034 3947350 3163402 5840268

NofLP 309 346 445 203 178 179 217 170 301

DTofR 0.009 0.012 0.015 0.011 0.008 0.012 0.01 0.01 0.011

URofR 0.508 0.511 0.521 0.502 0.505 0.519 0.520 0.517 0.518

FD 2.243 2.200 2.213 2.505 2.538 2.468 2.446 2.453 2.428

RMSE 0.0015 0.0019 0.0018 0.0025 0.0021 0.0027 0.0022 0.0026 0.0019

The distribution of fractal dimension values of each tree point cloud is shown in
Figure 10. It shows that the fractal dimension values of Ginkgo, Photinia and Cypress trees
are distributed in different intervals. Therefore, the fractal dimension values of independent
terrestrial point clouds can be used to accurately classify the three types of trees.

Although more accurate fractal dimensions of point clouds were obtained in this
study, only nine sets of point clouds of individual trees, which were from three tree species,
were used in the experiment. In order to classify individual trees more meticulously, point
clouds of more tree species and a larger number of individual trees need to be collected to
verify the ubiquity of the proposed method. Furthermore, although data acquired from
terrestrial laser scanning (TLS) system was of high quality and large density, the whole
acquisition process was time-consuming, and a large range of point clouds of individual
trees could not be acquired in a short time.
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