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Abstract: Integral equations and inequalities have an important place in time scales and harmonic
analysis. The norm of integral operators is one of the important study topics in harmonic analysis.
Using the norms in different variable exponent spaces, the boundedness or compactness of the
integral operators are examined. However, the norm of integral operators on time scales has been
a matter of curiosity to us. In this study, we prove the equivalence of the norm of the restricted
centered fractional maximal diamond-α integral operator Mc

a,δ to the norm of the centered fractional
maximal diamond-α integral operator Mc

a on time scales with variable exponent Lebesgue spaces.
This study will lead to the study of problems such as the boundedness and compactness of integral
operators on time scales.

Keywords: time scales; variable exponent; fractional integral; maximal operator

1. Introduction

The founder of the time scale theory is Stefan Hilger [1]. At the time, this theory
caught the attention of many mathematicians who have demonstrated various aspects of
integral inequalities, dynamic equations and integral operators on time scales [2–13]. For
example, Li [4] demonstrated non-linear integral inequalities in two independent variables
on time scales. Anastassiou [5] demonstrated some properties of fractional calculus on
time scales. Uçar et al. [9] demonstrated fractional integral inequalities on time scales.

Dynamic equations and integral inequalities have many applications in different areas
of science. Some areas are electrical engineering, fluid dynamics, quantum mechanics, phys-
ical problems, wave equations, heat transfer and economics [14–24]. Tisdell and Zaidi [15]
demonstrated basic qualitative and quantitative results for solutions to non-linear dynamic
equations on time scales with an application to economic modelling. Seadawy et al. [18]
demonstrated non-linear wave solutions of the Kudryashov–Sinelshchikov dynamical
equation in mixtures of liquid–gas bubbles under the consideration of heat transfer and
viscosity. Akin [25] demonstrated fractional integral type inequalities on time scales. Hig-
gins [26] demonstrated asymptotic behavior of second-order nonlinear dynamic equations
on time scales. Ozturk and Higgins [27] demonstrated limit behaviors of non-oscillatory
solutions of three-dimensional time scale systems.

The variable exponent, Lebesgue space Lp(.), is one of the cornerstones of harmonic
analysis. Mathematicians working in this field have comprehensively analyzed the oper-
ators and inequalities in the variable exponent, Lebesgue space Lp(.) [28–37]. Akin and
Dusunceli [38] demonstrated a new approach for weighted Hardy’s operator in “variable
exponent Lebesgue spaces” (VELS). This work also has been stimulated by problems of
elasticity, fluid dynamics, electrorheological liquids and calculus of variations.

In variable exponential spaces, problems such as the boundedness and compactness
of integral operators, take an important place. The concept of norms has the most im-
portant place in solving these problems. If we can obtain the norms of integral operators
by the method we apply, then we can see the boundedness and compactness of these

Fractal Fract. 2021, 5, 7. https://doi.org/10.3390/fractalfract5010007 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-5653-9393
https://doi.org/10.3390/fractalfract5010007
https://doi.org/10.3390/fractalfract5010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5010007
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/2504-3110/5/1/7?type=check_update&version=4


Fractal Fract. 2021, 5, 7 2 of 13

operators. However, there are almost no studies on the problems of time scales. Our main
purpose in this study is to examine the equivalence of the norms of fractional integral oper-
ators. Thanks to these results, we will be able to establish the constraint and compactness
conditions of integral operators on time scales.

The organization of this article is as follows. In Section 2, we give necessary definitions,
lemmas and theorems. In Section 3, we prove the equivalence of the norm variable exponent
Lp(.) of the restricted centered fractional maximal diamond-α integral Mc

a,δ to the norm
variable exponent Lp(.) of the centered fractional maximal diamond-α integral Mc

a for all
0 < δ < ∞ and 1 ≤ p(x) < ∞ on time scales. In Section 4, we give the conclusion.

2. Materials and Methods

In this section, we provide necessary concepts and statements related to time scale
and variable exponent Lebesgue space. The reader can refer to the monographs [1–43]
for details.

Definition 1. [39] Let Ω ⊂ Rn be an open set. The fractional maximal operator Ma f is defined
as follows

Ma f (t) = sup
B3t

1

|B|1−
a
n

∫
B∩Ω

| f (y)|dy, (1)

for 0 < a < n. In the limiting case a = 0, the fractional maximal operator reduces to the
Hardy–Littlewood maximal operator.

Let Lp(.)(Ω) denote the space of the measurable and integrable functions on Ω, such
that for λ > 0, with norm

‖ f ‖p(.),Ω = inf

λ > 0 :
∫
Ω

(
| f (t)|

λ

)p(t)
dt ≤ 1

,

where p(.) : Ω→ [1, ∞) is a measurable function (for details, see [25,40]). These spaces are
also the variable exponent Lebesgue spaces Lp(.).

Now let us define some properties of the centered fractional maximal operator which
will help us prove our results. We know that the centered fractional maximal operator is
defined by

Mc
a f (t) = sup

r>0

1

|B(t, r)|1−
a
n

∫
B(t,r)∩Ω

| f (τ)|dτ, (2)

and the uncentered fractional maximal operator is defined by

Ma f (t) = sup
B3t

1

|B|1−
a
n

∫
B∩Ω

| f (τ)|dτ (3)

for 0 < a < n and t ∈ Rn, where the supremum is again taken over all balls B, which
contain t (for details, see [25,29,37]). We well know that the fractional maximal operator
plays an important role in harmonic analysis. The restricted operators have important
properties (for details, see [28,41]).

Mc
a f (t) ≤ Ma f (t) ≤ 2m Mc

a f (t), ∀t ∈ Rm. (4)

Let us define the restricted centered fractional maximal operator and the restricted
uncentered fractional maximal operator, respectively,

Mc
a,δ f (t) = sup

δ>r>0

1

|B(t, r)|1−
a
n

∫
B(t,r)∩Ω

| f (τ)|dτ, (5)
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and

Ma,δ f (t) = sup
δ>r>0,|x−t|<r

1

|B|1−
a
n

∫
B(x,r)∩Ω

| f (τ)|dτ, (6)

for t ∈ Rm, 0 < a < n and δ ∈ R+ (for details, see [28,29,41]). It is clear that using (5) and
(6), we can write the following inequalities

Mc
a,δ f (t) ≤ Mc

a,θ f (t) ≤ Mc
a f (t)

and
Ma,δ f (t) ≤ Ma,θ f (t) ≤ Ma f (t),

for δ ≤ θ, ∀t ∈ Rm. As a result, again if we use (5)–(6) and δ ≤ θ, then we can write the
following inequalities and

‖Ma,δ f (t)‖Lp(.)(Rm)→Lp(.)(Rm) ≤ ‖Ma,θ f (t)‖Lp(.)(Rm)→Lp(.)(Rm)

≤ ‖Ma f (t)‖Lp(.)(Rm)→Lp(.)(Rm)

for 1 < p(.) ≤ ∞, t ∈ Rm and some real positive numbers δ, θ. We have seen here that
the norm of the restricted operator is less than the norm of the unrestricted operator. The
normed inequalities obtained above will help us prove our results.

To prove our main results, we first provide some definitions and lemmas which will
be used as follows.

Definition 2. [29] If f is a measurable function on Rm, then distribution function d f on [0, +∞]
is defined by

d f (β) = |{x ∈ Rm : | f (x)| > β}|, (7)

where |{x ∈ Rm : | f (x)| > β}| is the Lebesgue measurable of the measurable of {x ∈ Rm : | f (x)| > β}.

Lemma 1. [30] If f ∈ Lp(Rm) with 0 < p < ∞, then we have

‖ f ‖p
Lp(Rm)

= p
∞∫

0

βp−1d f (β)dβ. (8)

Lemma 2. [31] Let π be a positive measure onM such thatM is a σ-algebra. If B1 ⊂ B2 ⊂
B3, . . . , Bm ∈ M, and B = ∪∞

m=1Bm, then lim
m→∞

π(Bm) = π(B).

Using Lemma 2, we can formulate the following conclusions.

Lemma 3. (Lemma 2.3, [29]) If operators Mc
a and Mc

a,δ are defined as in (2) and (5), then the equality

dMc
a f (β) = lim

δ→∞
dMc

a,δ f (β), (9)

holds ∀ f ∈ Lp(Rm) and β > 0.

Lemma 4. (Lemma 2.4, [29]) If operators Ma and Ma,δ are defined as in (3) and (6), then the equality

dMa f (β) = lim
δ→∞

dMa,δ f (β), (10)

holds ∀ f ∈ Lp(Rm) and β > 0.
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Lemma 5. [29] For p > 1 and 0 < ε, there exists a function h ∈ C_ĉ∞ (R̂m) such that

‖Mc
a‖Lp(Rm)→Lp(Rm) − ε ≤

‖Mc
ah‖Lp(Rm)

‖h‖Lp(Rm)
, (11)

where ‖Mc
a‖Lp(Rm)→Lp(Rm) = sup

‖h‖Lp(Rm) 6=0

‖Mc
ah‖Lp(Rm)

‖h‖Lp(Rm)
.

Let us give information about the time scales that will help us in our work.
A time scale T is a nonempty closed subset of R (for details, see [19,20]). Let [a, b] be

an arbitrary closed interval on time scale T. The time scale interval [a, b]T is denoted by
[a, b] ∩T (see p. 7 [42]).

Definition 3. [19] The mappings σ, ρ : T→ T are defined by σ(t) = in f {s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s > t} for t ∈ T. Respectively, σ(t) is forward jump operator and ρ(t) is
backward jump operator.

If σ(t) > t, then t is right-scattered and if σ(t) = t, then t is called right-dense. If
ρ(t) < t, then t is left-scattered and if ρ(t) = t, then t is called left-dense.

Definition 4. [19] Let two mappings µ, ϑ : T→ R+ , such that µ(t) = σ(t)− t, ϑ(t) = t− ρ(t).
Here, the mappings µ(t) and ϑ(t) are called graininess mappings.

If T has a left-scattered maximum m, then Tk = T− {m}. Otherwise Tk = T.
Tk is defined as follows (for details, see [19,20,42])

Tk =

{
Tr (ρsupT, supT], i f supT < ∞,

T, i f supT = ∞,

by the same way

Tk =

{
Tr [infT, σ(infT)], |infT| < ∞,

T, infT = −∞.

Assume that h : T→ R is a function.

(i) If h is ∆-differentiable at point t (t ∈ Tk(t 6= minT)), then h is continuous at point t.
(ii) If h is left continuous at point t and t is right-scattered, then h is ∆-differentiable at

point t,

h∆(t) =
hσ(t)− h(t)

µ(t)

Let t be right-dense.
(iii) If h is ∆-differentiable at point t and lim

s→t
h(t)−h(s)

t−s , then

h∆(t) = lim
s→t

h(t)− h(s)
t− s

.

(iv) If h is ∆-differentiable at point t, then hσ(t) = h(t) + µ(t)h∆(t).

Remark 1. (For details, see page 3 in [42]) If T = R, then h∆(t) = h′(t), and if T = Z, then
h∆(t) reduces to ∆h(t).
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Definition 5. [20] If H : T→ R is defined as ∆-antiderivative of h : T→ R , then H∆ = h(t)
holds for ∀t ∈ T and we define the ∆-integral of h by

t∫
s

h(τ)∆τ = H(t)− H(s),

for s, t ∈ T.

We now give similar definitions for the nabla operator.

Definition 6. [20] Where h : Tk → R is called ∇-differentiable at t ∈ Tk. If ε > 0, then there
exists a neighborhood V of t such that∣∣∣h(ρ(t))− h(s)− h∇(t)(ρ(t)− s)

∣∣∣ ≤ ε|ρ(t)− s|,

for ∀s ∈ V.

Definition 7. [20] Where H : T→ R is called a ∇-antiderivative of h : T→ R , then we define

t∫
s

h(τ)∇τ = H(t)− H(s),

for s, t ∈ T. Let f (t) be differentiable on T for α, t ∈ T. Then, we define f �α(t) by

f �α(t) = α f ∆(t) + (1− α) f∇(t)

for 0 ≤ α ≤ 1.

Proposition 1. [20] If we have f , h : T→ R , �α -differentiable for α, t ∈ T, then

(i) f + h : T→ R is �α-differentiable for t ∈ T with ( f + h)�α(t) = f �α(t) + h�α(t).
(ii) Let k ∈ R, k f : T→ R is �α-differentiable for α, t ∈ T with (k f )�α(t) = k f �α(t).
(iii) f , h : T→ R is �α-differentiable for α, t ∈ T with

( f h)�α(t) = f �α(t)h(t) + α f σ(t)h∆(t) + (1− α) f ρ(t)h∇(t).

Definition 8. [20] If f : T→ R is integrable and α, b, t ∈ T, then

t∫
b

f (δ) �α δ = α

t∫
b

f (δ)∆δ + (1− α)

t∫
b

f (δ)∇δ

for 0 ≤ α ≤ 1.

Definition 9. [12,25] If f ∈ Crd(T,R) and t ∈ Tk, then

σ(t)∫
t

f (τ) �α τ = µ(t) f (t).

Here, we can define the fractional maximal diamond-α integral

Ma f (t) = sup
B3t

1

|B|
m−a

m

t∫
a

f (x) �α x,
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where f ∈ L1([a, t] ∩T) and Ma f ∈ L([a, t] ∩T).

Now, we can define the restricted centered fractional maximal diamond-α integral
operator and the restricted uncentered fractional maximal diamond-α integral operator,

Mc
a,δ f (t) = sup

δ>r>0

1

|B(t, r)|1−
a
m

∫
B(t,r)∩Ω

| f (τ)| �α τ

and

Ma,δ f (t) = sup
δ>r>0,|x−t|<r

1

|B|1−
a
m

∫
B(x,r)∩Ω

| f (τ)| �α τ,

for t ∈ Rm and δ ∈ R+ (for details, see [28]).

Definition 10. [35] Let p : Φ→ [1, ∞) be a measurable function for Φ ⊂ Rm and Lp(.) be the
space of all measurable functions on open set Φ, such that

∫
Φ

(
| f (t)|

λ

)p(t)
dt ≤ ∞,

for some λ > 0. The norm in Lp(x) is the generalization of the norm in Lp (p is constant). The
Luxemburg norm in Lp(x) is defined as follows:

‖ f ‖Lp(.) = inf

{
λ > 0 :

∫
Φ

(
| f (t)|

λ

)p(t)
dt ≤ 1

}
.

Theorem 1. (See [Theorem 2, in [21]) If h is ∆-integrable on [a, b], then |h| is ∆-integrable on
[a, b] and we have ∣∣∣∣∣∣

b∫
a

h(τ)∆τ

∣∣∣∣∣∣ ≤
b∫

a

|h(τ)|∆τ.

Theorem 2. [40] Let Ma,δ f be defined by (6), and let δ > 0. Then

‖Ma,δ f ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Ma f ‖Lp(x)(Rm)→Lp(x)(Rm)

holds for 1 ≤ p(x) < ∞.

Proof. From the definition of the operator Ma,δ f in (6), we obtain

Ma,δ f (δx) = sup
δ>r>0,|t−δx|<r

1
|B|1−

a
m

∫
B(t,r)
| f (y)|∆y

= sup
δ>r>0,|t−x|< r

δ

1
vmr1− a

m

∫
|t|<r
| f (δt− y)|∆y

= sup
δ>r>0,|t−x|< r

δ

δ1− a
m

vmr1− a
m

∫
|t|< r

δ

| f (δ(t− y))|∆y

= sup
1> r

δ >0,|t−x|< r
δ

1

vm( r
δ )

1− a
m

∫
|t|< r

δ

|(τδ f )(t− y)|∆y

= sup
1>r>0,|t−x|<r

1
vmr1− a

m

∫
|t|<r
|(τδ f )(x− y)|∆y

= Ma,1(τδ f )(x),

(12)
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where vm is the volume of the unit ball in Rm and the dilation operator τδ is defined as follows:

(τδ f )(x) = f (δx),

for δ > 0 and x ∈ Rm. It follows from (12) that

‖Ma,δ f ‖Lp(x)(Rm)

‖ f ‖Lp(x)(Rm)

=
‖Ma,δ f (δ)‖Lp(x)(Rm)

‖ f (δ)‖Lp(x)(Rm)

=
‖Ma,1(τδ f )‖Lp(x)(Rm)

‖τδ f ‖Lp(x)(Rm)

.

�

Taking the supremum over all f ∈ Lp(x)(Rm) with ‖ f ‖Lp(x)(Rm) 6= 0 for the two sides
of the above equation, we have

‖Ma,δ f ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Ma,1 f ‖Lp(x)(Rm)→Lp(x)(Rm), (13)

for all δ > 0 and 1 ≤ p(x) < ∞.
Next, we will prove that

‖Ma,δ f ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Ma f ‖Lp(x)(Rm)→Lp(x)(Rm).

We will use Equation (13) for proof. If f ∈ Lp(x)(Rm), then we have M f ∈ Lp(x)(Rm).
From Lemma 1, Lemma 4 and Equation (13), we obtain

‖Ma‖p(x)
Lp(x)(Rm)→Lp(x)(Rm)

=
∞∫
0

µp(x)−1dMa f (µ)∆µ

=
∞∫
0

µp(x)−1 lim
δ→∞

dMa,δ f (µ)∆µ

= lim
δ→∞

∞∫
0

µp(x)−1dMa,δ f (µ)∆µ

= lim
δ→∞
‖Ma,δ‖

p(x)
Lp(x)(Rm)

≤ lim
δ→∞
‖Ma,δ‖

p(x)
Lp(x)(Rm)→Lp(x)(Rm)

‖ f ‖p(x)
Lp(x)(Rm)

= ‖Ma,1‖
p(x)
Lp(x)(Rm)→Lp(x)(Rm)

‖ f ‖p(x)
Lp(x)(Rm)

.

(14)

Now, taking advantage of inequality (14), we get the following inequality

‖Ma‖p(x)
Lp(x)(Rm)→Lp(x)(Rm)

≥ ‖Ma,1‖
p(x)
Lp(x)(Rm)→Lp(x)(Rm)

. (15)

Hence, we obtain from (14) that

‖Ma‖p(x)
Lp(x)(Rm)→Lp(x)(Rm)

= ‖Ma,1‖
p(x)
Lp(x)(Rm)→Lp(x)(Rm)

.

3. Main Results

In this section we give statements and proofs of our results.

Theorem 3. Suppose that Mc
a,δ f (x) is defined by (5). Then

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Mc

a‖Lp(x)(Rm)→Lp(x)(Rm)

holds for δ > 0 and 1 ≤ p(x) < ∞.
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Proof. For 0 < δ < ∞, we first prove

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Mc

a,1‖Lp(x)(Rm)→Lp(x)(Rm).

If we use the definition of the operator Mc
a,δ in (5), then we have

Mc
a,δ f (x) = sup

δ>r>0

1

|B(x, r)|1−
a
m

∫
B(x,r)∩Ω

| f (y)| �α y = sup
δ>r>0

1
vmr1− a

m

∫
|y|≤r

| f (x− y)| �α y, (16)

for 0 < δ < ∞ and x ∈ Rm, where vm is the volume of the unit ball in Rm. Hence,
we have

Mc
a,δ f (δx) = sup

δ>r>0

1
vmr1− a

m

∫
|y|≤r
| f (δx− y)| �α y

= sup
δ>r>0

δm

vmr1− a
m

∫
|y|≤ r

δ

| f (δx− δy)| �α y

= sup
1> r

δ >0

1

vm( r
δ )

1− a
m

∫
|y|≤ r

δ

| f (δx− δy)| �α y

= sup
1>r>0

1
vmr1− a

m

∫
|y|≤r
| f (δx− δy)| �α y

= Mc
a,1 f (δx),

(17)

for 0 < δ < ∞ and x ∈ Rm. If we use (17), then we have

‖Mc
a,δ‖Lp(x)(Rm)

‖ f ‖Lp(x)(Rm)

=
‖Mc

a,δ f (δx)‖Lp(x)(Rm)

‖ f (δx)‖Lp(x)(Rm)

=
‖Mc

a,1 f (δx)‖Lp(x)(Rm)

‖ f (δx)‖Lp(x)(Rm)

. (18)

If supremum is taken over all the f ∈ Lp(x)(Rm) for the two sides of (18), we have

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Mc

a,1‖Lp(x)(Rm)→Lp(x)(Rm). (19)

Next, we will use Equation (19) to prove

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Mc

a‖Lp(x)(Rm)→Lp(x)(Rm),

for ∀δ > 0 and 1 ≤ p(x) < ∞. We just need to prove

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) ≥ ‖Mc

a‖Lp(x)(Rm)→Lp(x)(Rm).

If we use Lemma 5, for ε > 0, then there exists a function f ∈ C∞
c (Rm), such that

‖Mc
a f ‖Lp(x)(Rm)

‖ f ‖Lp(x)(Rm)

= ‖Mc
a‖Lp(x)(Rm)→Lp(x)(Rm) − ε. (20)

Since f ∈ C∞
c (Rm) implies f ∈ Lp(x)(Rm), we have Mc

a f ∈ Lp(x)(Rm). If R is a real
integer, then we have

‖(Mc
a f )χ(|.|≥R)‖Lp(x)(Rm) ≤ ε‖ f ‖Lp(x)(Rm). (21)

Now we set δ0 = Z+ +R (Z+ is a positive integer and R is a real integer). Then it can
be written from the definition of Mc

a,δ that

Mc
a f (x) = Mc

a,δ0
f (x), (22)
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holds for |x| < R. Hence, from (20)–(22), we obtain

‖Mc
a,δ0

f ‖Lp(x)(Rm) ≥ ‖
(

Mc
a,δ0

f
)

χ(|x|<R)‖Lp(x)(Rm)

= ‖(Mc
a f )χ(|x|<R)‖Lp(x)(Rm)

≥ ‖Mc
a f ‖Lp(x)(Rm) − ‖(Mc

a f )χ(|x|≥R)‖Lp(x)(Rm)

≥ ‖Mc
a‖Lp(x)(Rm)→Lp(x)(Rm)‖ f ‖Lp(x)(Rm) − 2ε‖ f ‖Lp(x)(Rm).

(23)

Obviously, (23) implies that

‖Mc
a,δ0

f ‖Lp(x)(Rm)

‖ f ‖Lp(x)(Rm)

≥ ‖Mc
a‖Lp(x)(Rm)→Lp(x)(Rm) − 2ε. (24)

Here, the inequality (24) yields

‖Mc
a,δ0
‖Lp(x)(Rm)→Lp(x)(Rm) ≥ ‖Mc

a‖Lp(x)(Rm)→Lp(x)(Rm) − 2ε. (25)

From (19) and (25), we have

‖Mc
a,δ‖Lp(x)(Rm)→Lp(x)(Rm) = ‖Mc

a‖Lp(x)(Rm)→Lp(x)(Rm),

for ∀δ > 0 and 1 ≤ p(x) < ∞. Thus, proof of Theorem 3 is complete. �

Now, let us prove the weak (1,1) boundedness for the restricted centered diamond-α
fractional maximal operator.

Theorem 4. If Mc
a,δ is defined by (5) and 1 ≤ p(x) < ∞, then

‖Mc
a,δ‖L1(Rm)→L1,∞(Rm) = ‖Mc

a‖L1(Rm)→L1,∞(Rm)

holds for all δ > 0.

Proof. Let Mc
a,δ be defined by (5) for 0 < δ < ∞. First, we prove that

‖Mc
a,δ‖L1(Rm)→L1,∞(Rm) = ‖Mc

a,1‖L1(Rm)→L1,∞(Rm).

From the identity (17), we get

Mc
a,δ f (δx) = Mc

a,1(τδ f )(x). (26)

For any 0 < δ, we obtain from (26) that

∣∣{x : Mc
a,1(τδ f ) > µ

}∣∣ = ∣∣{x : Mc
a,δ f (δx) > µ

}∣∣ = ∣∣∣∣{ x
y

: Mc
a,δ f (x) > µ

}∣∣∣∣ = δ−m
∣∣∣∣{ x

y
: Mc

a,δ f (x) > µ

}∣∣∣∣. (27)

Thus (27) implies that

sup
µ>0

µ
∣∣{x : Mc

a,1(τδ f ) > µ
}∣∣ = δ−msup

µ>0
µ

∣∣∣∣{ x
y

: Mc
a,δ f (x) > µ

}∣∣∣∣. (28)

If ‖ f ‖L1(Rm) 6= 0, then it follows from (28) that

δ−msup
µ>0

µ|{x:Mc
a,δ f (x)>µ}|

‖ f ‖L1(Rm)
=

sup
µ>0

µ|{x:Mc
a,1(τδ f )(x)>µ}|

‖ f ‖L1(Rm)

=

δ−msup
µ>0

µ|{x:Mc
a,δ f (x)>µ}|

‖τδ f ‖L1(Rm)
.

(29)
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Now taking the supremum over all f ∈ L1(Rm) with ‖ f ‖L1(Rm) 6= 0 for the two sides
of (29), we obtain

‖Mc
a,δ‖L1(Rm)→L1,∞(Rm) = ‖Mc

a,1‖L1(Rm)→L1,∞(Rm). (30)

Next, we will use (30) to prove that

‖Mc
a,δ‖L1(Rm)→L1,∞(Rm) = ‖Mc

a‖L1(Rm)→L1,∞(Rm),

holds for 0 < δ. Now, let us prove the correctness of the following equation.

sup
µ>0

µdMc
a f (µ) = lim

δ→∞
sup
µ>0

µdMc
a,δ f (µ), (31)

holds for any f ∈ L1(Rm) with ‖ f ‖L1(Rm) 6= 0. Clearly, the right side of (31) is not bigger
than the left side, so it is enough to show opposite inequality. From Lemma 3, we have

sup
µ>0

µdMc
a f (µ) = sup

µ>0
µ

(
lim
δ→∞

dMc
a,δ f (µ)

)
.

Let A = sup
µ>0

µdMc
a f (µ). For 0 < ε, there must be a µ0 ∈ R+ such that

A ≥ µ0dMc
a f (µ0) ≥ A− ε.

We conclude that

A− ε ≤ µ0dMc
a f (µ0) = lim

δ→∞
dMc

a,δ f (µ) ≤ sup
µ>0

µ

(
lim
δ→∞

dMc
a,δ f (µ)

)
.

This is equivalent to A ≤ sup
µ>0

µ

(
lim
δ→∞

dMc
a,δ f (µ)

)
.

Herewith, (31) holds. If we use Equation (31), we obtain that

‖Mc
a‖L1(Rm)→L1,∞(Rm) = sup

‖ f ‖L1(Rm)
6=0

sup
µ>0

µdMc
a f (µ)

‖ f ‖L1(Rm)

= sup
‖ f ‖L1(Rm)

6=0

lim
δ→∞

sup
µ>0

µdMc
a,δ f (µ)

‖ f ‖L1(Rm)

= lim
δ→∞

sup
‖ f ‖L1(Rm)

6=0

sup
µ>0

µdMc
a,δ f (µ)

‖ f ‖L1(Rm)

= lim
δ→∞
‖Mc

a,δ‖L1(Rm)→L1,∞(Rm).

(32)

Thus, we get the result we want to achieve. �

Remark 2. Let Ma be the uncentered fractional maximal operator defined by (3). Define the iterated
fractional maximal operator denoted by Mi+1

a as follows:

Mi+1
a g(y) = Ma

(
Mi

ag
)
(y) (33)

for i = 1, 2, 3, . . . and y ∈ Rm. Set
(

M1
a g
)
(y) = (Mag)(y).

Lemma 6. Assume that a sequence {dk}∞
k=1 satisfies the following two conditions simultaneously:

(a) d1 = s ∈ (0.1),
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(b) for any i ≥ 1, di+1 = (1− s)di + s.

Then {dk}∞
k=1 is strictly monotone increasing and we have

lim
i→∞

di = 1.

Proof. By the mathematical induction and the two conditions (a) and (b), we can easily
obtain 0 < di < 1 for each i ∈ N. Furthermore, the condition (b) implies

di+1 − di = (1− s)di + s− di = s(1− di) > 0.

This shows that {dk}∞
k=1 is strictly monotone increasing. Since {dk}∞

k=1 is monotone
increasing and has the upper bound, the limit of {dk}∞

k=1 exists, and we can easily get

lim
i→∞

di = 1.

By Lemma 6, we have the following corollary. �

Corollary 1. For any g ∈ L∞(Rm), the equation

lim
i→∞

Mi
ag(y) = ‖g‖∞

holds for i = 1, 2, 3, . . . and y ∈ Rm.

4. Conclusions

For more than a quarter century, the concept of time scales has taken an important
place in the literature. Mathematicians and scientists working in other disciplines have
demonstrated many applications of dynamic equations and integral inequalities; for exam-
ple, transformations, inverse conversions, extensions, wave equations, heat transfer, optics,
fluid dynamics, quantum calculus, economy, etc. The boundedness and compactness of the
integral operators we know from harmonic analysis occupy an important place in the liter-
ature. Norms in variable exponential spaces are used to solve these problems. Previously,
studies on the concept of the equivalence of norms in variable exponential spaces were
conducted. In this way, we obtain the boundedness and compactness of integral operators
that we do not have any information about. For more detailed information, we refer the
reader to references.

In this study, we wanted to relate the norms of integral operators with time scales. In
this article, we showed the equivalence of the norm variable exponent Lp(x) of the restricted
centered fractional maximal diamond-α integral Mc

a,δ with norm variable exponent Lp(x) of
centered fractional maximal diamond-α integral Mc

a for all 0 < δ < ∞ and 1 ≤ p(x) < ∞
on time scales. Hereby, we will be able to establish the boundedness and compactness
conditions of fractional integral operators. In the future, we plan to carry these studies to
variable exponent grand Lebesgue spaces, which is more general.
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