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Abstract: Fractional derivative models involving generalized Mittag-Leffler kernels and opposing
models are investigated. We first replace the classical derivative with the GMLK in order to obtain
the new fractional-order models (GMLK) with the three parameters that are investigated. We utilize a
spectral collocation method based on Legendre’s polynomials for evaluating the numerical solutions
of the pr. We then construct a scheme for the fractional-order models by using the spectral method
involving the Legendre polynomials. In the first model, we directly obtain a set of nonlinear algebraic
equations, which can be approximated by the Newton-Raphson method. For the second model, we
also need to use the finite differences method to obtain the set of nonlinear algebraic equations, which
are also approximated as in the first model. The accuracy of the results is verified in the first model by
comparing it with our analytical solution. In the second and third models, the residual error functions
are calculated. In all cases, the results are found to be in agreement. The method is a powerful hybrid
technique of numerical and analytical approach that is applicable for partial differential equations
with multi-order of fractional derivatives involving GMLK with three parameters.

Keywords: fractional derivative; generalized Mittag-Leffler kernel (GMLK); Legendre polynomials;
Legendre spectral collocation method

MSC: 26A33; 41A30; 65N12; 33C45; 33E12; 65N22

1. Introduction

During the past three decades, the science of fractional calculus has attracted the inter-
est of many scientists and researchers (see, for example, [1–6]; see also [7] for some recent
developments on the subject of fractional calculus). The main motive for presenting and
researching numerical and approximate methods for solving fractional-order differential
equations is the scarcity and difficulty of finding analytical solutions to these equations.
Therefore, many researchers resorted to deriving and presenting various numerical meth-
ods for this purpose (see [8–10]).
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In order to learn more about the definitions and properties of fractional integrals
and fractional derivatives, the reader can refer to (for example) [2,3]. Many researchers
have drawn attention to the fractional-order modeling of a considerably wide variety
of problems in mathematical, physical, chemical, biological and engineering sciences.
In particular, in fluid mechanics, viscoelasticity and other applications, use has been made
of fractional integrals and fractional derivatives involving non-singular kernels (see, for
details, [11,12]). Such kernels as those with one parameter were considered in [13–37]).
Abdeljawad (see [38,39]), Abdeljawad and Baleanu [40] considered fractional derivatives
and fractional integrals with Mittag-Leffler kernels involving three parameters. For the
existence of the solution to fractional-order differential equations, one of the most important
advantages is in using the GMLK. This can be illustrated by noticing that the solution of
the following problem:

GLMK
0 Dα

t Ξ(ξ) = a and Ξ(0) = β,

where a and β are constants, does not exist for 0 < α < 1. However, via the new definition,
the solution exists (see [39]).

Our contribution in this work is to utilize the above-mentioned new definition of a
fractional derivative in investigating new fractional-order models according to the associ-
ated fractional derivative operator. We also use several important and potentially useful
properties of such special functions as the Legendre polynomials with a view of obtaining
a special scheme through means of which we can derive the numerical solutions of the
fractional-order models presented in this paper.

The format of this paper is structured as follows: In Section 2, we give some prelimi-
naries and introduce the basic definitions and associated properties that will be used in this
paper. In Section 3, the Legendre polynomials are presented together with their properties,
including their fractional derivatives. In the fourth section (Section 4), the scheme and the
algorithm for numerical solutions of the fractional-order models presented in this paper
are constructed. In the fifth section (Section 5), the numerical results for the solutions to the
presented models are discussed. Finally, in Section 6, we present our conclusions.

2. Preliminaries

In this section, we present the definition of the fractional derivative with generalized
Mittag-Leffler kernels. This definition and its properties were studied by Abdeljawad and
Baleanu [40] and Abdeljawad [39]. Abdeljawad [38] also undertook further study of the
fundamentals and properties of these operators as well as their discrete versions.

Definition 1. The left-sided fractional derivative with generalized Mittag-Leffler kernel Eγ
α,µ(λ, t)

is defined, for

n < α 5 n + 1 (n ∈ N0 := N∪ {0} = {0, 1, 2, · · · }), <(µ) > 0,

γ ∈ R and λ = − α

1− α
,

by (
GLMK

a Dα,µ,γ f
)
(x) =

M(α1)

1− α1

∫ x

a
Eγ

α1,µ(λ, x− t) f (n+1)(t) dt, (1)

where M(α1) is a normalization function such that

M(0) = M(1) = 1,

Eγ
α1,µ(λ, t) =

∞

∑
k=0

(γ)k
k! Γ(α1k + µ)

λk tα1k+µ−1, (2)

(γ)0 = 1 and (γ)k = γ(γ + 1) · · · (γ + k− 1) (k ∈ N)
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and α1 = α− n, that is, the fractional part of the parameter α.

Remark 1. We note that, if α1 = µ = γ→ 1, we obtain the ordinary derivative f (n)(x) of f (x)
of order n.

Remark 2. Henceforth, in this paper, we assume that the parameter µ is real and positive (µ > 0).

Theorem 1. The fractional derivative with generalized Mittag-Leffler kernel of xβ (β > n) of
order α (n < α 5 n + 1) is given, for µ > 0 and α1 = α− n (n ∈ N0), by

GLMK
0 Dα,µ,γxβ =

M(α1)Γ(β + 1)
1− α1

∞

∑
k=0

λk(γ)kxα1k+µ+β−n−1

k! Γ(kα1 + β + µ− n)
(3)

=
M(α1)Γ(β + 1)

1− α1
Eγ

α1,µ+β−n(λ, x). (4)

Proof. Using Definition 1 of the fractional derivative with generalized Mittag-Leffler kernel
and the series of Eγ

α1,µ(λ, t) given by (2), we have

GLMK
0 Dα,µ,γxβ =

M(α1)

1− α1

∫ x

0

∞

∑
k=0

(γ)k
k! Γ(α1k + µ)

Γ(β + 1)
Γ(β− n)

· λk tβ−n−1 (x− t)α1k+µ−1 dt

=
M(α1)

1− α1

Γ(β + 1)
Γ(β− n)

∞

∑
k=0

(γ)k
k! Γ(α1k + µ)

λk

·
∫ x

0
tβ−n−1 (x− t)α1k+µ−1 dt

=
M(α1)Γ(β + 1)

1− α1

∞

∑
k=0

(γ)k
k! Γ(kα1 + β + µ− n)

· λk xα1k+µ+β−n−1

=
M(α1)Γ(β + 1)

1− α1
Eγ

α1,µ+β−n(λ, x),

which evidently proves Theorem 1.

Definition 2 (see [40]). Let f be a continuous function defined on the closed interval [a, b] and
assume that 0 < α < 1 and µ > 0. Then the left-sided fractional integral involving the two
parameters α and µ is defined by(

LMK
a Iα,µ f

)
(x) =

1− α

M(α)

(
a I1−µ f

)
(x) +

α

M(α)

(
a I1−µ+α f

)
(x),

where (
a Iβ f

)
(x) =

1
Γ(β)

∫ x

a
(x− s)β−1 f (s) ds

is the Riemann-Liouville fractional integral of the function f (x) of order β.

The following remarks can be found in [39].

Remark 3. For γ ∈ N = {1, 2, 3, · · · }, the left-sided AB fractional integral of order α > 0 is
given, for µ 5 1, by

(
LMK

a Iα,µ,γ f
)
(x) =

γ

∑
i=0

(
γ

i

)
αi

M(α)(1− α)i−1

(
a Iαi+1−µ f

)
(x). (5)
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Remark 4. For 0 < α < 1, µ > 0 and γ ∈ N, it is easily seen that(
LMK

a Iα,µ,γ GLMK
a Dα,µ,γ f

)
(x) = f (x)− f (a).

3. The Shifted Legendre Polynomials and the Fractional Derivatives with Generalized
Mittag-Leffler Kernel

In order to obtain the shifted Legendre polynomials on the interval [0, 1], we introduce
the new variable z = 2ξ − 1. The so-shifted Legendre polynomials are defined as follows:

Θ̄s(ξ) = Θs(2ξ − 1) = Θ2s(
√

ξ),

where the set {
Θs(z) (s ∈ N0 = {0, 1, 2, · · · })

}
forms a family of orthogonal Legendre polynomials on the interval [−1, 1].

The shifted Legendre polynomial Θ̄s(ξ) of degree s has the expansion given by
(see [41])

Θ̄s(ξ) =
s

∑
k=0

(−1)s+k (s + k)!
(k!)2(s− k)!

ξk (s ∈ N0), (6)

so that, clearly, Θ̄0(ξ) = 1, Θ̄1(ξ) = 2ξ − 1, and so on.
For deriving approximate solutions, we can approximate the function Ω(ξ) ∈ L2[0, 1]

as a linear combination of the following (m + 1) terms of Θ̄s(ξ) given by (6):

Ω(ξ) ' Ωm(ξ) =
m

∑
i=0

ai Θ̄i(ξ), (7)

where the coefficients ai are given by

ai = (2i + 1)
∫ 1

0
Θ̄i(ξ)Ω(ξ)dξ (i ∈ N0 = {0, 1, 2, · · · }).

Now, in Theorem 2 below, we construct the approximation formula for
GLMK

0 Dα,µ,γ(Ωm(ξ)
)
.

Theorem 2. Given the approximation (7), it is asserted for GLMK
0 Dα,µ,γ(Ωm(t)

)
that

GLMK
0 Dα,µ,γ(Ωm(t)

)
=

m

∑
i=dαe

i

∑
j=dαe

ai Πi,j,α1 Υα1,µ,γ
i,j (t), (8)

where

Πi,j,α1 =
M(α1)

1− α1

i

∑
j=dαe

(−1)i+j (i + j)! Γ(j + 1)
(j!)2 (i− j)!

(9)

and

Υα1,µ,γ
i,j (t) =

∞

∑
k=dαe

(γ)k
k! Γ(kα1 + j + µ− n)

λk tα1k+µ+j−n−1 (10)

with
dαe := n + [α1],

[κ] being the greatest integer less than or equal to κ ∈ R.

Proof. We apply the linearization property of the fractional derivative with generalized
Mittag-Leffler kernel in (1) and Equation (7). We thus find that
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GLMK
0 Dα,µ,γ(Ωm(t)

)
=

m

∑
i=0

ai
GLMK

0 Dα,µ,γ(Θ̄i(t)
)
. (11)

The connection between Equations (1), (6) and (11) leads us to

GLMK
0 Dα,µ,γ(Θ̄i(t)

)
= 0 (i = 0, 1, · · · , dαe − 1) (12)

and

GLMK
0 Dα,µ,γ(Θ̄i(t)

)
=

i

∑
j=dαe

(−1)i+j (i + j)!
(j!)2 (i− j)!

M(α1)Γ(j + 1)
1− α1

·
∞

∑
k=dαe

(γ)k
k! Γ(kα1 + j + µ− n)

λk tα1k+µ+j−n−1 (i = dαe, · · · , m). (13)

The desired result (8) follows when we combine the Equations (11)–(13). The proof of
Theorem 2 is thus completed.

4. Construction of the Schemes of the Proposed Models

In this section, we construct the schemes of the three models presented below, which
are based on the spectral method and the properties of the Legendre polynomials as
described in the preceding section.

Model 1

Consider the following fractional differential equation:

GLMK
0 Dα,µ,γΞ(ξ) = ξ2 and Ξ(0) = 0 (0 < α 5 1), (14)

where GLMK
0 Dα,µ,γΞ(ξ) is the fractional derivative based on the generalized Mittag-Leffler

kernel in the Liouville-Caputo sense.
The exact solution of the initial value problem (14) can be found by applying the

operator 0LMK Iα,µ,γ on both sides of the first Equation (14) with the help of Remark 4.
We thus get

Ξ(ξ) =
γ

∑
i=1

(
γ

i

)
2(1− α)1−i αi ξαi−µ+3

M(α)Γ(iα− µ + 4)
+


(1− α)x2

M(α)
(µ = 1)

2(1− α)x3−µ

M(α)Γ(4− µ)
(µ < 1).

(15)

For this model, we now transform Equation (14) into a system of algebraic equations.
Indeed, by using a linear combination of the first m + 1 terms of Θ̄i(ξ), we can approximate
and expand the function Ξ(ξ) as follows:

Ξm(ξ) =
m

∑
i=0

Ξi Θ̄i(ξ). (16)

In view of Formulas (8) and (16), and upon substituting them into Equation (14), we find
that  m

∑
i=dαe

i

∑
j=dαe

Ξi Πi,j,αΥα
i,j(ξ)

 = ξ2. (17)

Thus, in order to obtain the system of algebraic equations, we collocate Equation (17) at
m + 1− dαe points ξr as given below:
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m

∑
i=dαe

i

∑
j=dαe

Ξi Πi,j,αΥα
i,j(ξr) = (ξr)

2. (18)

If we now substitute Equation (16) into (14), we obtain the following initial condition:

m

∑
i=0

Θi(0)Ξi = Ξ(0). (19)

Since the set of Equations (18) to (19) is linear, we can solve it by using known methods
and we obtain Ξi.

Finally, we substitute these Ξi into (16) and obtain the approximate solution of the
initial-value problem (14).

Model 2

In this second model, we consider the following fractional-order Fisher equation (FFE)
with the generalized Mittag-Leffler kernel:

Ξη(ξ, η) =GLMK
0 Dα,µ,γ

ξ Ξ(ξ, η) + δΞ(ξ, η)
(
1− Ξ(ξ, η)

)
(20)

(0 < δ < 1; 0 < α 5 2).

The exact solution of the Fisher Equation (20) for α = 2 is given by (see [42])

Ξ(ξ, η) =

[
1 + exp

(√
δ

6
ξ − 5

6
δη

)]−1

, (21)

subject to the following initial and boundary conditions:

Ξ(0, η) = h1(η) and Ξ(1, η) = h2(η), (22)

with
Ξ(ξ, 0) = Ξ̄(ξ). (23)

Based on the following the steps, we can obtain the numerical solution of Model 2
as follows.

1. We write α = 1 + α1, where α1 ∈ (0, 1].
2. We can approximate and expand the function Ξ(ξ, η) by using a linear combination

of the first m + 1 terms of Θ̄i(ξ) as given below:

Ξm(ξ, η) =
m

∑
i=0

Ξi(η) Θ̄i(ξ). (24)

3. In view of the Formulas (8) and (24), and upon substituting them into Equation (20),
we obtain

m

∑
i=0

d Ξi(η)

dη
Θ̄i(ξ) =

 m

∑
i=dαe

i

∑
j=dαe

Ξi(η) Πi,j,α1 Υα1,µ,γ
i,j (ξ)


+

(
m

∑
i=0

Ξi(η) Θ̄i(ξ)

)(
1−

m

∑
i=0

Ξi(η) Θ̄i(ξ)

)
. (25)

4. We collocate Equation (25) at m + 1− dαe points ξr in order to get the following
system of first-order ODEs:
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m

∑
i=0

d Ξi(η)

dη
Θ̄i(ξr) =

 m

∑
i=dαe

i

∑
j=dαe

Ξi(η)Πi,j,α1 Υα1,µ,γ
i,j (ξr)


+ µ

(
m

∑
i=0

Ξi(η) Θ̄i(ξr)

)(
1−

m

∑
i=0

Ξi(η) Θ̄i(ξr)

)
. (26)

5. Substituting from Equation (24) into (20), we can obtain the following boundary
conditions of the system (26):

m

∑
i=0

Θ̄i(0)Ξi(η) = h1(η) and
m

∑
i=0

Θ̄i(1)Ξi(ξ) = h2(ξ). (27)

6. To obtain systems of nonlinear algebraic equations, we apply the FDM to the ODE
(26) and (27), where

Ξi(ξ) (i = 0, 1, · · · , m)

are unknown. We thus obtain

m

∑
i=0

(
Ξs

i − Ξs−1
i

τ

)
Θ̄i(ξr) =

 m

∑
i=dαe

i

∑
j=dαe

Ξi(η)Πi,j,α1 Υα1,µ,γ
i,j (ξr)


+ µ

(
m

∑
i=0

Ξi(η) Θ̄i(ξr)

)(
1−

m

∑
i=0

Ξi(η) Θ̄i(ξr)

)
(28)

and

m

∑
i=0

(
Ξs

i − Ξs−1
i

τ

)
Θ̄i(ξr) =

 m

∑
i=dαe

i

∑
j=dαe

Ξi(η)Πi,j,α1 Υα1,µ,γ
i,j (ξr)


+ µ

(
m

∑
i=0

Ξi(η) Θ̄i(ξr)

)(
1−

m

∑
i=0

Ξi(η) Θ̄i(ξr)

)
, (29)

with
m

∑
i=0

Θ̄i(0)Ξs
i = hs

1 and
m

∑
i=0

Θ̄i(1)Ξs
i = hs

2. (30)

7. We can explain more fully for the case when m = 4. By using the NIM, we obtain the
following system given by (28) and (30) in the matrix form:

Ξs+1 = Ξs − J−1(Ξs) G(Ξs), (31)

where
Ξs = (Ξs

0, Ξs
1, Ξs

2, Ξs
3, Ξs

4)
T ,

J−1(Ξs) is the inverse of the Jacobian matrix and G(Ξs) is the vector that represents
the nonlinear equations. The initial solution Ξ0 can be obtained by setting s = 0 in
the initial condition (23) as detailed below.

(a) After substituting Equation (24) into the initial condition (23), we obtain

Ξ(ξ, 0) = Ξ̄(ξ) '
4

∑
i=0

Ξi(0)Θ̄i(ξ). (32)

(b) Solving the following system of linear equations, we obtain the components of
the initial solution Ξ0:
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4

∑
i=0

Ξ0
i Θ̄i(ξr) = Ξ̄(ξr), r = 0, 1, 2, 3, 4, (33)

where the points ξr (r = 0, 1, 2, 3, 4) are the roots of Θ̄5(ξ).

Model 3

Now, with the third model we consider the fractional Korteweg–de Vries equation
(FKdVE) with generalized Mittag-Leffler kernel

Ξη(ξ, η) +
1
2

GMLK
0 Dα1,µ,γ

ξ Ξ(ξ, η) + Ξ(ξ, η) GLMK
0 Dα2,µ,γ

ξ Ξ(ξ, η) = 0, (34)

where 0 < α1 5 1 and 0 < α2 5 3.
The exact solution for the classical integer-form is given by

Ξ(ξ, η) = 6 b2
[
sech

(
b ξ − 2b3 η

)]2
, (35)

subject to the following initial and boundary conditions:

Ξ(0, η) = f1(η) and Ξ(1, η) = f2(η) (36)

and
Ξ(ξ, 0) = Ξ̄(ξ). (37)

Following the same steps as we used in the cases of Model 1 and Model 2, together with

α2 = N + α̃2 (N = 0, 1, 2)

and α̃2 ∈ (0, 1], we can obtain the following set of algebraic equations solving Model 3:

m

∑
i=0

(
Ξs

i − Ξs−1
i

τ

)
Θ̄i(ξr) +

1
2

 m

∑
i=dα1e

i

∑
j=dα1e

Ξi(η)Π1,i,j,α1 Υα1,µ1,γ1
1,i,j (ξr)


+

(
m

∑
i=0

Ξi(η) Θ̄i(ξr)

) m

∑
i=dα2e

i

∑
j=dα2e

Ξi(η)Π2,i,j,α̃2 Υα̃2,µ2,γ2
2,i,j (ξr)

 = 0. (38)

5. Numerical Results, Graphical Illustrations and Discussions

In this section, we discuss the numerical results for the approximate solutions pre-
sented in Section 4. These results will be illustrated in a number of figures.

For Model 1, the accuracy and efficiency of the numerical approximate solution are
verified by comparison with the analytical solution that we computed. For Model 2 and
Model 3, the accuracy of the numerical solutions can be satisfied by using the residual error
function. This will also be illustrated in various figures.

Figure 1 shows the behavior of the analytical solution (15) of Model 1 for different
values of µ and γ. In this figure, we set α = 0.3 and m = 6.

Figure 2 shows the absolute error between the approximate and the exact solutions
of Model 1 with α = 0.3 and m = 6, and for different values of µ and γ. It is clear from
Figure 2 that the absolute error is very small and of the order of the error is 10−6. This gives
a good impression of the accuracy and efficiency of the solutions, since the comparison is
made with the analytical solution. This impression is useful when numerical solutions are
found for fractional-order systems that do not have an analytical solution.
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μ 1,γ 1
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Figure 1. Graph of the exact solutions of Model 1, with α = 0.3 and m = 6, and for different values of
µ and γ.
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Figure 2. Graph of the absolute error between the exact and the approximate solutions of Model 1
when α = 0.3 and m = 6, and for different values of µ and γ.

In Figure 3, we show the approximate solution of the FFE for different values of µ.
In Model 2, we set α = 1.5, T = 1, τ = 0.00001, γ = 1 and m = 10. In Model 2, the
analytical solution is unknown; thus, in order to verify the accuracy of the approximate
solution, we define the residual error function (REF) as follows:

REF(ξ, η) =
(
Ξm(ξ, η)

)
η
− GLMK

0 Dα,µ,γ(Ξm(ξ, η))

− µ Ξm(ξ, η)(1− Ξm(ξ, η)), (39)

We illustrate the REF in Figure 4 for different values of µ and γ, and for α = 1.5, T = 1,
τ = 0.00001 and m = 10. We note from this illustration in Figure 4 that the order of the REF
is 10−3.

In the case of Model 3 for the FKdVE, we follow the same procedures and treatments
that were applied for Model 2. In Model 3, we set α2 = 2.7, α1 = 0.7, T = 1, τ = 0.00001
and m = 5. The numerical results of Model 3 are illustrated in Figures 5 and 6.

Remarkably, it is presumably the first time that the numerical results, which are
presented in this paper, are based upon the use of the fractional derivatives and also upon
the properties of the Legendre polynomials as well as GMLK.
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Figure 3. Graph of the solutions of Model 2, with α = 1.5, T = 1, m = 10 and τ = 0.00001, and for
different values of µ and γ.
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Figure 4. Graph of the residual error function (REF) of the approximate solution of Model 2, with
α = 1.5, T = 1, m = 10 and τ = 0.00001, and for different values of µ and γ.
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Figure 5. Graph of the solution of Model 3, with α2 = 2.7, α1 = 0.7, T = 1, m = 5 and τ = 0.00001,
and for different values of µ and γ.
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Figure 6. Graph of the of the residual error function (REF) of the approximate solution of Model 3,
with α2 = 2.7, α1 = 0.7, T = 1, m = 5 and τ = 0.00001, and for different values of µ and γ.

6. Conclusions

In this paper, classical (integer-order) derivatives have been replaced by some fractional-
order derivatives, which are based upon generalized Mittag-Leffler type kernels. Three
fractional-order models have been presented: The first model belongs to fractional ordinary
differential equations, and the other two models involve fractional partial differential
equations. In the first case, the treatment was achieved by directly converting the fractional-
order model with the help of the Legendre polynomials to a system of algebraic equations
and then finding approximate solutions by using the Newton-Raphson method, in ad-
dition to finding the solution analytically. In the second and the third fractional-order
models, they were converted into differential equations, and by using the finite-difference
method (FDM) to approximate the derivative with respect to time, we were led to algebraic
equations. We then obtained approximate solutions as in the first model.

The accuracy of the solution was verified in the first model in comparison with the
exact solution. For the second and the third models, the accuracy of the approximate
solutions was verified by calculating the residual error function (REF). In all cases, the
order of the error is small, and its value ranges between 10−3 and 10−6. In all of the
calculations in this paper, the Mathematica software package was used. Finally, we suggest
that the researchers test the algorithm’s efficiency using several special functions, such as
Bernstein, Chebyshev, and others.
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