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Abstract: This paper investigates the distributed computation issue of generalized Nash equilib-
rium (GNE) in a multi-player game with shared coupling constraints. Two kinds of relatively fast
distributed algorithms are constructed with alternating inertia and overrelaxation in the partial-
decision information setting. We prove their convergence to GNE with fixed step-sizes by resorting
to the operator splitting technique under the assumptions of Lipschitz continuity of the extended
pseudo-gradient mappings. Finally, one numerical simulation is given to illustrate the efficiency and
performance of the algorithm.

Keywords: generalized Nash equilibrium; distributed algorithm; partial decision; networked games

1. Introduction

Game theory is the study of mathematical models for describing competition and
cooperation interaction among intelligent rational decision-makers [1]. In the past few
years, networked games have received increasing attention due to their wide applica-
tions in different areas such as competitive economy [2], power allocation in interference
channel models [3,4], environmental pollution control [5], cloud computing [6], wireless
communication [7–9], and adversarial classification [10,11].

The Nash equilibrium (NE) is a set of strategies where each player’s choice is its best
response to the choices of the other players of the game [12]. An NE in games with shared
coupling constraints is referred to as generalized Nash equilibrium (GNE) [13]. In order
to compute the GNE, a great number of algorithms have been proposed [14–18], most of
which depend on full-decision information, i.e., each player is assumed to have full access
to all of the other players’ actions. However, such an assumption could be impractical in
large-scale distributed networks [19,20]. To overcome this shortcoming, fully distributed
algorithms under the partial-decision information setting have recently become a research
topic that attracts recurring interest.

Under the partial-decision information setting, each player can communicate only
with its neighbors (instead of all its opponents) via a certain communication graph. In
this case, the player has no direct access to some necessary decision information involving
its cost function. In order to make up for the missing information, the player estimates
other players’ actions and exchanges its estimates with neighbors. Such an estimate would
tend to be the real actions of players by designing an appropriate consensus protocol [21].
So far, some efforts have been devoted to the GNE seeking problem with partial-decision
information. For example, an adaption of a fictitious play algorithm for large-scale games
is introduced in [22], and information exchange techniques for aggregative games are
studied in [23]. An operator-theoretic approach has been introduced to analyze GNE
problems [16,21], under which the problem is cast as finding a zero of a sum of monotone
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operators through primal-dual analysis and show its convergence by reformulating it as a
forward–backward fixed-point iteration.

Compared with the existing distributed algorithms for diminishing steps [24], the
algorithm for fixed steps has the potential to exhibit a faster convergence [16]. Very
recently, some distributed proximal algorithms and project-gradient algorithms have been
proposed for seeking the GNE with fixed steps [16,25–28]. It is worth noting that most of
the existing algorithms, under the partial-decision information setting, require that the
extended pseudo-gradient mapping in the augmented space of actions and estimates is
strictly/strongly monotone. Such an assumption seems strong and how to relax it becomes
a technical difficulty. In this paper, we would like to investigate the GNE seeking algorithm
under a mild assumption of the extended pseudo-gradient mapping, like [21].

In addition, some refined GNE seeking algorithms with inertia and relaxation have
been proposed in ([16], [Alg. 6.1]), ([29], [Alg. 2]) and ([25], [Alg. 3]) to accelerate the
convergence to GNE. Although the fast convergence of the mentioned algorithms has been
validated numerically, more computation resources are inevitably required at each iteration.
Note that the computation resources could be limited and expensive in many situations.
Inspired by the above discussion, in this paper, we combine a projection based algorithm via
a doubly augmented operator splitting from the work [21] with the inertia/overrelaxation
idea from the paper [25]. Specifically, we design distributed GNE seeking algorithms to
balance the convergence rate and computation consumption in games with shared coupling
constraints under a partial-decision information setting. Two kinds of fully distributed
algorithms, i.e., alternating inertial algorithms and alternating overrelaxed algorithms, are
proposed with fixed step-sizes. Their convergence to the GNE are guaranteed under a
mild assumption on the extended pseudo-gradient mappings, compared to [26], by using
the Karush–Kuhn–Tucker (KKT) conditions of an optimization problem and variational
inequality. Finally, a numerical example is provided to show the effectiveness of our
algorithms that are validated numerically to have a relatively fast convergence rate.

The remainder of the paper is organized as follows. In Section 2, we introduce some
notations and backgroud theory. Section 3 describes the problem that we are interested in,
formulates it into mathematical model, and rewrites the game into a problem of finding the
solution of the stochastic variational inequality (SVI). In Section 4, we propose two alternat-
ing fully distributed GNE seeking algorithms under a partial-decision information setting
and assumptions to guarantee convergence; the convergence analysis is also presented in
this section. We present numerical results in Section 5 and finally conclude in Section 6.

Notations: Let Rm(Rm
+) represent an m-dimensional (non-negative) Euclidean space.

0n ∈ Rn is an n−dimensional vector with all elements equal to 0, and Im ∈ Rm×m is the
identity matrix with m×m dimension. 1N denotes the N-dimension column vector with all
elements equal to 1. We denote Ω1×· · ·×Ωn or ∏n

i=1 Ωi as the Cartesian product of the sets
Ωi, i = 1, · · · , n. For given n column vectors x1, · · · , xn, col(x1, · · · , xn) = [x>1 , · · · , x>n ]>.
Let [x]k denote the k-th element in column vector x, let 〈x, y〉 = x>y denote the inner
product of x, y, and ‖x‖ =

√
x>x denotes the norm induced by the inner product 〈·, ·〉.

Φ � 0 stands for a symmetric positive definite matrix. Similarly, the Φ-induced product
is 〈x, y〉Φ = 〈Φx, y〉, and the Φ-induced norm is ‖x‖Φ =

√
〈Φx, x〉. ⊗ is the Kronecker

product, and diag(A1, · · · , An) denotes the block diagonal matrix with A1, · · · , AN on its
diagonal. Suppose A ∈ Rm×n, then ‖A‖∞ = max{∑n

k=1 |[Ai]1k|, · · · , ∑n
k=1 |[Ai]mk|}, where

[Ai]jk denotes the element of Ai in the j-th row and k-th column.

2. Preliminary
2.1. Operator Theory

The following concepts are reviewed from [30]. Let A : Rm → 2Rm
be a set-valued

operator. Denote Id as the identity operator, i.e., Id(x) = x. The graph of A is graA =
{(x, u) ∈ Rm × Rm|u ∈ Ax}. The zero set of operator A is zerA = {x ∈ Rm|0 ∈ Ax}.
Define the resolvent of operator A as RA = (Id +A)−1. An operator A is called monotone
if ∀(x, u), ∀(y, v) ∈ graA, we have 〈x− y, u− v〉 ≥ 0. Moreover, it is maximally monotone
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if graA is not strictly contained in the graph of any other monotone operator, i.e., for every
(x, u) ∈ Rm ×Rm, (x, u) ∈ graA⇔ ∀(y, v) ∈ graA, 〈x− y, u− v〉 ≥ 0. A is nonexpansive
if it is Lipschitz continuous with constant 1, i.e., ∀x, y ∈ Rm, ‖Ax−Ay‖ ≤ ‖x− y‖, and is
firmly nonexpansive if ‖Ax−Ay‖2 + ‖(Id−A)x− (Id−A)y‖2 ≤ ‖x− y‖2. The operator
A is α-averaged with the constant α ∈ [0, 1], denoted by A ∈ A(α), if ∀x, y ∈ Rm, ‖Ax−
Ay‖2 ≤ ‖x− y‖2 − (1− α)/α‖(Id−A)x− (Id−A)y‖2. We can easily derive that if A is
averaged then it is nonexpansive, and A is firmly nonexpansive if and only if it is 1/2-
averaged. A is β-cocoercive for β > 0, if ∀x, y ∈ Rm, β‖Ax−Ay‖2 ≤ 〈x− y,Ax−Ay〉. The
normal cone operator of the set Ω is defined as

NΩ(x) =


∅ x /∈ Ω
{v|〈v, y− x〉 ≤ 0, ∀y ∈ Ω} x ∈ bd(Ω)

0 x ∈ int(Ω).

(1)

Let the projection of x onto Ω be PΩ(x) = arg miny∈Ω ‖x − y‖, and PΩ(x) = RNΩ(x) =

(Id + NΩ)−1(x).

2.2. Graph Theory

Let the graph G = (N , E) describe the information exchanged among agents, where
N := {1, · · · , N} is the set of players and E ⊂ N × N is the edge set. If player i can
obtain information from player j, then (i, j) ∈ E and j belong to player i’s neighbor set
Ni := {j|(i, j) ∈ E}. G is said to be undirected when (i, j) ∈ E if and only if (j, i) ∈ E .
Let W := [wij] ∈ RN×N be the weighted adjacency matrix of G with wij > 0 if j ∈ Ni

and wij = 0 otherwise. Assume that W = W>. The degree matrix is defined as Deg :=
diag[d1, · · · , dN ] = diag[∑N

j=1 w1j, · · · , ∑N
j=1 wNj], and the weighted Laplacian of graph G

is L := Deg−W. If G is connected and undirected, then 0 is an eigenvalue of L, and the
eigenvalues of L are 0 < s2(L) ≤ · · · ≤ sN(L) in ascending order.

3. Game Formulation

In this section, we build a mathematical setup about the problem considered.
Consider a set of players N = {1, · · · , N}, where every player i ∈ N controls its

local decision variable xi ∈ Ωi ⊆ Rni and Ωi is the private decision set of player i. Denote
n := ∑N

i=1 ni and Ω := Ω1 × · · · ×ΩN ∈ Rn, then the stacked vector of all the players’
decisions x := col(xi)i∈N ∈ Rn is called the decision profile. We also write x = (xi, x−i),
where x−i := col(xj)j∈N/{i} = col(x1, · · · , xi−1, xi+1, · · · , xN) denotes all of the decisions
except player i’s.

The local objective function of each player i ∈ N is denoted by Ji(xi, x−i), and the
affine coupling constrained set is defined as

K :=
N

∏
i=1

Ωi ∩ {x ∈ Rn|Ax ≤ b} (2)

where A := [A1, · · · , AN ] ∈ Rm×n, Ai ∈ Rm×ni and b := ∑N
i=1 bi ∈ Rm. Here, Ai and bi are

the local data only accessible to player i. Define the feasible set of player i as Ki(x−i) :=
{xi ∈ Rni |(xi, x−i) ∈ K}, which implies that the feasible set of each player depends on the
action of the other players. Every player aims to optimize its objective function, and the
game can be represented by the inter-dependent optimization problems

∀i ∈ N : min
xi∈Rni

Ji(xi, x−i) s.t. xi ∈ Ki(x−i). (3)

Definition 1. A GNE of game (3) is a collective strategy x∗ = col(x∗i )i∈N such that for all i ∈ N

x∗i ∈ arg min Ji(xi, x∗−i) s.t. xi ∈ Ki(x−i). (4)
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In order to deal with the coupling constraints and solve the problems, we define the
Lagrange function of each player i ∈ N :

Li(xi, λi; x−i) = Ji(xi, x−i) + λ>i (Ax− b) (5)

where λi ∈ Rm
+ is a dual variable. According to optimization theory, if x∗i is an opti-

mal solution to (3), then there exists λ∗i ∈ Rni such that the following KKT conditions
are satisfied: 

∇xiLi(x∗i , λ∗i ; x∗−i) = 0ni

〈λ∗i , Ax∗ − b〉 = 0
−(Ax∗ − b) ≥ 0
λ∗i ≥ 0.

(6)

By using the normal cone operator, the KKT conditions (6) are equivalent to{
0ni ∈ ∇xi Ji(x∗i , x∗−i) + A>i λ∗i + NΩi (x∗i )
0m ∈ −(Ax∗ − b) + NRm

+
(λ∗i ).

(7)

Note that by the definition of a normal cone, one has NRm
+
(λ∗i ) = ∅ when λ∗i /∈ Rm

+, which
implies λ∗i ∈ Rm

+ (equivalently [λ∗i ]k ≥ 0) when (7) holds. Furthermore, NRm
+
= ∏m

k=1 NR+ ,
that is, if [λ∗i ]k = 0, then NR+([λ

∗
i ]k) = −R+, and thus [Ax∗ − b]k ≤ 0; if [λ∗i ]k > 0, then

NR+([λ
∗
i ]k) = 0, and hence [Ax∗ − b]k = 0. This result implies that Ax∗ − b ≤ 0 and

〈λ∗i , Ax∗ − b〉 = 0.
We consider the GNE with the same Lagrangian multipliers for every player, i.e.,

λ∗1 = λ∗2 = · · · = λ∗N = λ∗, which is called variational GNE (v-GNE). The v-GNE x∗ is a
solution of the following inequality VI(F, K) :

〈F(x∗), x− x∗〉 ≥ 0, ∀x ∈ K (8)

where F is the pseudo-gradient mapping of the game with the following form:

F(x) := col(∇xi Ji(xi, x−i))i∈N . (9)

Assumption 1. Given x−i, Ji(xi, x−i) is continuously differentiable and convex in xi, and Ωi is
nonempty, compact and convex for each player i, then K is nonempty and satisfies Slater’s constraint
qualification.

Assumption 2. F is µ-monotone and θ0-Lipschitz continuous, i.e., for any point x and x′, 〈x−
x′, F(x)− F(x′)〉 ≥ µ‖x− x′‖2 and ‖F(x)− F(x′)‖ ≤ θ0‖x− x′‖.

It follows from ([15], [Theorem 4.8]) that x∗ solves VI(F, K) (8) if and only if there
exists a λ∗ ∈ Rm such that the KKT conditions are satisfied:{

0n ∈ F(x∗) + A>λ∗ + NΩ(x∗)
0m ∈ −(Ax∗ − b) + NRm

+
(λ∗)

(10)

where NΩ(x∗) = ∏N
i=1 NΩi (x∗i ).

Assumption 1 guarantees the existence of the v-GNE for game (3) by ([31], [Corol-
lary 2.2.5]). The goal of this paper is to design distributed algorithms for seeking the
v-GNE under a partial-decision information setting, where both the computational cost and
convergence rate are taken into consideration.
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4. Alternating Distributed v-GNE Algorithms

In this section, we propose two kinds of distributed algorithms for seeking the v-GNE
of game (3) with partial-decision information, where each player controls its own actions
and exchanges information with its neighbors via the communication graph.

Remark 1. Some GNE seeking algorithms with inertia and overrelaxation have been proposed
[28,29]. Although the fast convergence of these algorithms has been validated numerically, more
computation resources are inevitably required at each iteration. Note that the computation resources
could be limited and expensive in many situations. Inspired by the above discussion, in this section
we design distributed GNE seeking algorithms with alternated inertia and alternated overrelaxation,
where both fast convergence rate and low computation consumption are taken into consideration.

Suppose that player i ∈ N controls its local decision xi ∈ Rni and λi ∈ Rm
+ (i.e., the

estimation of λ∗ in (10)). In order to make up for the lack of non-neighbors’ information, we
introduce an auxiliary variable xi for each player i that provides the estimation of the other
players’ decisions. To be specific, xi = col(xj

i)j∈N where xj
i denotes the player i’s estimation

of player j’s decision and xi
i = xi. We can also rewrite xi = (xi, x−i

i ), where x−i
i represents

player i’s estimation vector except its own decisions. In addition, an auxiliary variable
zi ∈ Rm

+ is introduced for each player i ∈ N . We assume that each player exchanges its
local variable {xi, λi, zi} with its neighbor through the communication graph G.

Assumption 3. The communication graph G is undirected and connected.

4.1. Alternating Inertial Distributed v-GNE Seeking Algorithm

In this subsection, we propose an alternating inertial distributed algorithm for seeking
the v-GNE, where the inertia is adopted intermittently (see Algorithm 1). Here, xi,k, x−i

i,k
and zi,k, λi,k denote xi, x−i

i , zi, λi at iteration k, respectively, and x̃i,k, x̃−i
i,k , z̃i,k, λ̃i,k denote

x̃i, x̃−i
i , z̃i, λ̃i at iteration k, respectively. ρ is the inertial parameter, c is the coupling parame-

ter, and τi, νi, σi are the fixed step-sizes of player i in the update step. PΩi is the projection
operator on to the set Ωi.

Let x := col(xi)i∈N , z := col(zi)i∈N and λ := col(λi)i∈N . Let x̃ := col(x̃i)i∈N with
x̃i := (x̃i, x̃−i

i ), z̃ := col(z̃i)i∈N and λ̃ := col(λ̃i)i∈N . In addition, A := diag((Ai)i∈N ). Lλ :=
L⊗ Im, Lx := L⊗ In, b := col(bi)i∈N , τ−1 := diag((τ−1

i In)i∈N ), ν−1 := diag((ν−1
i In)i∈N )

and σ−1 := diag((σ−1
i In)i∈N ).

The extended pseudo-gradient mapping F is defined as

F(x) := col(∇xi Ji(xi, x−i
i ))i∈N . (11)

Let v := col(x, z, λ) ∈ Ω, where Ω := RNn × RNm × RNm
+ , and we define operators

A,B and matrix Φ as follows:

A : v 7→

R>NΩ(Rx)
0

NRNm
+

(λ)

+

 0 0 R>A>

0 0 −Lλ

−AR Lλ 0

v

B : v 7→

R>F(x) + cLxx
0

Lλλ + b


(12)

Φ :=

 τ−1 0 −R>A>

0 ν−1 Lλ

−AR Lλ σ−1

 (13)
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whereR := diag((Ri)i∈N ) with

Ri :=
[
0ni×n<i Ini 0ni×n>i

]
, (14)

n<i := ∑j<i nj and n>i := ∑j>i nj.

Algorithm 1 Distributed alternating inertial v-GNE seeking.

Initialization: xi,0 ∈ Ωi, x−i
i,0 ∈ Rn−ni , λi,0 ∈ Rm

+, zi,0 ∈ Rm

Acceleration: Set ρk = 0 if k is even, ρk = ρ if k is odd.

x̃i,k = xi,k + ρk(xi,k − xi,k−1)

x̃−i
i,k = x−i

i,k + ρk(x
−i
i,k − x−i

i,k−1)

z̃i,k = zi,k + ρk(zi,k − zi,k−1)

λ̃i,k = λi,k + ρk(λi,k − λi,k−1)

Update:

xi,k+1 = PΩi (x̃i,k − τi(∇xi Ji(x̃i,k, x̃−i
i,k ) + A>i λ̃i,k

+ c ∑
j∈Ni

wij(x̃i,k − x̃i
j,k)))

x−i
i,k+1 = x̃−i

i,k − τic ∑
j∈Ni

wij(x̃−i
i,k − x̃−i

j,k )

zi,k+1 = z̃i,k + νi ∑
j∈Ni

wij(λ̃i,k − λ̃j,k)

λi,k+1 = PRm
+
(λ̃i,k + σi(Ai(2xi,k+1 − x̃i,k)− bi

− ∑
j∈Ni

wij(2(zi,k+1 − zj,k+1)− (z̃i,k − z̃j,k))

− ∑
j∈Ni

wij(λ̃i,k − λ̃j,k)))

Let vk := col(xk, zk, λk), ṽk := col(x̃k, z̃k, λ̃k), where xk, zk, λk, x̃k, z̃k, λ̃k denote x, z, λ,
x̃, z̃, λ̃ at iteration k, respectively. Suppose that Φ � 0 and Φ−1A is maximally monotone,
then Algorithm 1 is equivalent to{

vk+1 = T(vk), if k is even
vk+1 = T(vk + ρ(vk −vk−1)), if k is odd

(15)

where Φ, A, B in (12)–(13), T := T2 ◦ T1, T1 := Id−Φ−1B, and T2 := (Id + Φ−1A)−1.

Lemma 1. Suppose Φ � 0 and Φ−1A is maximally monotone, then any limit point v̄ =
col(x̄, z̄, λ̄) of Algorithm 1 is a zero of A+B and a fixed point of T2 ◦ T1.

Proof. By the continuity of the right hand of (15), v̄ = T(v̄). Since Φ is positive definite,

v̄ = T2 ◦ T1(v̄) := (Id + Φ−1A)−1 ◦ (Id−Φ−1B)(v̄)

⇔ (Id + Φ−1A)(v̄) ∈ (Id−Φ−1B)(v̄)

⇔ 0 ∈ Φ−1(A+B)(v̄)

⇔ 0 ∈ (A+B)(v̄).
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In order to show the convergence of the algorithm, the following assumptions are
introduced.

Assumption 4. The extended pseudo-gradient mapping F in (11) is θ-Lipschitz continuous, i.e.,
there exists θ > 0 such that for any x and x′, ‖F(x)− F(x′)‖ ≤ θ‖x− x′‖.

Let cmin := 1
s2(L) (

(θ+θ0)
2

4µ + θ) with µ, θ0 in Assumption 2, and θ in Assumption 4. Let

Ex := {x ∈ RNn|x = 1N ⊗ x, x ∈ Rn}. It follows from ([21], [Lemma 4]) that if c is selected
such that c > cmin, then A is maximally monotone and B is β-restricted cocoercive, i.e., for
any v and any v′ ∈ ΩE, where ΩE := Ex × RNm × RNm

+ ,

〈v−v′,Bv−Bv′〉 ≥ β‖Bv−Bv′‖2, (16)

where 0 < β ≤ min{ 1
2d∗ , µ

θ2 }, and d∗ is the maximal weighted degree of G, i.e., d∗ =

max{∑N
j=1 w1j, · · · , ∑N

j=1 wNj}.
Similar to [21], a mild assumption (Assumption 4) on the pseudo-gradient mapping F

is required only, while the requirement of strong monotonicity is relaxed for F.

Theorem 1. Suppose Assumptions 1-4 hold. Choose c > cmin, δ > 1
2β , and the step sizes

τi ≤ 1
‖A>i ‖∞+δ

, νi ≤ 1
2di+δ , and σi ≤ 1

‖Ai‖∞+2di+δ
. Then for any ρ ∈ [0, 1

2 ), the sequence

{xk, zk, λk}k∈N generated by Algorithm 1 converges to the equilibrium (x∗, z∗, λ∗), where x∗ =
1N ⊗ x∗ and x∗ is a v-GNE of the game (3).

Proof. It follows from the Gershgorin’s circle theorem ([32], [§6.8 Theorem 1]) that, given
any δ > 0, Φ is positive definite and Φ− δIn+2mN is positive semi-definite if the step sizes
τi ≤ 1

‖A>i ‖∞+δ
and νi ≤ 1

2di+δ .

Next, we first show the convergence of {v2k} and then show the convergence of {vk}.
By ([21], [Lemma 6]), we have T2 ∈ A( 1

2 ) and T1 is 1
2βδ -restricted averaged, i.e., for any

v and any v′ ∈ ΩE,

‖T1v− T1v′‖2
Φ ≤‖v−v′‖2

Φ

−(2βδ− 1)‖v−v′ − (T1v− T1v′)‖2
Φ. (17)

It follows from ([30], [Proposition 4.32]) that T = T2 ◦ T1 is α-restricted averaged, with α = 2
3

when δ > 1
β . Let v∗ be a fixed point of T, then v∗ ∈ ΩE according to ([21], [Theorem 1]).

(i) For the subsequence {v2k}, by (15), we have v2(k+1) = T(T(v2k) + ρ(T(v2k)−
v2k)). Then, by T is α− restricted averaged, we obtain

‖v2k+2 −v∗‖2
Φ

=‖T(T(v2k) + ρ(T(v2k)−v2k))−v∗‖2
Φ

≤‖T(v2k) + ρ(T(v2k)−v2k)−v∗‖2
Φ

− 1− α

α
‖T(v2k) + ρ(T(v2k)−v2k)−v2k+2‖2

Φ. (18)

By resorting to ‖αx + (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1− α)‖y‖2,

‖T(v2k) + ρ(T(v2k)−v2k)−v∗‖2
Φ

=(1 + ρ)‖T(v2k)−v∗‖2
Φ − ρ‖v2k −v∗‖2

Φ

+ (1 + ρ)ρ‖T(v2k)−v2k‖2
Φ, (19)



Fractal Fract. 2021, 5, 62 8 of 15

and by using (17) again, (18) can be rewritten as

‖v2k+2 −v∗‖2
Φ

≤(1 + ρ)‖v2k −v∗‖2
Φ − ρ‖v2k −v∗‖2

Φ

− (1 + ρ)
1− α

α
‖T(v2k)−v2k‖2

Φ

+ (1 + ρ)ρ‖T(v2k)−v2k‖2
Φ

− 1− α

α
‖T(v2k) + ρ(T(v2k)−v2k)−v2k+2‖2

Φ

=‖v2k −v∗‖2
Φ − (1 + ρ)

(
1− α

α
− ρ

)
‖T(v2k)−vk‖2

Φ

− 1− α

α
‖T(v2k) + ρ(T(v2k)−v2k)−v2k+2‖2

Φ. (20)

Choose ρ ≤ 1−α
α = 1

2 , then

‖v2k+2 −v∗‖2
Φ ≤ ‖v2k −v∗‖2

Φ

−1− α

α
‖T(v2k) + ρ(T(v2k)−v2k)−v2k+2‖2

Φ. (21)

This result implies that the sequence {‖v2k −v∗‖2
Φ} is decreasing and non-negative, and

thus converges. Moreover, we have

∞

∑
k=0
‖T(v2k) + ρ(T(v2k)−v2k)−v2(k+1)‖2

Φ < ∞

and T(v2k) + ρ(T(v2k) − v2k) − v2(k+1) → 0. Note that since {v2k} is bounded, then
there exists a convergent subsequence {v2nk} that converges to ṽ. Obviously,

v2(nk+1) = T(T(v2nk ) + ρ(T(v2nk )−v2nk )).

Let k → ∞, we have ṽ = Tṽ, which implies that ṽ is a fixed point of T and thus
{‖v2k − ṽ‖2

Φ} converges. Since {‖v2nk − ṽ‖2
Φ} converges to 0, {v2k} converges to ṽ.

(ii) T is restricted nonexpansive since it is 2
3 -restricted averaged, and then one obtains

‖v2k+1 − ṽ‖ = ‖Tv2k − Tṽ‖ ≤ ‖v2k − ṽ‖, (22)

which implies that the odd subsequence {v2k+1} also converges to ṽ, and thus {vk}
converges to ṽ. Note that Φ � 0 and Φ−1A is maximally monotone. ṽ is a fixed point of
T, and hence is a zero of A+B by Lemma 1. It follows from ([21], [Theorem 1]) that given
any ṽ := col(x∗, z∗, λ∗) ∈ zer(A+B), then x∗ = 1N ⊗ x∗, and x∗ solves VI(F, K) (8), that
is, x∗ is a v-GNE of game (3).

4.2. Alternating Overrelaxed Distributed v-GNE Seeking Algorithm

In this subsection, an alternating overrelaxed distributed algorithm is constructed for
seeking the v-GNE, presented in Algorithm 2, and also that η is an overrelaxed parameter.
Here the partial-decision information setting is considered.
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Algorithm 2 Distributed alternating overrelaxed v-GNE seeking.

Initialization: xi,0 ∈ Ωi, x−i
i,0 ∈ Rn−ni , λi,0 ∈ Rm

+, zi,0 ∈ Rm

Update:

x̃i,k = PΩi (xi,k − τi(∇xi Ji(xi,k, x−i
i,k ) + A>i λi,k

+ c ∑
j∈Ni

wij(xi,k − xi
j,k)))

x̃−i
i,k = x−i

i,k − τic ∑
j∈Ni

wij(x−i
i,k − x−i

j,k )

z̃i,k = zi,k + νi ∑
j∈Ni

wij(λi,k − λj,k)

λ̃i,k = PRm
+
(λi,k + σi(Ai(2x̃i,k − xi,k)− bi

− ∑
j∈Ni

wij(2(z̃i,k − z̃j,k)− (zi,k − zj,k))

− ∑
j∈Ni

wij(λi,k − λj,k)))

Acceleration: Set ηk = 1 if k is even, ηk = η if k is odd.

xi,k+1 = x̃i,k + (ηk − 1)(x̃i,k − xi,k)

x−i
i,k+1 = x̃−i

i,k + (ηk − 1)(x̃−i
i,k − x−i

i,k )

zi,k+1 = z̃i,k + (ηk − 1)(z̃i,k − zi,k)

λi,k+1 = λ̃i,k + (ηk − 1)(λ̃i,k − λi,k)

Similar to (15), we suppose that Φ � 0 and Φ−1A is maximally monotone, then
Algorithm 2 is equivalent to{

vk+1 = T(vk) if k is even
vk+1 = T(vk) + (η − 1)(T(vk)−vk) if k is odd.

(23)

where vk = col(xk, zk, λk) and T is given in (15).
Next, we prove the convergence of Algorithm 2 to a v-GNE.

Theorem 2. Suppose Assumptions 1–4 hold. Take any c > cmin, δ > 1
2β , and the step sizes

τi ≤ 1
‖A>i ‖∞+δ

, νi ≤ 1
2di+δ , and σi ≤ 1

‖Ai‖∞+2di+δ
. Then, for any η ∈ [1, 3

2 ), the sequence

{xk, zk, λk}k∈N generated by Algorithm 2 converges to the equilibrium (x∗, z∗, λ∗), where x∗ =
1N ⊗ x∗ and x∗ is a v-GNE of the game (3).

Proof. Similar to Theorem 1, we first show the convergence of {v2k}, and then prove the
convergence of {vk}. Note that T = T2 ◦ T1 is α-restricted averaged with α = 2

3 when δ > 1
β .

Let v∗ be any fixed point of T.
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First, we consider the subsequence {v2k}, and according to (23) and (17), one has

‖vk+2 −v∗‖2
Φ

≤η[‖T(vk)−v∗‖2
Φ −

1− α

α
‖T(vk)− T(T(vk))‖2

Φ]

+ (1− η)[‖vk −v∗‖2
Φ −

1− α

α
‖vk − T(vk)‖2

Φ]

− η(1− η)‖T(T(vk))− T(vk)‖2
Φ

=(1− η)‖vk −v∗‖2
Φ + η‖T(vk)−v∗‖2

Φ

+ [−η(
1
α
− η)]‖T(vk)− T(T(vk))‖2

Φ

− (1− η)
1− α

α
‖T(vk)−vk‖2

Φ

≤‖vk −v∗‖2
Φ −

1− α

α
‖T(vk)−vk‖2

Φ

+ [−η(
1
α
− η)]‖T(vk)− T(T(vk))‖2

Φ

where the first equality holds due to ‖αx + (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1−
α)‖y‖2. By choosing η ≤ 1

α , we have

‖vk+2 −v∗‖2
Φ ≤ ‖vk −v∗‖2

Φ −
1− α

α
‖T(vk)−vk‖2

Φ (24)

which implies that {‖vk+2 −v∗‖2
Φ} is monotonically decreasing and bounded, and is thus

convergent. Furthermore,

∞

∑
k=0

(‖v2(k+1) −v∗‖2
Φ − ‖v2k −v∗‖2

Φ)

≤−1− α

α

∞

∑
k=0
‖T(v2k)−v2k‖2

Φ, (25)

that is, ∑∞
k=0 ‖T(v2k)−v2k‖2

Φ ≤ ‖v0 −v∗‖2
Φ < ∞, and hence

‖T(v2k)−v2k‖ → 0. (26)

Note that if {v2k} is bounded, there exists a convergent subsequence {v2nk} → ṽ for some
limit ṽ.

Let k → ∞ in (26), we have T(ṽ) → ṽ which implies ṽ is a fixed point of T, thus
{‖v2k − ṽ‖2

Φ} converges. Since {‖v2nk − ṽ‖2
Φ} → 0, {v2k} converges to ṽ.

(ii) If T is restricted nonexpansive since it is 2
3 -restricted averaged, then one obtains

‖v2k+1 − ṽ‖ = ‖T(v2k)− T(ṽ)‖ ≤ ‖v2k − ṽ‖, (27)

which implies that the sequence {v2k+1} converges to the same limit of {v2k}, and thus
{vk} converges to ṽ.

5. Numerical Simulation

In this section, we consider a classic Nash–Cournot game over a network as [21],
where there are N firms and each firm i ∈ {1, · · · , N} produces commodities to participate
in the competition over m markets (see Figure 1). Each market (denoted by M1, · · · , Mm)
has limited capacity. Here, the partial-decision information setting is considered where
each firm has limited access to its neighboring firms’ information over the communication
graph as in Figure 2.
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Figure 1. Network of Nash–Gournot game, an arrow from i to Mk means firm i participates in market
Mk’s competition.
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Figure 2. Communication graph among all firms; an edge from i to j means firm i and j can exchange
information through the graph.

We assume that firm i participates in ni markets by producing xi ∈ Rni amount of
commodities and its production is limited by the set Ωi ∈ Rni . The local matrix Ai ∈ Rm×ni

for firm i represents which markets it participates in. Specifically, for the j-th column of Ai,
its k-th element is 1 if and only if firm i delivers [xi]j amount of production to market Mk;
all other elements are 0. Each market Mk has a maximal capacity of rk > 0, that is, Ax ≤ r,
where A = [A1, · · · , AN ], x = col(xi)i∈N ∈ Rn, n = ∑N

i=1 ni and r = col(rk)k=1,··· ,m ∈ Rm.
Suppose that each firm i has the production cost ci(xi) : Ωi → R, and the price function
P : Rn → Rm maps the total supply of each market to the market’s price vector. The local
objective function of firm i is Ji(xi, x−i) = ci(xi)− (P(Ax))>Aixi.

Suppose N = 20 and m = 7. Let Ωi = {xi ∈ Rni |0 ≤ xi ≤ Θi}, where each component
of Θi is randomly drawn from (5, 10). rk is randomly drawn from (1, 2). The local cost
function of firm i is ci(xi) = x>i Hixi + h>i xi, where Hi is a diagonal matrix with the
elements randomly drawn from (1, 8) and hi is randomly drawn from (1, 2). The price
function is taken as the linear function P = P̄− DAx with P̄ = col(P̄k)k=1,··· ,m ∈ Rm and
D = diag(dk)k=1,··· ,m ∈ Rm×m, where P̄k and dk are randomly drawn from (10, 20) and
(1, 3), respectively. Set the step-sizes as c = 100, τi = 0.003, νi = 0.02, and σi = 0.003.

First, Figure 3 shows that the convergence to the v-GNE can be guaranteed under
Algorithms 1 and 2, and the trajectories of the local decision xi,k of firms 1, 6, 10, 11 are
displayed in Figure 4. It can be seen in Figure 5 that the estimates on the firms 1 and 3
asymptotically tend to their real actions by using the proposed algorithms.

Then, it can be seen from Figure 6, that both of the proposed Algorithms 1 and 2
converge to the GNE x∗ with a faster convergence as compared with ([21], [Alg. 1]),
where Algorithm 1 has the fastest convergent rate. From Figure 7 we can see that the
proposed Algorithm 1 also has a faster convergence rate than ([25], [Alg. 3]). We set
α = 4.3 × 10−3 in ([25], [Alg. 3]), the same step-sizes τi, νi and σi and the same other
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parameters as Algorithms 1 and 2 in ([21], [Alg. 1]) and ([25], [Alg. 3]). On the other hand,
as compared with the algorithm with inertia, Algorithm 1 with alternating inertia requires
less computation resources. Thus, Algorithm 1 could be the best choice when both fast
convergence rate and low computation cost are taken into consideration.

Figure 3. The trajectories of ‖xk+1 − xk‖ generated by Algorithms 1 and 2.
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Figure 4. The trajectories of local decisions xi,k of firms 1, 6, 10 and 11 by Algorithms 1 and 2,
respectively.
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Figure 5. The trajectories of the estimate variable x1
j from firms 1–6 generated by Algorithm 1 (left);

and the trajectories of the estimate variable x3
j from firm 1–6 generated by Algorithm 2 (right).

Figure 6. Relative error ‖xk − x∗‖2/‖x∗‖2 generated by ([21], [Algorithm 1]), Algorithms 1 and 2.

Figure 7. Relative error ‖xk − x∗‖2/‖x∗‖2 generated by Algorithm 1 and ([25], [Alg. 3]).

Remark 2. It is worthwhile to note that the introduction of the inertia and overrelaxation steps
has the potential of accelerating the convergence rate. As such, in this paper, the inertial and
overrelaxed distributed algorithms are developed based on the pseudo-gradient method for seeking
generalized Nash equilibrium in multi-player games. The similar inertia idea has been considered in
the proximal-point algorithm (see ([25], [Alg. 3])). However, the proximal-point algorithm generally
needs to solve the optimization problem at each step k, which may be time-consuming and possibly
costs a great amount of computation resources in many situations. As such, pseudo-gradient
algorithms with inertia and overrelaxation were constructed in this paper, which successfully
guarantees the convergence to v-GNE with a fast convergence rate. Moreover, we note that the
introduction of the inertia and overrelaxation steps increases the computation burden, and thus two
alternating inertial and overrelaxed algorithms are established in Algorithms 1 and 2 to balance
the convergence rate and computation burden. In order to better display the effectiveness of our
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algorithms, we have added the comparison with ([25], [Alg. 3]) in the simulation part (see Figure 7).
From Figure 7, it can be seen that Algorithm 1 in this paper outperforms the ([25], [Alg. 3]) in
terms of the convergence rate.

6. Conclusions

This paper has studied the GNE computation issue in multi-player games with shared
coupling constraints under the partial-decision information setting. Two distributed al-
gorithms with alternating inertia and alternating overrelaxation have been developed,
respectively, with fixed step-sizes. Both algorithms have guaranteed the convergence to
the GNE under a mild assumption, which have the potential of improving the convergence
rate and saving computation cost. Finally, one simulation example has been provided to
show the effectiveness of the proposed algorithms. Further research topics can be focused
on stochastic NE seeking problems subject to time-varying topologies with and without
event-triggered communication protocols.
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