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Abstract: In this manuscript, the time-fractional diffusion equation in the framework of the Yang–Abdel–
Cattani derivative operator is taken into account. A detailed proof for the existence, as well as the
uniqueness of the solution of the time-fractional diffusion equation, in the sense of YAC derivative
operator, is explained, and, using the method of α-HATM, we find the analytical solution of the time-
fractional diffusion equation. Three cases are considered to exhibit the convergence and fidelity of
the aforementioned α-HATM. The analytical solutions obtained for the diffusion equation using the
Yang–Abdel–Cattani derivative operator are compared with the analytical solutions obtained using the
Riemann–Liouville (RL) derivative operator for the fractional order γ = 0.99 (nearby 1) and with the
exact solution at different values of t to verify the efficiency of the YAC derivative operator.
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1. Introduction

A parabolic partial differential equation that delineates the movement of energy and
matter in a medium is called a diffusion equation. The diffusion process of heat or mass can
be described using the concept of ordinary and partial derivatives. In today’s era, fractional
calculus [1–6] is emerging as an efficient and powerful tool in the field of science and
technology. It is the branch of mathematics pertaining to the derivatives and integrals of
arbitrary order and it is fruitful in explaining the concepts of damping, wave propagation
and diffusion, biology, genetic algorithms, control systems, economy and finance, signal
processing, robotics, system identification, electromagnetism, heat transfer, and many more.
The literature is brimming with developments made in the field of fractional calculus. The
most widely accepted definition including the singular kernel was proposed by Riemann
and Liouville–Caputo. The next classification of fractional derivatives are made on the
basis of the non-singular kernel. Caputo–Fabrizio proposed the first definition in the field
of fractional calculus with a non-singular kernel [7]. Further development and success in
the definitions of fractional derivatives were introduced by Prabhakar, Sonine, Wiman,
Miller–Ross, Gorenglo, Mainardi, Mittag–Leffler, Atangana–Baleanu, Yang–Abdel–Cattani,
and a lot more, who propose that the non-singular kernels are special functions, such as the
Mittag–Leffler function, Miller–Ross function, Wiman function, Kohlrausch–William–Watts
function, Rabotnov function, Prabhakar function, etc., see [8–13]. The fractional derivatives
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in which the non-singular kernels are the special functions are called general fractional-
order derivatives. Further applications of fractional derivatives can be seen in [14–27]. In
this work, we will find the analytical solution of the following nonlinear fractional diffusion
equation in the framework of the Yang–Abdel–Cattani (YAC) derivative operator.

YAC
0 Dγ

t (w(η, t)) =
∂

∂η

(
wa ∂w(η, t)

∂η

)
w(η, 0) = w0, (1)

where YAC
0 Dγ

t (w(η, t)) represents the Yang–Abdel–Cattani (YAC) fractional derivative of
w(η, t), w is the density of the diffusing medium at point η and at time t. This generalized
fractional derivative was presented by Yang et al. with the Rabotnov exponential function
as the non-singular kernel. In this work, we will present a detailed proof for the existence
as well as the uniqueness of the solution of the time-fractional diffusion equation in the
framework of the YAC derivative operator and, using the α-homotopy analysis transform
method, we will find the analytical solution of the fractional diffusion equation in the
sense of the YAC derivative operator. The analytical solutions obtained for the fractional
diffusion equation using the YAC derivative operator are compared to the analytical
solution obtained using the Riemann–Liouville (RL) derivative operator for the fractional
order γ = 0.99 (nearby 1) and with the exact solution at different values of t to verify
the efficiency of the YAC fractional derivative operator. Graphical representations of the
analytical solutions are also given for a better understanding of the α-HATM.

2. Definitions

Definition 1. [13] We define γ, χ ∈ R+; the following series defines the Rabotnov exponential
function of order γ

Ψ(χuγ) =
∞

∑
s=0

χsu(s+1)(γ+1)−1

Γ((s + 1)(γ + 1))
, u ∈ C (2)

Definition 2. [13] For k on L1[a, b], t > 0, χ ∈ R+ 0 < γ ≤ 1, the following defines the
Yang–Abdel–Cattani fractional derivative of order γ

YAC
0 Dγ

t (k(t)) =
∫ t

0
Ψγ(−χ(t− ρ)γ)k′(ρ)dρ. (3)

where, Ψγ represents the Rabotnov exponential function of order γ.

Definition 3. [13] The following defines the Laplace transform for the Yang–Abdel–Cattani frac-
tional derivative

L(YAC
0 Dγ

t (k(t))) =
1

pγ+1
pL[k(t)]− k(0)
1 + χp−(γ+1)

(4)

Definition 4. [13] For k ∈ L1[a, b], t > 0, 0 < γ ≤ 1, χ ∈ R+, the following defines the
fractional integral with Rabotnov fractional exponential function, of order γ

Iγ
YACk(t) =

∫ t

0
Ψγ(−χ(t− ρ)γ)k(ρ)dρ. (5)

Definition 5. [13] The following defines the Laplace transform for the Yang–Abdel–Cattani frac-
tional integral

L(Iγ
YACk(t)) =

1
pγ+1

L(k(t))
1 + χp−(γ+1)

(6)
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3. Existence of Solution of Fractional Diffusion Equation Using Yang–Abdel–Cattani
Derivative Operator

Theorem 1. Let us assume that the function f (η, t, w, w′, w′′) satisfies the Lipschitz condition as

| f (η, t, w, w′, w′′)− f (η, t, w1, w′1, w′′1 )| ≤ M1|w− w1|+ M2|w′ − w′1|+ M3|w′′ − w′′1 |. (7)

We also assume that
|w′ − w′1| ≤ k1|w− w1|

|w′′ − w′′1 | ≤ k2|w− w1|

where k1, k2 ∈ R+ then there exists a unique solution for the following time-fractional differential
equation.

YAC
0 Dγ

t (w(η, t)) =
∂

∂η

(
wa ∂w(η, t)

∂η

)
(8)

Proof. We define

Φ(w, η) = f (η, t, w, w′, w′′) =
∂

∂η

(
wa ∂w(η, t)

∂η

)
(9)

We first show that Φ(w, η) satisfies Lipschitz condition. Consider

||Φ(w, η)−Φ(w1, η)|| = || f (η, t, w, w′, w′′)− f (η, t, w1, w′1, w′′1 )||
≤ M1||w− w1||+ M2||w′ − w′1||+ M3||w′′ − w′′1 ||
≤ M1||w− w1||+ M2k1||w− w1||+ M3k2||w− w1||

= (M1 + M2k1 + M3k2)||w− w1||.

(10)

We also define M1 + M2k1 + M3k2 = M. So finally, we have

||Φ(w, η)−Φ(w1, η)|| = || f (η, t, w, w′, w′′)− f (η, t, w1, w′1, w′′1 )|| (11)

≤ M|w− w1| (12)

Using Picard’s theorem, we obtain

w(η, t) = w(η, 0) +
∫ t

0
Ψγ(−χ(t− ρ)γ)Φ(w, η(ρ))dρ. (13)

For convenience, we write∫ t

0
Ψγ(−χ(t− ρ)γ)Φ(w, η(ρ))dρ = Iγ

YACΦ(w, η)

Finally, we have

w(η, t) = w(η, 0) + Iγ
YACΦ(w, η) (14)

w(η, t)− w(η, 0) = Iγ
YACΦ(w, η) (15)

||w(η, t)− w(η, 0)|| = ||Iγ
YACΦ(w, η)|| (16)

=

∣∣∣∣∣∣∣∣∫ t

0
Ψγ(−χ(t− ρ)γ)Φ(w, η(ρ))dρ.

∣∣∣∣∣∣∣∣ (17)

≤
∫ t

0
||Ψγ(−χ(t− ρ)γ)|| ||Φ(w, η(ρ))||dρ. (18)

≤ ||Φ(w, η(ρ))||
∫ t

0
Ψγ(−χ(t− ρ)γ) (19)

= Iγ
YAC(1) ||Φ(w, η(ρ))|| (20)
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As we proved that Φ(w, η) satisfies Lipschitz condition, so the following holds

||Φ(w, η)|| ≤ K (21)

Hence
||w(η, t)− w(η, 0)|| ≤ KIγ

YAC(1) (22)

Finally, we consider

||w(η, t)− w1(η, t)|| = ||Iγ
YACΦ(w, η)− Iγ

YACΦ(w1, η)|| (23)

≤ Iγ
YAC(1)||Φ(w, η)−Φ(w1, η)|| (24)

≤ Iγ
YAC M||w− w1|| (25)

For the above map to be a contraction, we must have

M Iγ
YAC ≤ 1 (26)

Iγ
YAC ≤

1
M

(27)

Hence the existence and the uniqueness of the solution follows as a consequence of
the Banach fixed point theorem.

4. α-HATM Solution of Nonlinear Time-Fractional Diffusion Equation

Consider the nonlinear fractional diffusion equation, given as:

YAC
0 Dγ

t (w(η, t)) =
∂

∂η

(
wa ∂w(η, t)

∂η

)
(28)

We rewrite the above equation as

YAC
0 Dγ

t (w(η, t))−
[

a wa−1
(

∂w
∂η

)2
+ wa ∂2 w

∂η2

]
= 0 (29)

Taking the Laplace transform on the two sides of Equation (29),

1
pγ+1

[
pL[w(η)]− w(η, 0)

1 + χ p−(γ+1)

]
−L

[
a wa−1

(
∂w
∂η

)2
+ wa ∂2 w

∂η2

]
= 0 (30)

By simplifying, we obtain

L[w(η, t)]− w(η, 0)
p

−
(

pγ+1 + χ

p

)
L
[

a wa−1
(

∂w
∂η

)2
+ wa ∂2 w

∂η2

]
= 0 (31)

Let N be a nonlinear operator, defined as

N [β(η, t, α)] =

L[β(η, t, α)] − w(η, 0)
p

−
(

pγ+1 + χ

p

)
L
[

a βa−1
(

∂β

∂η

)2
+ βa ∂2 β

∂η2

]
(32)

where β(η, t, α) is a function in η, t, α, and α ∈ [0, 1/r] is an embedding parameter. Now
construct the homotopy as

(1− r α)L[β(η, t, α)− w0(η, t)] = α kN [β(η, t, α)] (33)

where β(η, t, α) is a function of η, t and α, w0(η, t) is an initial guess of w(η, t), L is the
Laplace transform, and k 6= 0 is an auxiliary parameter. From above equation, we see that
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when α = 0, β(η, t, 0) = w0(η, t)
when α = 1

r , β(η, t, 1/r) = w(η, t)
This shows that as α varies from 0 to 1/r, the solution β(η, t, α) changes from w0(η, t)

the initial guess to w(η, t) the exact solution.
Expand β(η, t, α) with respect to α using the Taylor series, we obtain

β(η, t, α) = w0(η, t) +
∞

∑
i=1

wi(η, t) αi (34)

where

wi(η, t) =
1
i!

∂iβ(η, t; α)

∂αi

∣∣∣∣
α=0

(35)

Let w0(η, t), k, r be selected appropriately, the series defined in Equation (35) con-
verges at α = 1/r, hence

w(η, t) = w0(η, t) +
∞

∑
i=1

wi(η, t)
(

1
r

)i
(36)

Defining the vectors w̄n = {w0, w1, . . . , wn}, and differentiating Equation (33)
i-times with respect to α, and substituting α = 0, and lastly dividing them by i!, we obtain:

L[wi(η, t)− ζiwi−1(η, t)] = k<i(wi−1(η, t)), (37)

where

<i(wi−1(η, t)) =
1

(i− 1)!
∂i−1N(η, t; α)

∂αi−1

∣∣∣∣
α=0

(38)

and

ζi =

{
0, i ≤ 1
r, otherwise.

(39)

Using Equations (32) and (38), we obtain

<i(wi−1(η, t)) = L[wi−1]−
w(η, 0)

p

(
1− ζi

r

)
+

L
[

a wa−1
i−1

(
∂wi−1

∂η

)2
+ wa

i−1
∂2 wi−1

∂η2

]
(40)

Lastly, take the inverse Laplace transform on both sides of Equation (37),

wm(η, t) = ζiwi−1(η, t) + kL−1[<i(wi−1)]. (41)

Finally, opting for the suitable values of k and r, the α-HATM series solution is
obtained, which is given as

w(η, t) = lim
N→∞

∞

∑
i=0

wi(η, t)
(

1
r

)i
(42)

We now consider different cases of the above nonlinear diffusion equation.

4.1. Case 1

We will now find the analytical solution of the following non-linear fractional diffusion
equation in sense of YAC derivative operator using above mentioned α− HATM.

YAC
0 Dγ

t (v(η, t)) =
∂

∂η

(
∂v(η, t)

∂η

)
, 0 < t < 1 ; 0 < γ < 1, v(η, 0) = sin(πη) (43)
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Using the α-HATM, the series solution is given as

vYAC
0 (η, t) = sin(πη) (44)

vYAC
1 (η, t) = k π2

(
tχ +

t−γ

Γ(1− γ)

)
sin(πη) (45)

vYAC
2 (η, t) = rvYAC

1 (η, t)+

1
2

k2π2
[

2π2t−2γ

Γ(1− 2γ)
+

2t−γ

Γ(1− γ)
tχ
(

2 + π2tχ +
4π2t−χ

Γ(2− γ)

)]
sin(πη) (46)

The following diffusion equation’s

∂v(η, t)
∂t

=
∂2v(η, t)

∂η2 (47)

exact solution is given as
sin(πη)e−π2t (48)

In Table 1, we will compare the α-HATM solutions obtained for Case 1 in terms of
the YAC fractional derivative operator with the analytical solutions obtained using the
Riemann–Liouville fractional derivative operator [28] and with the considered diffusion
equation’s exact solution at different values of t for η = 0.25 and γ = 0.99 (γ close to 1)
k = −0.01, r = 3 and χ = 3.

Table 1. Comaprison of α− HATM Solution in sense of YAC derivative operator, RL derivative
operator and exact solution for Case 1.

t v (RL) v (YAC) v (Exact) Error (RL) Error (YAC)

0.1 0.196571 0.263464 0.263544 6.6973× 10−2 8× 10−5

0.2 0.902091 0.0981688 0.098225 8.0159× 10−3 5.62× 10−5

0.3 0.0303086 0.0361351 0.0366092 6.3006× 10−3 4.741× 10−4

0.4 0.0165324 0.0131774 0.0136445 2.8879× 10−3 4.671× 10−4

0.5 0.00463999 0.00507924 0.00508543 4.4544× 10−4 6.19× 10−6

0.6 0.00134119 0.00188248 0.00189538 5.5419× 10−4 1.29× 10−5

0.7 0.000591754 0.000645395 0.000706423 1.14669× 10−4 6.1028× 10−5

0.8 0.000208632 0.000240379 0.000263289 5.4657× 10−5 2.291× 10−5

0.9 0.0000935588 0.0000971667 0.00009813 4.5712× 10−6 9.633× 10−7

1.0 0.0000300947 0.0000351593 0.0000365738 6.4791× 10−6 1.4145× 10−6

In Figure 1, the 3-D plots of the α-HATM solution for the YAC operator are compared
to the exact solution for γ = 0.99 (γ nearby 1).

4.2. Case 2

We will now find the analytical solution of the following non-linear fractional diffusion
equation in sense of YAC derivative operator using above mentioned α− HATM.

YAC
0 Dγ

t (v(η, t)) =
∂

∂η

(
v2∂v(η, t)

∂η

)
, 0 < γ < 1 ; 0 < t < 1, v(η, 0) =

η + b
c

(49)



Fractal Fract. 2021, 5, 64 7 of 12

Using the α-HATM, the series solution is given as

vYAC
0 (η, t) =

η + b
c

(50)

vYAC
1 (η, t) =

−k(b + η)

4c3

(
tχ +

t−γ

Γ(1− γ)

)
(51)

vYAC
2 (η, t) = rvYAC

1 (η, t) +
k2t−2γ(b + η)

4c5Γ(1− 2γ)Γ(1− γ)Γ(2− γ)[
2Γ(1− γ)Γ(2− γ) + tγΓ(1− 2γ)(−c2Γ(1− 2γ) + tχΓ(1− γ)[4− tγ(c2 − tχ)Γ(2− γ)])

]
(52)

The following diffusion equation’s

∂v(η, t)
∂t

=
∂

∂η

(
v2∂v(η, t)

∂η

)
(53)

exact solution is given as
η + b

2
√

c2 − t
, t ≤ c2 (54)

In Table 2, we will compare the α-HATM solutions obtained for Case 2 in terms of the
YAC fractional derivative operator with the analytical solutions obtained in terms of the
Riemann–Liouville fractional derivative operator [28] and with the considered diffusion
equation’s exact solution at different values of t for k = −0.19, r = 1, χ = 1, b = 2, c = 3,
η = 0.25 and γ = 0.99.

Table 2. Comaprison of α− HATM Solution in sense of YAC derivative operator, RL derivative
operator and exact solution for Case 2.

t v (RL) v (YAC) v (Exact) Error (RL) Error (YAC)

0.1 0.362916 0.377039 0.377101 1.4185× 10−2 6.2× 10−5

0.2 0.375416 0.377759 0.379237 3.821× 10−3 1.478× 10−3

0.3 0.379474 0.381023 0.381411 1.937× 10−3 3.88× 10−4

0.4 0.380159 0.383075 0.383622 3.463× 10−3 5.47× 10−4

0.5 0.382443 0.384292 0.3858872 3.4442× 10−3 1.58× 10−3

0.6 0.387566 0.388041 0.388162 5.96× 10−4 1.21× 10−4

0.7 0.388769 0.390407 0.390493 1.724× 10−3 8.6× 10−5

0.8 0.39034 0.392672 0.392867 2.527× 10−3 1.72× 10−4

0.9 0.390757 0.395034 0.395285 4.528× 10−3 2.51× 10−4

1.0 0.405465 0.397722 0.397748 7.717× 10−3 2.6× 10−5

In Figure 2, the 3-D plots of the α-HATM solution for the YAC operator are compared
to the exact solution for γ = 0.99 (γ nearby 1).

4.3. Case 3

We will now find the analytical solution of the following non-linear fractional diffusion
equation in sense of YAC derivative operator using above mentioned α− HATM.

YAC
0 Dγ

t (v(η, t)) =
∂

∂η

(
v−2∂v(η, t)

∂η

)
, 0 < t < 1 ; 0 < γ < 1, v(η, 0) =

1√
1 + η2

(55)
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Using the α-HATM, the series solution is given as

vYAC
0 (η, t) =

1√
1 + η2

(56)

vYAC
1 (η, t) = −k

[
η2

(1 + η2)3/2 −
1√

1 + η2

]
(57)

The following diffusion equation’s

∂v(η, t)
∂t

=
∂

∂η

(
v−2∂v(η, t)

∂η

)
(58)

exact solution is
1√

η2 + e2t
(59)

In Table 3, we will compare the α-HATM solutions obtained for Case 3 in terms of the
YAC fractional derivative operator with the analytical solutions obtained in terms of the
Riemann–Liouville fractional derivative operator [28] and with the considered diffusion
equation’s exact solution at different values of t for k = −0.6, r = 1, χ = 1, η = 0.25, and
γ = 0.99.

Table 3. Comaprison of α− HATM Solution in sense of YAC derivative operator, RL derivative
operator and exact solution for Case 3.

t v (RL) v (YAC) v (Exact) Error (RL) Error (YAC)

0.1 0.842589 0.861515 0.882539 3.995× 10−2 2.1024× 10−2

0.2 0.780412 0.805378 0.802101 2.1689× 10−2 3.277× 10−3

0.3 0.698454 0.723338 0.728431 2.9972× 10−2 5.093× 10−3

0.4 0.640023 0.64123 0.661101 2.1078× 10−2 1.9871× 10−2

0.5 0.589874 0.559094 0.599676 9.802× 10−3 4.058× 10−3

0.6 0.521176 0.553665 0.543718 2.254× 10−2 9.947× 10−3

0.7 0.462397 0.484287 0.492802 3.0405× 10−2 8.515× 10−3

0.8 0.460085 0.45875 0.446521 1.3564× 10−2 1.23× 10−2

0.9 0.428753 0.394834 0.404486 2.4267× 10−2 9.652× 10−3

1.0 0.387562 0.330926 0.366333 2.1229× 10−2 3.24× 10−2

In Figure 3, the 3-D plots of the α-HATM solution for the YAC operator are compared
to the exact solution for γ = 0.99 (γ nearby 1).

5. Conclusions

In this paper, the time-fractional nonlinear diffusion equation is taken into consider-
ation in regards to the Yang–Abdel–Cattani fractional derivative operator. The α-HATM
is used to find the analytical solution of the nonlinear fractional diffusion equation. The
analytical solutions obtained from the α-HATM, in the sense of the YAC derivative operator,
are compared to the analytical solutions obtained via the Riemann–Liouville derivative
operator and with the exact solution for all the three cases at distinct values of time t, and
we observe that the analytical solutions obtained using the YAC derivative operator coin-
cide with the exact solution more closely as compared to the Riemann–Liouville derivative
operator when the value of fractional order is close to 1, i.e., γ = 0.99. In Figures 1–3 we
plotted the 3-D representations of the solution v(η, t) with the exact solution for case 1,
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case 2, and case 3, respectively. In Figures 1–3a, the 3-D representation of the analytical
solution attained using α-HATM along with the exact solution is given. In Figures 1–3b, the
α-HATM solutions are plotted for different values of k along with the exact solution and we
see that the α-HATM solution is in best fit with the exact solution for a suitable value of k
and hence k = −0.01 works as an optimal value for case 1, k = −0.19 works as an optimal
value for case 2, and k = −0.6 works as an optimal value for case 3. In Figures 1–3c, the
α-HATM solutions are plotted for different values of r along with the exact solution and
we see that the α-HATM solution is in best fit with the exact solution for a suitable value
of r and hence r = 3 works as an optimal value for case 1 and r = 1 works as an optimal
value for cases 2 and 3. In Figures 1–3d, the α-HATM solutions are plotted for different
values of χ along with the exact solution and we see that the α-HATM solution is in best fit
with the exact solution for a suitable value of χ and hence χ = 3 works as an optimal value
for case 1 and χ = 1 works as optimal value for case 2 and 3. Hence, we see the efficient
role of the parameters k, r provided in the α-HATM, and χ, given in the YAC definition in
regulating the convergence of the solution. Hence we see that YAC fractional derivative
operator provides better results than the Riemann–Liouville fractional derivative operator.

(a) (b)

(c) (d)

Figure 1. 3-D Plot of α-HATM solution for YAC operator with exact solution for case 1 when γ = 0.99.
(a) α-HATM solution with exact solution. (b) α-HATM solution with exact solution for distinct values
of k, Yellow (k = −0.01), Blue (k = −0.04), Green (k = −0.08), Red (Exact Solution). (c) α-HATM
solution with exact solution for distinct values of r, Yellow (r = 1), Blue (r = 2), Green (r = 3), Red
(Exact Solution). (d) α-HATM solution with exact solution for distinct values of χ, Yellow (χ = 3),
Blue (χ = 5), Green (χ = 7), Red(Exact Solution).
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(a) (b)

(c) (d)

Figure 2. 3-D Plot of α-HATM solution for YAC operator with exact solution for case 2 when γ = 0.99.
(a) α-HATM solution with exact solution. (b) α-HATM solution with the exact solution for distinct
values of k, Yellow (k = −0.19), Blue (k = −1), Green (k = −2), Red (Exact Solution). (c) α-HATM
solution with exact solution for distinct values of r, Yellow (r = 1), Blue (r = 2), Green (r = 3), Red
(Exact Solution). (d) α-HATM solution with exact solution for distinct values of χ, Yellow (χ = 1), Blue
(χ = 5), Green (χ = 10), Red (Exact Solution).

(a) (b)

Figure 3. Cont.
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(c) (d)
Figure 3. 3-D Plot of α-HATM solution for YAC operator with exact solution for case 3 when γ = 0.99.
(a) α-HATM solution with exact solution. (b) α-HATM solution with exact solution for distinct values
of k, Yellow (k = −0.6), Blue (k = −0.8), Green (k = −1), Red (Exact Solution). (c) α-HATM solution
with exact solution for distinct values of r, Yellow (r = 1), Blue (r = 2), Green (r = 3), Red (Exact
Solution). (d) α-HATM solution with exact solution for distinct values of χ, Yellow (χ = 1), Blue
(χ = 2), Green (χ = 3), Red (Exact Solution).
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