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Abstract: The aim of this paper is to provide approximation results for space-time non-local equations
with general non-local (and fractional) operators in space and time. We consider a general Markov
process time changed with general subordinators or inverses to general subordinators. Our analysis
is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes,
and the Dirichlet forms characterize the Markov processes.
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1. Introduction

We consider space–time fractional equations with general fractional operators in space
and time. More precisely, we deal with a very general fractional space operator that covers
a large class of non-local operators, such as fractional Laplacians.

This non-local space-operator can be related to time-changed processes where the
time change is given by a subordinator (for definitions, examples and applications, see
ref. [1]) characterized by a symbol, which is a Bernstein function (see [2]).

Additionally, the non-local time operator is very general, and it includes a huge class
of convolution-type operators, such as the Caputo fractional derivatives. This non-local
time-operator can be related to time-changed processes where the time change is given by
an inverse to a subordinator characterized by a symbol, which is again a Bernstein function.

The literature on space–time fractional equations and their applications is very exten-
sive. We mention here only some basic works [3–7] and the references therein. Connections
with Sturm–Liouville problems were investigated in [8], whereas for the the higher-order
counterpart, we refer to [9,10]. For the fractional Cauchy problem on manifolds, we refer-
ence the work in [11]. Recently, the authors also obtained results on irregular domains in
the case of randomly varying fractals [12,13].

The aim of this paper is to relate the asymptotic analysis of space–time fractional
equations to the convergence of corresponding symbols (see Theorems 5 and 6). Our result
extends Theorem 7 in [9], where asymptotic properties for time-changed processes were
investigated for pseudo-processes. The symbol of a subordinator may be approximated by
the symbols of a continuous-time random walk (see [9] (Theorem 5)). The base process is
Markovian, but it is driven by a signed measure; that is, the governing equation of the base
process is a higher-order equation.

We highlight that the results of the present paper provide a useful tool for studying the ap-
proximation of space–time fractional equations in several contexts since the theory of Dirichlet
forms allows us to describe many structures in an appropriate functional environment.

For example, we can approximate space–time fractional equations related to relativistic
2α-stable processes, spherical symmetric 2α-stable processes, and gamma processes with
suitable sequences of relativistic 2α-stable processes in Rd. Moreover, we can use the results
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of the present paper for “denoising” variance gamma processes, that is, Brownian motions
time changed using a gamma subordinator as a random time. Such a kind of “denoising”
can be carried out by considering the asymptotic limits of the parameters characterizing
the symbol of the subordinator (see Section 7).

The paper is set out as follows. In Section 2, we recall some basic facts about processes
associated with Dirichlet forms. In Section 3, we introduce symbols corresponding to
Bernstein functions associated with subordinate processes. In Section 4, we consider space
fractional equations, and we recall asymptotic results via the convergence of symbols
obtained in [14]. In Section 5, we introduce the time fractional equations associated with
inverse processes. In Section 6, we consider space–time fractional equations, and we prove
asymptotic results via the convergence of symbols. Finally, in the last section, we provide
some examples and applications.

2. Processes Associated with Dirichlet Forms

We now recall some basic facts about processes associated with Dirichlet forms (see [15]).
We consider an m-symmetric right process X on a Lusin space E. Without loss of

generality, X can be assumed as an m-symmetric Hunt process associated with a regular
Dirichlet form (E ,F ) on a locally compact separable metric space E, where m is a Radon
measure with full support on E (by using quasi-homeomorphism, see [16]). The L2-
infinitesimal generator A is a non-positive definite self-adjoint operator, and it has the
following spectral representation:

−A =
∫ ∞

0
λdEλ

with domain

Dom(A) =
{

u ∈ L2(E, m) :
∫ ∞

0
λ2 d(Eλu, u) < ∞

}
.

Here, {Eλ, λ ≥ 0} is the spectral family of −A : it is a right continuous increasing
sequence of orthogonal projections in L2(E, m) with E0 = 0, and E∞ = I the identity
operator. The corresponding Dirichlet form (E ,F ) associated with X is defined as follows:

E(u, v) = (
√
−Au,

√
−Av)L2(E,m)

for u, v ∈ F , where
F = Dom(

√
−A).

We highlight that the Dirichlet form (E ,F ) can be described by using spectral repre-
sentation in the following way:

E(u, v) =
∫ ∞

0
λd(Eλu, v)

for u, v ∈ F where

F =

{
u ∈ L2(E, m) :

∫ ∞

0
λd(Eλu, u) < ∞

}
,

We now recall the definition of Mosco convergence (see [17]). We consider a sequence
of forms {En} with domain D(En) and a form {E} with domain D(E). The forms E , En

can be defined in the whole of L2(E, m) by setting the following:

E(u, u) = +∞ ∀ u ∈ L2(E, m) \ D(E).

En(u, u) = +∞ ∀ u ∈ L2(E, m) \ D(En).

Definition 1. A sequence of forms {En}M-converges to a form E in L2(E, m) if
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• For every vn converging weakly to u in L2(E, m)

lim inf En(vn, vn) ≥ E(u, u), as n→ +∞.

• For every u ∈ L2(E, m), there exists un converging strongly to u in L2(E, m), such that

lim sup En(un, un) ≤ E(u, u), as n→ +∞.

The M-convergence of forms can be characterized in terms of convergence of the
resolvent operators and semigroup operators.

Theorem 1 (see [18]). {En} M-converges to E in L2(E, m) if and only if the sequence of the
resolvent operators {Gn

λ : λ > 0} converges to the resolvent operator Gλ in the strong operator
topology of L2(E, m).

Theorem 2 (see [18]). {En} M-converges to E in L2(E, m) if and only if for every t > 0 the
sequence {Tn

t } of the semigroup operators converges to the semigroup operator Tt associated with
the strong operator topology of L2(E, m) uniformly on every interval 0 < t ≤ t1.

3. Symbols and Associated Subordinators

Here, we focus on subordination, which is a time change given by a subordinator. The
corresponding semigroup is termed a subordinated semigroup.

We consider the following symbols corresponding to Bernstein functions

Φ(λ) =
∫ ∞

0

(
1− e−λz

)
Π(dz), λ ≥ 0 (1)

where Π is a Lévy measure on (0, ∞) with
∫ ∞

0 (1∧ z)Π(dz) < ∞. We also recall that

Φ(λ)

λ
=
∫ ∞

0
e−λzΠ(z)dz, Π(z) = Π((z, ∞)) (2)

and Π is the so called tail of the Lévy measure (see [2]). We highlight that the symbol Φ
can be related to the Laplace exponent of a subordinator H—that is, a one-dimensional
almost surely increasing Lévy process—as follows:

E0[exp(−λHt)] = exp(−tΦ(λ))

(see [1]).
Typical examples are the following:

• Φ(λ) = λ;
• Φ(λ) = λβ, β ∈ (0, 1), associated with stable subordinator;
• Φ(λ) = (λ + η)α − ηα with η > 0 and α ∈ (0, 1) associated with generalized stable

subordinator;
• Φ(λ) = σ−2

(√
2λσ2 + µ2 − µ

)
with σ 6= 0 associated with inverse Gaussian subordi-

nator;
• Φ(λ) = a ln(1 + λ/b) with ab > 0 associated with gamma subordinator.

By using spectral representation, we have

Φ(−A) =
∫ ∞

0
Φ(λ)dEλ.

For example, if H is a stable subordinator with symbol Φ(λ) = λα and X is a Brownian
motion, then −Φ(−A) is the fractional Laplacian.
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For the process X with generator (A, D(A)) and the independent subordinator H, we
define the time-changed process as follows:

XH
t = XHt = X ◦ Ht

for t ≥ 0.
The process XH

t , t ≥ 0 can be considered in order to solve the following equation:

∂u
∂t

= −Φ(−A)u, u0 = f ∈ D(Φ(−A)) ⊂ D(A). (3)

as the probabilistic representation of the solutions to (3) is given by

u = PH
t f (x) := Ex[ f (XH

t )] = Ex[ f (∗XH
t ), t < ζH ]

where ζH is the lifetime of XH , which is the part process of ∗XH on E.

4. Space Fractional Equations via Convergence of Symbols

We consider a subordinator H with Laplace exponent Φ and subordinators Hn with
Laplace exponent Φn.

We suppose that the process X is independent of H and Hn, and we define the
subordinate processes

XΦ := X ◦ H

and
XΦn := X ◦ Hn.

We denote by (EΦ,FΦ) the corresponding Dirichlet form associated with XΦ and by
(EΦn ,FΦn) the Dirichlet form associated with XΦn .

By spectral representation, we have

FΦ =

{
u ∈ L2(E, m) :

∫ ∞

0
Φ(λ)d(Eλu, u) < ∞

}
and

EΦ(u, v) =
∫ ∞

0
Φn(λ)d(Eλu, v)

for u, v ∈ FΦ.
In a similar way,

FΦn =

{
u ∈ L2(E, m) :

∫ ∞

0
Φn(λ)d(Eλu, u) < ∞

}
and

EΦn(u, v) =
∫ ∞

0
Φn(λ)d(Eλu, v)

for u, v ∈ FΦn .
Thus, the generator of XΦ is L, where

−L =
∫ ∞

0
Φ(λ)dEλ

with domain

Dom(L) =
{

u ∈ L2(E, m) :
∫ ∞

0
Φ(λ)2d(Eλu, u) < ∞

}
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and the generator of XΦn is Ln, where

−Ln =
∫ ∞

0
Φn(λ)dEλ

with domain

Dom(Ln) =

{
u ∈ L2(E, m) :

∫ ∞

0
Φn(λ)

2d(Eλu, u) < ∞
}

.

We recall the following results.

Lemma 1 (Lemma 4.2 of [14]). Assume that

lim
n→∞

Φn(λ) = Φ(λ) for every λ ≥ 0.

Then, the Dirichlet form (EΦn ,FΦn) M-converges to (EΦ,FΦ).

For an open subset D of E, we denote by XΦn ,D the part process of XΦn on D and
by XΦ,D the part process of XΦ on D. (EΦn ,FΦn ,D) is the corresponding Dirichlet form
associated with the part process XΦn ,D, and (EΦ,FΦ,D) is the corresponding Dirichlet form
associated with part process XΦ,D.

Theorem 3 (Theorem 4.3 of [14]). Assume that

lim
n→∞

Φn(λ) = Φ(λ) for every λ ≥ 0.

Then, the Dirichlet form (EΦn ,FΦn ,D) M-converges to (EΦ,FΦ;D).

5. Inverse of Subordinators and Time Fractional Derivatives

We introduce the inverse process L

Lt = inf{s ≥ 0 : Hs > t}

and define (for t ≥ 0) the time-changed process

XL
t := XLt = X ◦ Lt.

This process is strictly related to the following time fractional equation:

DΦ
t u = Au, u0 = f ∈ D(A). (4)

Here, the fractional time operator DΦ
t is defined in the following way. For M > 0 and

w ≥ 0, we consider the setMw of (piecewise) continuous function on [0, ∞) of exponential
order w, such that |u(t)| ≤ Mewt. We define the operator DΦ

t :Mw 7→ Mw, such that∫ ∞

0
e−λtDΦ

t u(t) dt = Φ(λ)ũ(λ)− Φ(λ)

λ
u(0), λ > w

where ũ is the Laplace transform of u.
By using Π (the tail of the Lévy measure), we can also write the following:

DΦ
t u(t) =

∫ t

0
u′(s)Π(t− s)ds.

We highlight that operator DΦ
t was previously considered in [19] (Remark 4.8) as the

generalized Caputo derivative. In particular, we observe the following:

• if Φ(λ) = λ, the operator DΦ
t becomes the ordinary derivative;
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• if Φ(λ) = λβ, the operator DΦ
t becomes the Caputo fractional derivative

DΦ
t u(t) =

1
Γ(1− β)

∫ t

0

u′(s)
(t− s)β

ds

with u′(s) = du/ds;
• if Φ(λ) = (λ + η)α − ηα, the operator DΦ

t becomes tempered fractional derivative;
• if Φ(λ) = λ2β + λβ for β ∈ (0, 1/2), the operator DΦ

t becomes the telegraph fractional
operator.

The probabilistic representation of the solution of time fractional Equation (4) is
given by the following:

u(t, x) = Ex[ f (XL
t )] = Ex[ f (∗XL

t ), t < ζL] (5)

where ζL is the lifetime of XL, the part process of ∗XL on E. In particular, the follow-
ing theorem states the existence and uniqueness of a strong solution in L2(E, m) to (4)
(see [12,20,21]).

Theorem 4 ([12] (Theorem 5.2)). The function (5) is the unique strong solution in L2(E, m)
to (4) in the sense that:

1. ϕ : t 7→ u(t, ·) is such that ϕ ∈ C([0, ∞),R+) and ϕ′ ∈ M0;
2. ϑ : x 7→ u(·, x) is such that ϑ,Aϑ ∈ D(A);
3. ∀ t > 0, DΦ

t u(t, x) = Au(t, x) holds m-a.e in E;
4. ∀ x ∈ E, u(t, x)→ f (x) as t ↓ 0.

6. Time–Space Fractional Equations via Convergence of Symbols

As in Section 4, we consider symbols Φ and Φn and their corresponding subordinators,
H and Hn. We assume that the process X is independent of H and Hn and consider the
subordinate processes

XΦn := X ◦ Hn

and
XΦ := X ◦ H.

Moreover, we consider a symbol Ψ and the corresponding inverse of its associated
subordinator denoted again by L. We examine the following time–space fractional equations

DΨ
t u = −Φn(−A)u, u0 = f ∈ D(Φn(−A)) ⊂ D(A). (6)

The probabilistic representation of the solution can be written in terms of the time-
changed process (XΦn)L, that is,

un(t, x) = Ex[ f ((XΦn
t )L)]. (7)

Similarly, the probabilistic representation of the solution to

DΨ
t u = −Φ(−A)u, u0 = f ∈ D(Φ(−A)) ⊂ D(A), (8)

can be written in terms of the time-changed process (XΦ)L, that is,

u(t, x) = Ex[ f ((XΦ
t )L)]. (9)

D is the set of continuous functions from [0, ∞) to E∂ = E ∪ ∂, which are right contin-
uous on [0, ∞) with left limits on (0, ∞), where ∂ is the cemetery point. In the following
Theorem 5, we prove the asymptotic results for space–time fractional equations via the
convergence of symbols.
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Theorem 5. Assume that

lim
n→∞

Φn(λ) = Φ(λ) for every λ ≥ 0.

Then

(XΦn
t )L → (XΦ

t )L in distribution in D.

Proof. As
lim

n→∞
Φn(λ) = Φ(λ) for every λ ≥ 0

by Lemma 1, we observed that (EΦn ,FΦn) M-converges to (EΦ,FΦ).
By using the results of a recent paper [12], we found the convergence of the time-

changed processes from the M-convergence of the forms En(·, ·). More precisely, from the
M-convergence of the forms, En(·, ·) we found the strong convergence of the corresponding
semigroups. Then, by using Theorem 17.25 in [22] by means of which we know that the
strong convergence of semigroups (Feller semigroups) is equivalent to the weak convergence
of measures if XΦn

0 → XΦ
0 in distribution, we found that XΦn

t →XΦ
t in distribution in D.

By using results in [23], we found that as n→ ∞

(XΦn
t )L → (XΦ

t )L

in distribution in D.

As in Section 4, D is an open subset of E. We use XΦn ,D to denote the part process of
XΦn on D and XΦ,D to denote the part process of XΦ on D.

Theorem 6. Assume that

lim
n→∞

Φn(λ) = Φ(λ) for every λ ≥ 0.

Then

(XΦn ,D
t )L → (XΦ,D

t )L in distribution in D.

Proof. By Theorem 3, following the same tools of previous proof, we obtained the result.

Remark 1. We remark that a probabilistic interpretation in terms of the mean lifetime of the base
and time-changed processes was given recently in [24].

7. Examples and Applications

In this section, we present some examples to illustrate the main results of this paper.
First, we consider the case where X is a Brownian motion in Rd running twice as fast as the
standard Brownian motion. We consider the following relativistic (2αn)-stable process in
Rd with αn ∈ (0, 1]

Φn(λ) =
(λ + γn)αn − γn

αn

αn

where (αn, γn) is a sequence in (0, 1]× [0, ∞). When γn > 0, the time changed process XΦn

is a relativistic 2α-stable process in Rd.
If (αn, γn) converges to some (α, γ) in (0, 1]× (0, ∞) as n → ∞ we find that Φn(λ)

tends to a relativistic 2α-stable process in Rd.
If (αn, γn) converges to some (α, 0) with α ∈ (0, 1] as n→ ∞ we find that Φn(λ) tends

to a spherical symmetric 2α-stable process in Rd.
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If (αn, γn) converges to some (0, γ) with γ ∈ (0, ∞) as n → ∞ we find that Φn(λ)
tends to

Φ(λ) = ln
(

λ

γ
+ 1
)

which is related to a gamma process.
Then, by using the results of the previous sections, we can approximate space–time

fractional equations related to relativistic 2α-stable processes, spherical symmetric 2α-stable
processes, and gamma processes with suitable sequences of relativistic 2α-stable processes
in Rd.

We highlight that other examples can be given in a similar way by replacing X
with another kind of symmetric process, such as a spherically symmetric α-stable pro-
cess, symmetric Lévy process, and symmetric diffusions with infinitesimal generators of
divergence form.

Another interesting example is the following. Consider the sequences of symbols

Φn(λ) = βn ln
(

λ

δn
+ 1
)

that are related to a gamma processes with parameters βn → ∞ and δn → ∞. The pa-
rameters βn, δn can be related to the plot of the observed data that may fit the path of
a realization of the Laplace motion (also termed variance gamma processes, that is, the
Brownian motion time-changed by a gamma subordinator).

If the parameters βn, δn characterizing the phenomenon satisfy

βn

δn
→ c

as n→ ∞, we find that Φn(λ) tends to

Φ(λ) = cλ

as n→ ∞; that is we have a sort of “denoising”, and the underline (base) process appears.
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