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Abstract: This paper investigates a class of fractional-order delayed impulsive gene regulatory
networks (GRNs). The proposed model is an extension of some existing integer-order GRNs using
fractional derivatives of Caputo type. The existence and uniqueness of an almost periodic state of the
model are investigated and new criteria are established by the Lyapunov functions approach. The
effects of time-varying delays and impulsive perturbations at fixed times on the almost periodicity
are considered. In addition, sufficient conditions for the global Mittag–Leffler stability of the almost
periodic solutions are proposed. To justify our findings a numerical example is also presented.

Keywords: gene regulatory networks; fractional-order derivatives; time-varying delays; impulses;
almost periodicity; Mittag–Leffler stability; Lyapunov method

1. Introduction

The regulation of the genes’ expression in the process of operating of organisms
on the molecular level is mainly realized via genetic regulatory systems organised as
networks of connections between DNA, RNA, proteins, and small molecules. A very good
literature review of the different formalisms that have been employed to describe genetic
regulatory systems has been proposed in [1]. Ordinary differential equations are among the
proposed formalisms, that are intensively applied by numerous researchers in modelling
of GRNs [2–4].

Investigating the effects of time delays is very important in the models of GRNs in
order to understand the transcriptional process of genetic gene and analyze the limited
speed of gene transcription. That is why, GRNs with fixed delays, time-varying delays,
random delays are extensively studied and many important qualitative results have been
proposed. See, for example, refs. [5–7] for some very good achievements on delayed GRNs.
The recently published book [8] is also a very good source of research and provides an
essential introduction to the latest advances in delayed GRNs.

Using the formalism of delayed differential equations, a model of a delayed GRN
proposed in [6] can be represented as follows ṁi(t) = −aimi(t) +

n

∑
j=1

wij f j(pj(t− σ(t))) + Bi

ṗi(t) = −ci pi(t) + dimi(t− τ(t)),
(1)

where i = 1, 2, . . . , n, mi(t) and pi(t) denote the i-th mRNA molecule’s concentration and
i-th protein’s concentration at time t, respectively, the real constants ai and ci denote the
degradation rates in the i-th mRNA molecule’s concentration and i-th protein’s concentra-
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tion, respectively, the positive constants di are the translation rates, the regulatory function
f j for any j = 1, 2, . . . , n is of the following Hill form

f j(x) =
(x/β j)

Hj

1 + (x/β j)
Hj

where the constants β j > 0 and the constants Hj are known as Hill coefficients, the constants
wij are the connecting parameters, Bi is the basal rate of the repressor of gene i, σ(t) and
τ(t) represent the time-varying delays.

Additionally, impulsive effects are common in modelling gene regulation processes
since the physical environments or external forces may abruptly change the GRNs states.
As a result, impulses have been introduced into the GRNs models, and several classes of
GRNs have been modelled by impulsive equations [9–11]. In fact, impulsive differential
equations is an increasingly important area of non-linear analysis. Such equations are
capable of describing many phenomena that occur in nature [12–14]. In addition, among the
control approaches, the impulsive control is a powerful technique to control the qualitative
properties of a system under short-term disturbances [15–19]. Impulsive control strategies
are also applied to GRNs [20].

On the other side, fractional calculus perspective has been pointed out as very promis-
ing in modelling a number of processes in science, biology, and medicine [21–23]. Due to
the advantages of the fractional-order modelling, fractional-order networks have become
an active area of research in the biological and biomedical sciences and have received great
attention over the last few years [24–27]. Very recently, fractional-order approach has been
also applied to GRNs. In the [28] the authors applied the Razumikhin strategy to establish
criteria for stability and synchronization of the states in fractional order time delayed GRNs.
The paper [29] studied a class of fractional-order GRNs and proposed some Mittag–Leffler
stability and generalized Mittag–Leffler stability criteria using the fractional Lyapunov
method. A type of fractional-order GRNs has been introduced in [30] to synchronize at
finite-time point by designing feedback controls. A global stability analysis of fractional-
order GRNs with time delay has been conducted in [31]. The paper [32] is devoted to the
global uniform asymptotical stability of fractional GRNs with time-varying delays and
structured uncertainties.

The investigations on fractional GRNs under impulsive perturbations are still very
seldom. Some criteria for stability and synchronization of fractional delayed GRNs under
impulsive control have been proposed in [33]. Mittag–Leffler stability criteria for fractional
GRNs under impulsive effects are established in [34].

However, all mentioned above studies on fractional GRN’s offered only stability and
synchronization results and no results on other qualitative properties are reported in the
existing literature. Except stability, there are some main qualitative properties of neural
network systems that are very important from the applied point of view. One of these
properties is the almost periodicity of the states. On the importance of studying of almost
periodic properties and processes we will direct readers to [35–39]. This is the main reason
of the existing of numerous results on almost periodicity of different classes of applied
problems [40–42], including fractional neural networks [43–45]. In fact, the non-existence
of pure periodic solutions for systems of fractional order has been proved in [46].

Recently, almost periodicity is investigated only for integer-order GRNs in few pa-
pers [47,48]. To the best of the authors knowledge, there are not results on the almost
periodic properties of fractional-order GRNs and this is the main goal of our study.

In this paper, we will apply the fractional Lyapunov strategy to investigate the existence
and stability of almost periodic states for a class of fractional-order GRNs. Indeed, the Lya-
punov method is a very powerful technique that is applied intensively by many researches
in the investigations of the qualitative properties of fractional-order problems and impulsive
control problems [14,16–18,23,26,27,49–51], including fractional-order GRNs [28–34].

The main novelty of the paper is in the following five points:
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(1) An impulsive control strategy is considered for a class of fractional-order GRNs with
time-varying delays;

(2) The almost periodicity notion is introduced to the model under consideration which
initiates the development of the almost periodicity theory for impulsive fractional
GRNs;

(3) New existence and uniqueness results for the almost periodic states are established;
(4) New criteria for global Mittag–Leffler stability of an almost periodic state of the

impulsive model under consideration are also proved;
(5) We apply an extended Lyapunov function approach which allows representing the

obtained results in terms of the model’s parameters, and leads to a better exploration
of the impulsive effect.

Since GRNs are still very popular in science and, studying their qualitative behavior
would have diverse applications. Hence, the proposed almost periodicity qualitative
results will be of a great importance not only for researchers in applied mathematics and
mathematical biology, but also for a wide audience of professionals all over the world.

More precisely, in Section 2 we introduce the model of fractional delayed impulsive
GRNs and state some notations, definitions and lemmas. The almost periodicity concept is
also introduced to the formulated model. Section 3 is dedicated to the main existence and
uniqueness criteria for the almost periodic states. Results on the global Mittag–Leffler sta-
bility of the almost periodic solutions are also presented. In Section 4, we demonstrate the
presented results by a numerical example. Some conclusion observations are commented
in Section 5.

2. The Fractional-Order Impulsive Delayed GRN Model. Preliminaries

LetRn denotes the n-dimensional Euclidean space and the norm of U = (U1, U2, . . . , Un)T

∈ Rn is given by ||U|| =
√

n

∑
i=1

U2
i . Let R+ = [0, ∞).

First, we will recall some basic fractional calculus definitions and properties.

Definition 1. Ref. [22] Let α > 0 and t ≥ t0, t0 ∈ R. An integral of fractional order α for a
function u is defined as

Iα
t0

u(t) =
1

Γ(α)

∫ t

t0

u(λ)
(t− λ)1−α

dλ,

where Γ is the Gamma function defined by

Γ(α) =
∫ ∞

0
e−ttα−1dt.

When t0 = 0, we will denote by

Iαu(t) =
1

Γ(α)

∫ t

0

u(λ)
(t− λ)1−α

dλ,

Definition 2. Let n be an integer, n > 0 let n− 1 < α < n. The fractional derivative of order α of
Caputo type with a lower limit t0 for a function u ∈ Cn+1[[t0, ∞),R] is given by

C
t0

D
α

t u(t) =
1

Γ(n− α)

∫ t

t0

u(n)(λ)

(t− λ)α−n+1 dλ.

For α ∈ (0, 1) and t0 = 0, we have

C
0 D

α

t u(t) = CD
α
t u(t) =

1
Γ(1− α)

∫ t

t0

u′(λ)
(t− λ)α

dλ.
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We will use the following properties in the proofs of our main almost periodicity
results for t ≥ t0 and α ∈ (0, 1) [21–23]:

P1. Iα
t0

(
C
t0

Dα

t
u(t)

)
= u(t)− u(t0).

P2. C
t0

Dα

t
(c1u1(t) + c2u2(t)) = c1

C
t0

Dα

t
u1(t) + c2

C
t0

Dα

t
u2(t).

P3. Ref. [51] C
t0

Dα

t
u2(t) ≤ 2u(t)C

t0
Dα

t
u(t).

Additionally, the classes of Mittag–Leffler functions defined by the next definitions
will be applied [22].

Definition 3. For α > 0, the Mittag–Leffler function is given as

Eα(ϑ) =
∞

∑
κ=0

ϑκ

Γ(ακ + 1)
,

where ϑ is a complex variable.

Definition 4. For α > 0 and β > 0, the Mittag–Leffler function in two parameters, is defined by

Eα,β(ϑ) =
∞

∑
κ=0

ϑκ

Γ(ακ + β)
.

In the particular case, when α > 0 and β = 1, Eα(ϑ) = Eα,1(ϑ). Additionally, for
α = β = 1, E1,1(ϑ) = eϑ.

Next, we will define the impulsive GRN model of fractional order with time-varying
delays as follows:

CD
α
t mi(t) = −aimi(t) +

n

∑
j=1

wij(t) f j(pj(t− σj(t))) + Bi(t), t 6= tk,

CD
α
t pi(t) = −ci pi(t) + di(t)mi(t− τi(t)), t 6= tk,

mi(t+k ) = mi(tk) + Pik(mi(tk)), pi(t+k ) = pi(tk) + Qik(pi(tk)),

(2)

where:

1. α ∈ (0, 1), t ∈ R, i = 1, 2, . . . , n;
2. The parameters ai, ci > 0 are the same as in (1);
3. The functions of regulation f j, j = 1, 2, . . . , n are the same as in (1) and satisfy

0 ≤
f j(u)− f j(v)

u− v
≤ lj, (3)

for some constants lj and all u, v ∈ R, u 6= v;
4. The translation rates di and basal rates Bi are extended to functions di(t) and Bi(t),

respectively, i = 1, 2, . . . , n, Bi(t) = ∑j∈Ii
bij(t), where Ii is the set of all the j which are

repressors of the gene i;
5. The functions wij(t) are represented as:

wij(t) =


bij(t), if j is an activator of gene i
−bij(t), if j is a repressor of gene i
0, if there is no connection between the node j and the gene i;

6. The time-varying delays σi(t) ∈ C[R,R] and σi(t) ∈ C[R,R] are different for dif-
ferent mRNA and protein molecules, respectively, and satisfy t > σj, t > τi and
0 ≤ σj(t) ≤ σ (σ=const), 0 ≤ τi(t) ≤ τ, (τ=const), i = 1, 2, . . . , n, j = 1, 2, . . . , n;
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7. tk are the impulsive moments (impulsive control instants) and tk ∈ T , where T is the
set of all sequences of the type

{tk} : tk ∈ (−∞, ∞), tk < tk+1, tk 6= 0, k = ±1,±2, . . . , lim
k→±∞

tk = ±∞

with a distance denoted as ρ
(
{t(1)k }, {t

(2)
k }

)
;

8. mi(tk) = mi(t−k ) and pi(tk) = pi(t−k ) denote the i-th mRNA concentration and i-th
protein concentration at time tk, respectively, and mi(t+k ) and pi(t+k ) denote the level
of the i-th mRNA concentration and i-th protein concentration, respectively, at t+k , i.e.,
after an impulsive short-term effect on them at tk;

9. The impulsive functions Pik and Qik denote the amounts of the abrupt variation in
mi(t) and pi(t), respectively, at the impulsive instants tk, i.e., ∆mi(tk) = mi(t+k ) −
mi(tk) = Pik(mi(tk)) and ∆pi(tk) = pi(t+k ) − pi(tk) = Qik(pi(tk)), i = 1, 2, . . . , n,
k = ±1,±2, . . . .

To specify the initial conditions associated with the model (2), we will use functions
χ : R → Rn : χ(t) are piecewise continuous on R with points of jump discontinuities
tk ∈ T at which χ(t−k ) = χ(tk). The class of all such functions will be denoted by
PC[R,Rn]. We will also use initial functions from the classes of bounded and piecewise
continuous functions φ ∈ PC[[−τ, 0],Rn] and ϕ ∈ PC[[−σ, 0],Rn] with finite number of
points of discontinuities, denoted by PCB[[−τ, 0],Rn] and PCB[[−σ, 0],Rn], respectively,
with norms:

||φ||τ = sup
ξ∈[−τ,0]

||φ(ξ)||, ||ϕ||σ = sup
ξ∈[−σ,0]

||ϕ(ξ)||.

Let φ ∈ PCB[[−τ, 0],Rn], φ = (φ1, φ2, . . . , φn)T and ϕ ∈ PCB[[−σ, 0],Rn],
ϕ = (ϕ1, ϕ2, . . . , ϕn)T . Denote by (m(t), p(t))T = (m(t; 0, φ), p(t; 0, ϕ))T ∈ R2n,

(m(t; 0, φ), p(t; 0, ϕ))T = (m1(t; 0, φ), . . . , mn(t; 0, φ), p1(t; 0, ϕ), . . . , pn(t; 0, ϕ))T

the solution of the model (2) associated with the following initial conditions
mi(ξ; 0, φ) = φi(ξ), −τ ≤ ξ ≤ 0,
pi(ξ; 0, ϕ) = ϕj(ξ), −σ ≤ ξ ≤ 0,
mi(0+, 0, φ) = φi(0), pi(0+, 0, ϕ) = ϕi(0),

(4)

i = 1, 2, . . . , n.

Remark 1. The model (2) is an extension of the GRN models proposed in [5,6] and some others,
considering different time-varying delays, fractional-order derivatives, and impulsive effects.

For the study of the almost periodic properties of the states of the fractional impulsive
model (2), we will next apply the almost periodicity concepts from [38,39].

Let the function χ ∈ PC[R,Rn] and X = (χ(t), T) ∈ PC[R,Rn]× T . Consider the sets
θsq X = {χ(t + sq), T− sq} ⊂ PC[R,Rn]× T , where {sq}∞

q=1, sq ∈ R, is an arbitrary infinite
sequence of real entries and T − sq = {tk − sq}, k = ±1,±2, . . . , q = 1, 2, . . . .

Definition 5. If from any sequence of real numbers {s′m} it is possible to select a subsequence
{sq}, sq = s′mq , such that θsq X to be compact in PC[R,Rm]×T , then the function χ ∈ PC[R,Rn],
χ = χ(t), is called almost periodic piecewise continuous function on R.

Definition 6. A sequence {Xq}, Xq = (χq(t), Tq) ∈ PC[R,Rn]× T , converges uniformly with
respect to t ∈ R to X, if from the existence of an ε > 0 there follows the existence of a q0 > 0, such
that the estimates

ρ(T, Tq) < ε, ||χq(t)− χ(t)|| < ε
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are satisfied uniformly for any q ≥ q0, t ∈ R \ ∩{θε(s(Tq ∪ T))}, where s(Tq ∪ T) is a strictly
increasing sequence, s(Tq ∪ T) : T → T , and θε(s(Tq ∪ T)) = {t + ε, t ∈ s(Tq ∪ T)}.

Definition 7. The set of all sequences of the type {tl
k}, tl

k = tk+l − tk, k = ±1,±2, . . . ,
l = ±1,±2, . . . is called uniformly almost periodic (UAP), if from each infinite sequence of
shifts {tk − sq}, k = ±1,±2, . . . , q = 1, 2, . . . , sq ∈ R it is possible to select a convergent
subsequence in T .

Remark 2. The almost periodicity concepts defined in Definitions 5–7 are adopted from [38,39].
Similar notions are applied in [35,40–45]. We will refer the reader to [49,50] for more details
and definitions of almost periodic sequences and functions. The case of piecewise continuous
almost periodic functions is mainly investigated in [38,39]. The almost periodicity notions are
introduced for GRNs in [47], where impulsive effects and fractional derivatives are not considered.
For impulsive GRNs the concept is applied in [48] for the integer-order case.

We will consider the introduced fractional impulsive GRNs under the following
assumptions:

A1. The model parameters di(t), wij(t), Bi(t) are almost periodic in the sense of Bohr [38,39]
on R and there exist w > 0 and d > 0, such that∣∣wij(t)

∣∣ ≤ w,
∣∣di(t)

∣∣ ≤ d

for every i, j = 1, 2, . . . , n and t ∈ R;
A2. The sequences of functions {Pik(mi)} and {Qik(pi)}, k = ±1,±2, . . . , i = 1, 2, . . . , n

are almost periodic in the sense of Bohr;
A3. The initial functions φ ∈ PCB[[−τ, 0],Rn] and ϕ ∈ PCB[[−σ, 0],Rn] are almost

periodic;
A4. The set of sequences {tl

k}, k = ±1,±2, . . . , l = ±1,±2, . . . is UAP.

Remark 3. The reasonableness of the assumptions A1–A4 lies in the theory of almost periodic
functions and almost periodic sequences. In fact, the assumptions for almost periodicity for the
models’ functional parameters and initial data are essential in the study of the almost periodic
behavior of the states of model (2). See [38,39].

Let {s′l} be an arbitrary infinite sequence of real numbers. Then, refs. [38,39,43] the
assumptions A1–A4 guarantee that it is possible to select a subsequence {sq}, sq = s′lq
which generates transitions of the GRN (2) to a system of the type

CD
α
t mi(t) = −aimi(t) +

n

∑
j=1

ws
ij(t) f j(pj(t− σj(t))) + Bs

i (t), t 6= ts
k,

CD
α
t pi(t) = −ci pi(t) + ds

i (t)mi(t− τi(t)), t 6= ts
k,

mi(ts+
k ) = mi(ts

k) + Pik(mi(ts
k)), pi(ts+

k ) = pi(ts
k) + Qik(pi(ts

k)).

(5)

The set of limiting systems of type (5) which reflect the almost periodicity concept [36]
applied to differential systems [52] is known as a hull of the system (2) and will be denoted
byH(2).

If (m(t), p(t))T is a solution of the model (2), then byH
(
(m(t), p(t))T) we will denote

the hull of (m(t), p(t))T .
In our almost periodicity analysis we will apply the Lyapunov function approach.

Define the sets:

Gk = {(t, U, V) : t ∈ (tk−1, tk), U, V ∈ Rn}, k = ±1,±2, . . . ,
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the set G =
⋃

k=±1,±2,... Gk and the class W0 of piecewise continuous Lyapunov functions
W : R×Rn×Rn → R+, that are continuous in G, locally Lipschitz continuous with respect
to (U, V) on every set Gk, k = ±1,±2, . . . , W(t, 0, 0) = 0, t ∈ R, the limits W(t−k , U, V) =
lim t→tk

t<tk

W(t, U, V), W(t+k , U, V) = lim t→tk
t>tk

W(t, U, V) exist and are finite, W(t−k , U, V) =

W(tk, U, V), k = ±1,±2, . . . , U, V ∈ Rn.
Let t 6= tk, k = ±1,±2, . . . , Φ ∈ PCB[[−τ, 0],Rn] and Ψ ∈ PCB[[−σ, 0],Rn]. The

fractional derivative of order α, 0 < α < 1 for a function W ∈ W0 will be defined by the
next definition [23].

Definition 8. The function

cDαW(t, Φ(0), Ψ(0)) = lim
h→0+

sup
1
hα

[
W(t, Φ(0), Ψ(0))

−W(t− h, Φ(0)− hαF1(t, Φ(0), Ψ), Ψ(0)− hαF2(t, Φ, Ψ(0))
]

is said to be a Caputo-type fractional derivative of W of order α, 0 < α < 1 with respect to a system

CD
α
t U(t) = F1(t, U, Vt), t 6= tk,

CD
α
t V(t) = F2(t, Ut, V), t 6= tk,

U(t+k ) = U(tk) + Jk(U(tk)), V(t+k ) = V(tk) + J̃k(V(tk)), t = tk,

where t > 0, Ut(ξ) = U(t + ξ), ξ ∈ [−τ, 0], Vt(ξ) = V(t + ξ), ξ ∈ [−σ, 0], the continuous
vector-functions F1 : R×Rn ×PCB[[−σ, 0],Rn] → Rn, F2 : R×PCB[[−τ, 0],Rn]×Rn →
Rn, are locally Lipschitz in their second and third variables, Jk, J̃k : Rn → Rn, k = ±1,±2, . . . .

From Lemma 1.6 in [23], we obtain the following result.

Lemma 1. Assume that for the Lyapunov-type function W ∈W0 and for Φ ∈ PCB[[−τ, 0],Rn],
Ψ ∈ PCB[[−σ, 0],Rn] the following conditions hold for t ≥ 0:

(i) W(t+, Φ(0) + Jk(Φ), Ψ(0) + J̃k(Ψ)) ≤W(t, Φ(0), Ψ(0)), t = tk, k = ±1,±2, . . . ;
(ii) The inequality

cDαW(t, Φ(0), Ψ(0)) ≤ −µW(t, Φ(0), Ψ(0)) + ν, µ, ν ∈ R, t 6= tk

is valid whenever

W(t + ξ, Φ(ξ), Ψ(ξ)) ≤W(t, Φ(0), Ψ(0)), −max[τ, σ] ≤ ξ ≤ 0.

Then
W(t, U(t; 0, Φ), V(t; 0, Ψ))

≤ sup
−max[τ,σ]≤ξ≤0

W(0, Φ(ξ), Ψ(ξ))Eα(−µtα) + νtαEα,α+1(−µtα), t ≥ 0.

Remark 4. Lemma 1 complements the result in Corollary 1.5 from [23] adding a ν 6= 0. This
result also extends Lemma 9 in [53] to the impulsive case. Similar comparison results for impulsive
fractional-order systems can be found in [54,55]. Note that, in general, almost periodic problems are
considered for t ∈ R. However, the Lyapunov function approach is applied for t ≥ t0 = 0 [56].

3. Fractional Order Almost Periodicity Theorems

In this section, we will apply the fractional Lyapunov functions approach to determine
the existence, uniqueness and stability of almost periodic states of the model (2).

First, we will state the existence and uniqueness almost periodicity result.
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Theorem 1. Assume that assumptions A1–A4 hold and:

(i) There exists a real number

µ = 2
(

cmin −max
(

w
n

∑
i=1

li, d
))

> 0,

where cmin = min
(

min
1≤i≤n

ai, min
1≤i≤n

ci

)
;

(ii) The functions Pik(mi) = Pimi + Ai, Qik(pi) = Qi pi + Bi, k = ±1,±2, . . . , where Ai, and
Bi are positive constants and the constants {Pi}, {Qi}, are such that

−1 ≤ Pi ≤ 0, −1 ≤ Qi ≤ 0, i = 1, 2, . . . , n;

(iii) A solution (m(t), p(t))T of the model (2) exists such that

||m(t)||+ ||p(t)|| < C̃, C̃ > 0

for t ≥ 0.

Then, the impulsive fractional-order GRN model (2) has a unique almost periodic solution
(m̃(t), p̃(t))T , such that:

(a) ||m̃(t)||+ || p̃(t)|| ≤ C̃1, C̃1 < C̃;
(b) H

(
(m̃(t), p̃(t))T) ⊂ H(2), where H

(
(m̃(t), p̃(t))T) is the hull of the almost periodic

solution (m̃(t), p̃(t))T .

Proof. Let {sq} be an infinite sequence of real numbers that generates movements of the
fractional-order impulsive model (2) to a system (5) from the set H(2), and sq → ∞ as
q→ ∞.

Let

(m(t), p(t))T = (m(t; 0, φ), p(t; 0, ϕ))T = (m1(t; 0, φ), . . . , mn(t; 0, φ), p1(t; 0, ϕ), . . . , pn(t; 0, ϕ))T

be the solution of the model (2) for φ ∈ PCB[[−τ, 0],Rn], ϕ ∈ PCB[[−σ, 0],Rn], that
satisfies condition (iii) of Theorem 1.

Let b be a real number that corresponds to the smallest value of q denoted by
q0 = q0(b), such that sq0 + b ≥ 0. From (iii) it follows that there exists C̃1, 0 < C̃1 < C̃, such
that ||m(t)||+ ||p(t)|| ≤ C̃1 for all t ≥ 0. Hence, ||m(t + sq)||+ ||p(t + sq)|| ≤ C̃1 for t ≥ b,
q ≥ q0.

Let Ω, Ω ⊂ (b, ∞) be compact. For U, V ∈ Rn, we construct the following Lyapunov-
type function

W(t, U(t), V(t)) =
1
2

n

∑
i=1

U2
i (t) +

1
2

n

∑
i=1

V2
i (t), t ∈ Ω. (6)

From the compactness of Ω it follows that for any ε > 0 there exists an integer number
n0(ε, b) ≥ q0(b), such that for l ≥ q ≥ n0(ε, b) and t ∈ Ω, we have

sup
−τ≤ξ≤0

n

∑
i=1

U2
i (φ(ξ)) + sup

−σ≤ξ≤0

n

∑
i=1

V2
i (ϕ(ξ)) < εEα(µtα). (7)

By condition (ii) of Theorem 1 and A4, for t = tk, k = ±1,±2, . . . , we obtain

1
2

n

∑
i=1

(mi(t+k + sq)−mi(t+k + sl))
2 +

1
2

n

∑
i=1

(pi(t+k + sq)− pi(t+k + sl))
2

=
1
2

n

∑
i=1

[
mi(tk + sq) + Pimi(tk + sq) + Ai −mi(tk + sl)− Pimi(tk + sl)−Ai

]2
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+
1
2

n

∑
i=1

[
pi(tk + sq) + Qi pi(tk + sq) + Bi − pi(tk + sl)−Qi pi(tk + sl)− Bi

]2

=
1
2

n

∑
i=1

[(
1 + Pi

)(
mi(tk + sq)−mi(tk + sl)

)]2

+
1
2

n

∑
i=1

[(
1 + Qi

)(
pi(tk + sq)− pi(tk + sl)

)]2

and, hence
W(t+k , m(t+k + sq)−m(t+k + sl), p(t+k + sq)− p(t+k + sl))

≤W(tk, m(tk + sq)−m(tk + sl), p(tk + sq)− p(tk + sl)), k = ±1,±2, . . . . (8)

Next, we will examine the fractional derivative order α, 0 < α < 1,

CD
α
t W(t, U(t), V(t))

of the function (6) for t 6= tk, k = ±1,±2, . . . .
According to P2, we have

CD
α
t W(t, U(t), V(t)) = CD

α
t

[
1
2

n

∑
i=1

U2
i (t) +

1
2

n

∑
i=1

V2
i (t)

]
=

1
2

n

∑
i=1

CD
α
t U2

i (t) +
1
2

n

∑
i=1

CD
α
t V2

i (t)

and then, by P3, we obtain

CD
α
t W(t, U(t), V(t)) ≤

n

∑
i=1

Ui(t)CD
α
t Ui(t) +

n

∑
i=1

Vi(t)CD
α
t Vi(t), t 6= tk, k = ±1,±2, . . . . (9)

From (9), for the derivative CDα
t W(t, m(t + sq)−m(t + sl), p(t + sq)− p(t + sl)) with

respect to the model (2) for t ≥ 0 and t ∈ [tk−1, tk), we have

CD
α
t W(t, m(t + sq)−m(t + sl), p(t + sq)− p(t + sl))

≤
n

∑
i=1

(mi(t + sq)−mi(t + sl))
CD

α
t ((mi(t + sq)−mi(t + sl))

+
n

∑
i=1

(pi(t + sq)− pi(t + sl))
CD

α
t (pi(t + sq)− pi(t + sl))

≤
n

∑
i=1

(mi(t + sq)−mi(t + sl))
[

CD
α
t mi(t + sq)− CD

α
t mi(t + sl)

]
+

n

∑
i=1

(pi(t + sq)− pi(t + sl))
[

CD
α
t pi(t + sq)− CD

α
t pi(t + sl)

]
≤

n

∑
i=1

(
mi(t + sq)−mi(t + sl)

)[
− ai

(
mi(t + sq)−mi(t + sl)

)
+

n

∑
j=1

wij(t + sq) f j(pj(t + sq − σj(t + sq)))

−
n

∑
j=1

wij(t + sl) f j(pj(t + sl − σj(t + sl))) + Bi(t + sq)− Bi(t + sl)
]

+
n

∑
i=1

(
pi(t + sq)− pi(t + sl)

)[
− ci

(
pi(t + sq)− pi(t + sl)

)
+ di(t + sq)mi(t + sp − τi(t + sq))− di(t + sl)mi(t + sl − τi(t + sl))

]
. (10)
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We apply the inequality 2ab ≤ a2 + b2 in (10), and get

CD
α
t W(t, m(t + sq)−m(t + sl), p(t + sq)− p(t + sl))

≤ −cmin

[
n

∑
i=1

(mi(t + sq)−mi(t + sl))
2 +

n

∑
i=1

(pi(t + sq)− pi(t + sl))
2

]

+
n

∑
i=1

(
mi(t + sp)−mi(t + sl)

)[ n

∑
j=1

∣∣wij(t + sq)− wij(t + sl)
∣∣| f j(pj(t + sq − σj(t + sq))|

+
n

∑
j=1
|wij(t + sl |

∣∣ f j(pj(t + sq − σj(t + sq))− f j(pj(t + sl − σj(t + sl))
∣∣

+|Bi(t + sq)− Bi(t + sl)|
]

+
n

∑
i=1

(
pi(t + sq)− pi(t + sl)

)[∣∣di(t + sq)− di(t + sl)
∣∣|mi(t + sq − τi−n(t + sq))|

+|di(t + sl)|
(
mi(t + sq − τi(t + sq))−mi(t + sl − τi(t + sl))

)]

≤ −cmin

[
n

∑
i=1

(mi(t + sq)−mi(t + sl))
2 +

n

∑
i=1

(pi(t + sq)− pi(t + sl))
2

]

+
n

∑
i=1

(
mi(t + sq)−mi(t + sl)

)[
(n + 1)ε + w

n

∑
j=1

lj
∣∣pj(t + sq − σj(t + sq)− pj(t + sl − σj(t + sl)

∣∣]

+
n

∑
i=1

(
pi(t + sq)− pi(t + sl)

)[
εC̃1 + d

∣∣mi(t + sq − τi(t + sq))−mi(t + sl − τi(t + sl))
∣∣]. (11)

From the above estimate, for Φ ∈ PCB[[−τ, 0],Rn], Ψ ∈ PCB[[−σ, 0],Rn], we obtain
that the inequality

cDαW(t, Φ(0), Ψ(0)) ≤ −µW(t, Φ(0), Ψ(0)) + ν, t 6= tk (12)

is satisfied whenever

W(t + ξ, Φ(ξ), Ψ(ξ)) ≤W(t, Φ(0), Ψ(0)), −max[τ, σ] ≤ ξ ≤ 0,

where µ is determined in condition (i) of Theorem 1 and ν = ε2n
√

2 max(C̃1, n + 1).
We get, by (8), (12), and Lemma 1, that

W(t, m(t + sq)−m(t + sl), p(t + sq)− p(t + sl)) < Λε2, t ∈ Ω,

where Λ is a positive constant.
From the choice of the function (6) and from the last inequality, we obtain that for any

t ∈ Ω
||m(t + sq)−m(t + sl)||+ ||p(t + sq)− p(t + sl)|| < Λ1ε2,

where Λ1 is a positive constant. Hence, there exists (m̃(t), p̃(t))T such that (m(t + sq),
p(t + sq))T → (m̃(t), p̃(t))T as q → ∞ and since b is arbitrary, (m̃(t), p̃(t))T is uniformly
defined on R.
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Applying similar arguments, we can prove that the limits

lim
q→∞

CD
α
t m(t + sq), lim

q→∞
CD

α
t p(t + sq)

exist uniformly on all compact subsets of R.
From lim

q→∞
CD

α
t m(t + sq) =

CD
α
t m̃(t) and lim

q→∞
CD

α
t p(t + sq) =

CD
α
t p̃(t), we get

CD
α
t m̃(t) = lim

q→∞

(
Fs

1(t + sq, m(t + sq), pt+sq )− Fs
1(t + sq, m̃(t), p̃t) + Fs

1(t + sq, m̃(t), p̃t)
)

= F1(t, m̃(t), p̃t), t 6= ts
k. (13)

CD
α
t p̃(t) = lim

q→∞

(
Fs

2(t + sq, mt+sq , p(t + sq))− Fs
2(t + sq, m̃t, p̃(t)) + Fs

2(t + sq, m̃t, p̃(t))
)

= F2(t, m̃t, p̃(t)), t 6= ts
k, (14)

where ts
k = lim

q→∞
(tk + sq), mt(ξ) = m(t + ξ), ξ ∈ [−τ, 0], pt(ξ) = p(t + ξ), ξ ∈ [−σ, 0], the

continuous vector-functions F1 : R×Rn ×PCB[[−σ, 0],Rn]→ Rn, F2 : R×PCB[[−τ, 0],Rn]
×Rn → Rn, denoted the right-hand sides of the model (5) in the matrix form.

Additionally,

m̃(t+)− m̃(t−) = lim
q→∞

(m(t + sq + 0)−m(t + sq − 0))

= lim
q→∞

Js
k(m(t + sq)) = Jk(m̃(t)), t = ts

k, k = ±1,±2, . . . , (15)

p̃(t+)− p̃(t−) = lim
q→∞

(p(t + sq + 0)− p(t + sq − 0))

= lim
q→∞

J̃s
k(p(t + sq)) = J̃k( p̃(t)), t = ts

k, k = ±1,±2, . . . , (16)

where Jk, J̃k : Rn → Rn, k = ±1,±2, . . . are the diagonal matrices of impulsive functions
in (5).

From (13)–(16), we conclude that (m̃(t), p̃(t))T is a solution of an impulsive fractional-
order system of the type (5).

The proof of the fact that (m̃(t), p̃(t))T is almost periodic follows from estimates,
similar to (7), (8), and (12) for the function

W(t, m̃(t)− m̃(t + sq − sl), p̃(t)− p̃(t + sq − sl))

=
1
2

n

∑
i=1

(
m̃i(t)− m̃i(t + sq − sl)

)2
+

1
2

n

∑
i=1

(
p̃i(t)− p̃i(t + sq − sl)

)2, t ∈ Ω.

Hence, operating similarly as above, we can prove the following estimate

||m(t + sq)−m(t + sl)||+ ||p(t + sq)− p(t + sl)|| < Λ1ε2, (17)

for l ≥ q ≥ n0(ε).
Additionally, the estimate

ρ(tk + sq, tk + sl) < ε, l ≥ q ≥ n0(ε) (18)

follows directly from the definition of the sequence {sq}.
The last estimate and (17) imply that (m̃(t + sq), p̃(t + sq))T converges uniformly to

(m̃(t), p̃(t))T .
Therefore, points (a) and (b) of Theorem 1 are both satisfied, which completes the

proof of the Theorem.
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Remark 5. Recently, there exists just very few results on the almost periodic properties of integer-
order GRNs [47,48]. Theorem 1 is an extension of the existent results to the fractional-order case.
The result can be applied by the researchers that used the advantages of fractional-order modelling
in their qualitative analysis.

Remark 6. Theorem 1 also is an extension of the results in [47] considering impulsive effects that
can be applied as controllers. In addition, it complements the almost periodicity results in [48]
obtained by the Cauchy matrix estimations and the theory of contracting operators in Banach
spaces, using the Lyapunov function approach. In fact, the advantages of the Lyapunov method are
used in the qualitative investigation of numerous problems [14,16–18,23,26,27,49–51], including
fractional-order GRNs [28–34].

In the last result in this section, we will establish criteria for global Mittag–Leffler
stability of the almost periodic state (m̃(t), p̃(t))T of the model (2).

Definition 9. The solution (m̃(t), p̃(t))T of (2) with initial functions φ̃ ∈ PCB[[−τ, 0],Rn],
ϕ̃ ∈ PCB[[−σ, 0],Rn] is globally Mittag–Leffler stable, if for any φ ∈ PCB[[−τ, 0],Rn],
ϕ ∈ PCB[[−σ, 0],Rn],, such that ||φ̃ − φ||τ + ||ϕ̃ − ϕ||σ < λ̄, (λ̄ > 0) constants µ > 0
and γ > 0 exist such that we have

||m̃(t)−m(t)||+ || p̃(t)− p(t)|| ≤ {M(φ̃− φ, ϕ̃− ϕ)Eα(−µtα)}γ, t ≥ 0,

where (m(t), p(t))T is the solution of the model (2) corresponding to initial functions φ, ϕ,M≥ 0,
M(0, 0) = 0, andM is Lipschitz continuous with respect to its both variables.

Theorem 2. Assume that all conditions of Theorem 1 hold. Then the almost periodic solution
(m̃(t), p̃(t))T of the model (2) is globally Mittag–Leffler stable.

Proof. Let (m(t), p(t))T be the solution of the model (2) for φ ∈ PCB[[−τ, 0],Rn],
ϕ ∈ PCB[[−σ, 0],Rn].

Denote by
(m̂(t), p̂(t))T = (m(t)− m̃(t), p(t)− p̃(t))T

and consider the vector functions

Fs
1(t, m̂(t), p̂t) = Fs

1(t, m̂(t) + m̃(t), p̂t + p̃t)− Fs
1(t, m̃(t), p̃t),

Fs
2(t, m̂t, p̂(t)) = Fs

2(t, m̂t + m̃t, p̂(t) + p̃(t))− Fs
2(t, m̃t, p̃(t))

that generate the system
CD

α
t m̂(t) = Fs

1(t, m̂(t), p̂t), t 6= ts
k,

CD
α
t p̂(t) = Fs

2(t, m̂t, p̂(t)), t 6= ts
k,

m̂(t+) = m̂(t) + Jk(m̂(t)), t = ts
k, k = ±1,±2, . . . ,

p̂(t+) = p̂(t) + J̃k( p̂(t)), t = ts
k, k = ±1,±2, . . . .

(19)

Using the Lyapunov-type function Ŵ(t, m̂(t), p̂(t)) = W(t, m̃(t) − (m̃(t) + m̂(t)),
p̃(t)− ( p̃(t) + p̂(t))), by Lemma 1 we obtain that the zero solution (m̂(t), p̂(t))T = (0, 0)T

of the problem (19) is globally Mittag–Leffler stable. Hence, the almost periodic solution
(m̃(t), p̃(t))T of the model (2) is globally Mittag–Leffler stable. This proves Theorem 2.

Remark 7. For fractional-order impulsive GRNs, there are some initial findings regarding stability
criteria for their steady states [34], including fractional-order impulsive GRNs with delays [33].
The stability properties of almost periodic states for such models are not yet studied in the existing
literature. Therefore, our results are new and initiate the development of the stability theory of
almost periodic states for impulsive fractional-order GRNs.
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4. A Numerical Example

To demonstrate the proposed almost periodicity results we consider the following
fractional impulsive GRNs with time-varying delays

CD
α
t mi(t) = −aimi(t) +

n

∑
j=1

wij(t) f j(pj(t− σj(t))) + Bi(t), t 6= tk,

CD
α
t pi(t) = −ci pi(t) + di(t)mi(t− τi(t)), t 6= tk,

mi(t+k ) =
i

i+1 mi(tk) + Ai, pi(t+k ) =
i

i+1 pi(tk) + Bi,

(20)

where α = 0.89, i = 1, 2, 3, m(t) = (m1(t), m2(t), m3(t))T , p(t) = (p1(t), p2(t), p3(t))T ,
tk ∈ T , 0 ≤ σj(t) ≤ 1, 0 ≤ τi(t) ≤ 1, a1 = a2 = a3 = 5, c1 = c2 = c3 = 6,
B1(t) = B2(t) = B3(t) = 0.01 cos

√
3t, d1(t) = 1.3 + 1.1 cos

√
3t, d2(t) = 1.2− 0.5 sin

√
3t,

d3(t) = 1.5− 0.3 cos
√

3t, f j(pj) =
p2

j

1+p2
j
, j = 1, 2,

wij =

 w11 w12 w13
w21 w22 w23
w31 w32 w33

 =

 0 −0.5 0.8
0.7 0 −0.5
−0.5 0.6 0

,

Ai = Bi = 0.2, i = 1, 2, 3.
We have that

5 = cmin > max
(

w
n

∑
i=1

li, d
)
= 2.4

and, hence, condition (i) of Theorem 1 is satisfied.
Additionally, the functions

Pi = Qi =
−1

i + 1
, i = 1, 2, 3

satisfy condition (ii) of Theorem 1.
Thus, by Theorem 1 we can conclude that there exists a unique almost periodic state

(m̃(t), p̃(t))T = (m̃1(t), m̃2(t), m̃3(t), p̃1(t), p̃2(t), p̃3(t))T of the fractional impulsive GRN
model (20).

Additionally, Theorem 2 guarantees that the almost periodic solution (m̃(t), p̃(t))T of
the impulsive fractional GRNs (20) is globally Mittag–Leffler stable. The almost periodic
trajectories of the state variables m̃1(t), m̃2(t) m̃3(t) for tk = 17k + sin

√
2k are shown on

Figure 1 and the almost periodic trajectories of the state variables p̃1(t), p̃2(t) p̃3(t) for
tk = 17k + sin

√
2k are shown on Figure 2.

Remark 8. The presented example demonstrates the efficiency of the proposed results. The practical
meaning of our conclusions is that when the translation rates, basal rates, and the connecting
parameters in the considered fractional impulsive GRN are variable (not constants) but bounded,
and the magnitudes of the impulsive perturbations satisfy conditions of Theorem 2, then the model
is capable to generate a unique globally Mittag–Leffler stable almost periodic process. Indeed, the
concept of almost periodicity has deep historical roots [36] and has important applications in applied
mathematical models [35,39–42,47,48]. Indeed, it is an unrealistic assumption that the behavior
of the states in the GRNs are not affected by periodical environmental factors. The effects of such
factors lead to the existence of pure periodic and almost periodic solutions. For integer-order cases,
the problem of exact periodicity of the solutions has limited applicability and, hence the investigation
of almost periodic behavior is considered to be more accordant with reality. For fractional-order
models [23,43,47,48], the pure periodicity option does not exists. Therefore, studying almost periodic
behavior is very necessary and important.
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Figure 1. The trajectories of the almost periodic variables m̃1(t), m̃2(t) m̃3(t) of the model (20) for
tk = 17k + sin

√
2k.
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Figure 2. The trajectories of the almost periodic variables p̃1(t), p̃2(t) p̃3(t) of the model (20) for
tk = 17k + sin

√
2k.

Remark 9. The presented example also illustrates the ability to impulsively control the almost
periodic and stability behavior of the states of the GRN model by satisfying conditions A2, A4, and
condition (ii) of Theorem 1. Thus, our results offer an insight on the effects of impulsive control
strategy on the interactions of genes. If the impulsive functions do not satisfy condition (ii) of
Theorem 1, then due to the impulsive jumps the stable almost periodic neuronal behavior can be
changed momentarily. Since the impulses can contribute to chaotic behavior and instability of
the states their control power is crucial. Hence, our results can be used to design an impulsive
control law under which to stabilize the almost periodic behaviour of different types of impulsive
fractional-order models of diverse interest.
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5. Conclusions

In this paper, we study the almost periodic properties of an impulsive fractional-order
delayed GRN model. By the application of the Lyapunov functions approach, sufficient
conditions for the existence and uniqueness of almost periodic states of the proposed model
are proved. Moreover, the global Mittag–Leffler stability of the almost periodic solution
is also investigated. The proposed results extend some theorems on the almost periodic
properties of integer order GRNs to the fractional-order case considering impulsive effects
and time-varying delays. They also complement some existing steady states stability results
for fractional-order GRNs to the almost periodic case which has numerous applications to
applied fractional-order models.
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