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Abstract: In this paper, nonlinear nonautonomous equations with the generalized proportional
Caputo fractional derivative (GPFD) are considered. Some stability properties are studied by the
help of the Lyapunov functions and their GPFDs. A scalar nonlinear fractional differential equation
with the GPFD is considered as a comparison equation, and some comparison results are proven.
Sufficient conditions for stability and asymptotic stability were obtained. Examples illustrating the
results and ideas in this paper are also provided.
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1. Introduction

The stability properties of solutions are an important branch in the qualitative theory of
differential equations. One of the most effective and applicable methods for investigation of
the stability properties of solutions is the Lyapunov approach [1]. Various types of stability
for Caputo fractional differential equations by the Caputo fractional derivative of Lyapunov
functions have been presented and discussed (see, for example, [2–7]). Recently, in 2017
[8], the generalized proportional Caputo fractional derivative (GPFD) was introduced and
applied to various problems. This derivative is a generalization of the Caputo fractional
derivative. Note that the GPFE is similar to the so-called tempered fractional derivative. For
some results concerning the GPFR and the differential equations with the GPFD, as well as
its applications, we refer the reader to [9–13]. However, the study of the stability properties
of the solutions of fractional differential equations with the GPFD is at its initial stage (see,
for example, [14]). Note that, in contrast to ordinary derivatives, fractional derivatives
depend significantly on the initial time point t0, which is equal to the lower limit of the
derivative ([15–20]). Therefore, any change of the initial time leads to a change of the
fractional derivative and the corresponding fractional differential differential equation. For
this reason, we study only stability and asymptotic stability instead of the uniform ones.

In this paper, we used appropriate Lyapunov functions and their GPFD among the
solutions of the appropriate equation. Comparison results with the scalar fractional differ-
ential equations with the GPFD and Lyapunov functions were obtained. Several sufficient
conditions for stability and asymptotic stability are presented. Some examples illustrate
the ideas and results in this paper.
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2. Notes on Fractional Calculus

Let u : [a, T] → R (if T = ∞, then the interval is half-open). The generalized
proportional fractional integral is defined by (as long as all integrals are well defined;
see [10]):

(a Iα,ρu)(t) =
1

ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1u(s) ds, t ∈ (a, T], α ≥ 0, ρ ∈ (0, 1], (1)

and the generalized Caputo proportional fractional derivative (GPFD) is defined by (as
long as all integrals are well defined; see [10]):

(C
a Dα,ρu)(t) = (a I1−α,ρ(D1,ρu))(t)

=
1

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−α(D1,ρu)(s) ds,

for t ∈ (a, T], α ∈ (0, 1), ρ ∈ (0, 1],

(2)

where (D1,ρu)(t) = (Dρu)(t) = (1− ρ)u(t) + ρu′(t).

Remark 1. Note that in the case ρ = 1, the GPFE is reduced to the Caputo fractional derivative:
(C

a Dα,1u)(t) = C
a Dαu(t).

Remark 2. The GPFE given by (2) could be generalized for any function u ∈ C([a, b],Rn
) via a

componentwise approach.

Lemma 1 (Theorem 5.3 [10]). For ρ ∈ (0, 1] and α ∈ (0, 1), we have:

(a Iα,ρ(C
a Dα,ρu))(t) = u(t)− u(a)e

ρ−1
ρ (t−a) (3)

Lemma 2 (Theorem 5.2 [10]). For ρ ∈ (0, 1] and α ∈ (0, 1), we have:

(a Iα,ρe
ρ−1

ρ t
(t− a)β−1)(τ) =

Γ(β)

ραΓ(β + α)
)e

ρ−1
ρ τ

(τ − a)β−1+α β > 0. (4)

Remark 3. If ρ ∈ (0, 1), then (C
a Dα,ρc)(t) 6≡ 0, where c is a nonzero constant.

Remark 4. The relation:
(C

a Dα,ρe
ρ−1

ρ (.)
)(t) = 0 for t > a (5)

is known from [10], Remark 3.2.

We used the result given in Example 5.7 of [10] (with necessary slight corrections).
Consider the initial-value problem for the scalar linear fractional differential equation

with the GPFD:

(C
a Dα,ρy)(t) = λy(t), y(a) = y0, t ∈ [a, T], α ∈ (0, 1), ρ ∈ (0, 1] (6)

with y0 ∈ R.

Lemma 3. The initial-value problem (6) has a solution:

y(t) = y0e
ρ−1

ρ (t−a)Eα(λ(
t− a

ρ
)α), (7)

where Eα(t) is the Mittag–Leffler function.
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Lemma 4 ([14]). Let the function u ∈ C1([a, T],R), T ≤ ∞ and α ∈ (0, 1), ρ ∈ (0, 1] be two
reals. Then,

(C
a Dα,ρu2)(t) ≤ 2u(t)(C

a Dα,ρu)(t), t ∈ (a, T]. (8)

3. Statement of the Problem

Consider the following nonlinear system of fractional differential equations with
the GPFE:

(C
t0

Dα,ρx)(t) = f (t, x(t)), for t > t0, α ∈ (0, 1), ρ ∈ (0, 1] (9)

with the initial condition:
x(t0) = x0, (10)

where t0 > 0, x0 ∈ Rn, f ∈ C([t0, ∞)×Rn,Rn).
In our paper, we assumed that f (t, 0) ≡ 0, so the zero is a solution of (9).
We denote the solution of (9), (10) by x(t; t0, x0). We assumed in the paper the initial-

value problem (9), (10) has a solution defined for t ≥ t0 for any initial value x0 ∈ Rn. Some
existence results were given in [21,22].

Definition 1. The zero solution of (9) is:

• Stable if for every ε > 0, there exist δ = δ(ε) > 0 such that for any x0 ∈ Rn, the inequality
||x0|| < δ implies ||x(t; t0, x0)|| < ε for t ≥ t0;

• Attractive if there exists B > 0 such that for any x0 ∈ Rn with ||x0|| < B and for every
ε > 0, there exists T̃ = T̃(ε) > 0 such that ||x(t; t0, x0)|| < ε for t ≥ t0 + T̃;

• Asymptotically stable if the zero solution is stable and attractive.

Define the following set:

K = {a ∈ C([0, ∞), [0, ∞)) : a is strictly increasing and a(0) = 0}.

Consider the comparison scalar fractional differential equation with the GPFE:

(C
t0

Dα,ρy)(t) = h(t, y(t)), t > t0, (11)

where h : [t0, ∞)×R → R, h(t, 0) ≡ 0. We assumed there exists a small enough num-

ber L > 0 such that the equation (C
t0

Dα,ρy)(t) = h(t, y(t)) + ηe
ρ−1

ρ (t−s), η ∈ (0, L] with
y(t0) = y0 has a solution y(t; t0, y0, η) where y0 ∈ R.

Example 1. Let us consider the scalar fractional differential equation:

(C
t0

Dα,ρy)(t) = −bu, y(t0) = y0, (12)

where y0 ∈ R, b > 0.
According to Lemma 3, the solution of (12) is:

y(t) = y0e
ρ−1

ρ (t−t0)Eα(−b(
t− t0

ρ
)α). (13)

From (13) and the inequality 0 < Eα(−b(t− t0)
q) < 1, t ≥ t0, we obtain:

|y(t)| ≤ |y0|. (14)

Inequality (14) proves that the zero solution of (12) is stable.

We define a class of Lyapunov functions.
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Definition 2. Let V(t, x) ∈ C([t0, T)× ∆,R+) be locally Lipschitzian with respect to its second
argument and V(t, 0) ≡ 0, where t0, T ∈ R+ : T > t0, ∆ ⊂ Rn, 0 ∈ ∆. Then, we say
V ∈ Λ([t0, T), ∆).

We used the generalized proportional Caputo fractional derivative of the Lyapunov
function for any solution of the system of fractional equations. Note that in the case of
Caputo fractional derivatives, some authors [3,6,7] have used a similar approach.

4. Comparison Results

Lemma 5. Let u ∈ C([t0, T],R), and there exists a point t∗ ∈ (t0, T], such that u(t∗) = 0 and
u(t) < 0 for t0 ≤ t < t∗. Then, if the generalized proportional Caputo fractional derivative of u
exists at t∗, then the inequality (C

t0
Dα,ρu)(t)|t=t∗ > 0 holds.

Proof. From the definition of the GPFD and integration by parts, we obtain:

(C
t0

Dα,ρu)(t)|t=t∗ =
1

ρ1−αΓ(1− α)

∫ t∗

t0

e
ρ−1

ρ (t∗−s) (1− ρ)u(s) + ρu′(s)
(t∗ − s)α

ds

=
ρα

Γ(1− α)

∫ t∗

t0

{1− ρ

ρ
e

ρ−1
ρ (t∗−s) u(s)

(t∗ − s)α
+ e

ρ−1
ρ (t−s) u′(s)

(t∗ − s)α
}ds

=
ρα

Γ(1− α)
{
∫ t∗

t0

d
ds

(e
ρ−1

ρ (t∗−s)
)

u(s)
(t∗ − s)α

ds

+ e
ρ−1

ρ (t∗−s)
[

d
ds

(
u(s)

(t∗ − s)α
)− αu(s)

(t∗ − s)α+1 ]ds}

=
ρα

Γ(1− α)

∫ t∗

t0

d
ds

(
e

ρ−1
ρ (t∗−s) u(s)

(t∗ − s)α

)
ds

− αρα

Γ(1− α)

∫ t∗

t0

e
ρ−1

ρ (t∗−s) u(s)
(t∗ − s)α+1 ds

=
ρα

Γ(1− α)
lim

s→t∗−
e

ρ−1
ρ (t∗−s) u(s)

(t∗ − s)α
− e

ρ−1
ρ (t∗−t0) u(t0)

(t∗ − t0)α

+
ρα

Γ(−α)

∫ t∗

t0

e
ρ−1

ρ (t∗−s) u(s)
(t∗ − s)1+α

ds.

(15)

Using Γ(−α) < 0 for α ∈ (0, 1), u(t) < 0 for t0 ≤ t < t∗, and L’Hôpital’s rule
applied to:

lim
s→t∗−

e
ρ−1

ρ (t∗−s)u(s)
(t∗ − s)α

= lim
s→t∗−

[e
ρ−1

ρ (t∗−s)
)′u(s) + u′(s)e

ρ−1
ρ (t∗−s)

]α(t∗ − s)1−α = 0,

we obtain:

(C
t0

Dα,ρu)(t)|t=t∗ = −e
ρ−1

ρ (t∗−t0) u(t0)

(t∗ − t0)α
+

ρα

Γ(−α)

∫ t∗

t0

e
ρ−1

ρ (t∗−s) u(s)
(t∗ − s)α+1 ds > 0. (16)

We now obtain a comparison result.

Lemma 6. (Comparison result). Assume:

1. The function x̃(.) = x(.; t0, x0) ∈ ∆ is a solution of (9) defined on [t0, T], where ∆ ⊂ Rn, 0 ∈ ∆,
and T : t0 < T ≤ ∞ is a given constant, x0 ∈ ∆;

2. The function h ∈ C([t0, T]×R,R);
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3. The function V ∈ Λ([t0, T], ∆); the generalized proportional Caputo fractional derivative
exists for any point t ∈ (t0, T), and the inequality:

(C
t0

Dα,ρV(., x̃(.)))(t) ≤ h(t, V(t, x̃(t))), t ∈ (t0, T]

holds;
4. The function y∗(t) = y(t; t0, y0) is the maximal solution of (11) on [t0, T].

Then, the inequality V(t0, x0) ≤ y0 implies V(t, x̃(t)) ≤ y∗(t) for t ∈ [t0, T].

Proof. Consider:

(C
t0

Dα,ρy)(t) = h(t, y(t)) + ηe
ρ−1

ρ (t−t0), t ∈ [t0, T], y(t0) = y0 + η, (17)

where η ≤ L, as described after (11).
Take the generalized proportional integral operator on both sides of Equation (17),

apply Lemma 2 with β = 1 and Lemma 1, and obtain for the solution: y(t, η) of (17):

y(t, η) = y(t0)e
ρ−1

ρ (t−t0) + (t0 Iα,ρ(h(., y(., η)) + η))(t)

= (y0 + η)e
ρ−1

ρ (t−t0) + (t0 Iα,ρ(h(., y(., η)))(t) +
η

ραΓ(1 + α)
)e

ρ−1
ρ (t−t0)(t− t0)

α

= (y0 + η)e
ρ−1

ρ (t−t0) +
η

ραΓ(1 + α)
)e

ρ−1
ρ (t−t0)(t− t0)

α

+
1

ραΓ(α)

∫ t

t0

e
ρ−1

ρ (t−s)
(t− s)α−1h(s, y(s, η)) ds for t ∈ [t0, T].

(18)

Consider the function µ(t) ∈ C([t0, T],R+) defined by µ(t) = V(t, x̃(t)). We prove that:

µ(t) < y(t, η) for t ∈ [t0, T]. (19)

The inequality (19) holds for t = t0 because µ(t0) = V(t0, x0) ≤ y0 < y0 + η = y(t0, η).
Assume that Inequality (19) is not true. Then, there exists a point τ such that µ(τ) = y(τ, η),
µ(t) < y(t, η) for t ∈ [t0, τ). Now, Lemma 6 (applied to µ(t)− y(t, η)) yields (C

t0
Dα,ρµ(.)−

y(., η))(t)|t=τ > 0, i.e.,

(C
t0

Dα,ρµ)(t)|t=τ > (C
t0

Dα,ρy(., η))(t)|t=τ = h(τ, y(τ, η)) + η > h(τ, µ(τ)). (20)

From Condition 3 with t = τ, the inequality (C
t0

Dα,ρV)(., x̃(.)))(t) = (C
t0

Dα,ρµ)(t)|t=τ ≤
h(τ, V(τ, x̃(τ))) = h(τ, µ((τ)) holds. The obtained contradiction proves (19).

We now show that if η2 < η1, then:

y(t, η2) < y(t, η1) for t ∈ [t0, T]. (21)

Inequality (21) holds for t = t0. Assume that Inequality (21) is not true. Then, there
exists a point t∗ : y(t∗, η2) = y(t∗, η1) and y(t, η2) < y(t, η1) for t ∈ [t0, t∗). From Lemma 6
(applied to y(t, η2)− y(t, η1)), we obtain (C

t0
Dα,ρ(y(., η2)− y(., η1))(t)|t=t∗ > 0. However:

(C
t0

Dα,ρ(y(., η2)− y(., η1))(t)|t=t∗

= (C
t0

Dα,ρ(y(., η2))(t)|t=t∗ − (C
t0

Dα,ρ(y(., η1))(t)|t=t∗

= h(t∗, y(t∗, η2)) + η2e
ρ−1

ρ (t−t0) − [h(t∗, y(t∗, η1)) + η1e
ρ−1

ρ (t−t0)]

= h(t∗, y(t∗, η1)) + η2e
ρ−1

ρ (t−t0) − [h(t∗, y(t∗, η1)) + η1e
ρ−1

ρ (t−t0)]

= (η2 − η1)e
ρ−1

ρ (t−t0) < 0.

(22)

The obtained contradiction proves Inequality (21).
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From (19) and (21), it follows that the family of solutions {y(t, η)}, t ∈ [t0, T] of (17)
is uniformly bounded, i.e, there exists K > 0 with |y(t, η)| ≤ K for (t, η) ∈ [t0, T]× [0, L].
Denote M = sup{|h(t, x)| : (t, x) ∈ [t0, T]× [−K, K]}.

Let {ηj}∞
j=0 : ηj < ηj−1 ≤ η0 ≤ L and limj→∞ ηj = 0. Then, for {y(t; ηj)}∞

j=0,
we obtain:

y(t, ηj) = (y0 + ηj)e
ρ−1

ρ (t−t0) +
ηj

ραΓ(1 + α)
)e

ρ−1
ρ (t−t0)(t− t0)

α

+
1

ραΓ(α)

∫ t

t0

e
ρ−1

ρ (t−s)
(t− s)α−1h(s, y(s, ηj)) ds for t ∈ [t0, T].

(23)

Now, for t1, t2 ∈ [t0, T], t1 < t2, from (23), we have:

|y(t2, ηj)− y(t1, ηj)| =
1

ραΓ(α)

∫ t2

t0

e
ρ−1

ρ (t2−s)
(t2 − s)α−1h(s, y(s, ηj)) ds

− 1
ραΓ(α)

∫ t1

t0

e
ρ−1

ρ (t1−s)
(t1 − s)α−1g(s, u(s, ηj)) ds

≤ 1
ραΓ(α)

∣∣∣ ∫ t1

t0

(
e

ρ−1
ρ (t2−s)

(t2 − s)α−1 − e
ρ−1

ρ (t1−s)
(t1 − s)α−1

)
h(s, y(s, ηj)ds

+
∫ t2

t1

e
ρ−1

ρ (t2−s)
(t2 − s)α−1h(s, y(s, ηj))ds

∣∣∣
≤ M

ραΓ(α)

∫ t1

t0

∣∣∣e ρ−1
ρ (t2−s)

(t2 − s)α−1 − e
ρ−1

ρ (t1−s)
(t1 − s)α−1

∣∣∣ds

+
M

ραΓ(α)

∫ t2

t1

e
ρ−1

ρ (t2−s)
(t2 − s)α−1ds

≤ M
ραΓ(α)

[ ∫ t1

t0

∣∣∣e ρ−1
ρ (t2−s)

(t2 − s)α−1 − e
ρ−1

ρ (t1−s)
(t1 − s)α−1

∣∣∣ds +
(t2 − t1)

α

α

]

(24)

and thus, y(t2, ηj)− y(t1, ηj)→ 0 as t1 → t2.
Therefore, the family of functions {u(t; ηj)} is equicontinuous on [t0, T]. According to

the Arzela–Ascoli theorem, there exists a subsequence {y(t; ηjk )} and a Y ∈ C[t0, T] with
limk→∞ y(t; ηjk ) = Y(t) for t ∈ [t0, T]. Taking the limit in (23) as k→ ∞, we obtain that the
function Y(t) satisfies:

Y(t) = y0e
ρ−1

ρ (t−t0) +
1

ραΓ(α)

∫ t

t0

e
ρ−1

ρ (t−s)
(t− s)α−1h(s, Y(s)) ds for t ∈ [t0, T], (25)

Therefore, Y(t) is a solution of (11) for t ∈ [t0, T], and according to Condition 4, we
have Y(t) ≤ y∗(t) on [t0, T]. From (19), we obtain µ(t) ≤ Y(t) ≤ y∗(t) on [t0, T].

Corollary 1. Let Condition 1 of Lemma 6 be satisfied and V ∈ Λ([t0, T], ∆) be such that the gener-
alized proportional Caputo fractional derivative exists for any point t ∈ [t0, T], and the inequality:

(C
t0

Dα,ρV(., x̃))(t) ≤ 0

holds.
Then, V(t, x̃(t)) ≤ V(t0, x0)e

ρ−1
ρ (t−t0) ≤ V(t0, x0) for t ∈ [t0, T].

Proof. The proof follows from Remark 4 (C
t0

Dα,ρe
ρ−1

ρ (.)
)(t) = 0, i.e., the solution of (11) with

h(t, u) ≡ 0 and initial condition y0 = V(t0, x0) is y(t) = V(t0, x0)e
ρ−1

ρ (t−t0).
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Corollary 2. Let Condition 1 of Lemma 6 be satisfied and the function V ∈ Λ([t0, T], ∆) be such
that the generalized proportional Caputo fractional derivative exists for any point t ∈ [t0, T], and
the inequality:

(C
t0

Dα,ρV(., x̃(.)))(t) ≤ −βV(t, x̃(t))

holds where β > 0.
Then:

V(t, x̃(t)) ≤ V(t0, x0)e
ρ−1

ρ (t−t0)Eα(−β(
t− t0

ρ
)α), t ∈ [t0, T]. (26)

Proof. The proof follows from Lemma 3 about the solution of (11) with h(t, u) ≡ −βu and
initial condition y0 = V(t0, x0).

Remark 5. The results of Lemma 6, Corollaries 1 and 2 are true for T = ∞.

5. Main Result

We study the stability properties of the nonlinear generalized proportional Caputo
fractional differential Equation (9).

Theorem 1 (Stability). Assume:

1. The function h ∈ C([t0, ∞)×R,R), h(t, 0) ≡ 0;
2. There exists a function V ∈ Λ([t0, ∞),Rn

), V(t, 0) = 0 such that:

(i) for any initial value x0 ∈ Rn, the generalized proportional Caputo fractional derivative
exists and the inequality:

(C
t0

Dα,ρV(., x(.))(t) ≤ h(t, V(t, x(t))), t > t0 (27)

holds where x(t) = x(t; t0, x0) is the solution of (9), (10);
(ii) b(||x||) ≤ V(t, x) for t ≥ t0, x ∈ Rn, where b ∈ K;

3. The zero solution of the scalar (11) is stable.
Then, the zero solution of (9) is stable.

Proof. Let ε > 0. According to Condition 3, there exists δ1 = δ1(ε) > 0 such that the
inequality |y0| < δ1 implies:

|y(t; t0, y0)| < b(ε), t ≥ t0, (28)

where y(t; t0, y0) is any solution of (11). Since V(t0, 0) = 0, there exists δ2 = δ2(t0, δ1) > 0
such that V(t0, x) < δ1 for ||x|| < δ2. Choose x0 ∈ Rn : ||x0|| < δ2. Then, V(t0, x0) < δ1,
and let x̃(t) = x(t; t0, x0), t ≥ t0 be the corresponding solution of (9) and (10). According
to Condition 2(i), the inequality (C

t0
Dα,ρV(., x̃(.))(t) ≤ h(t, V(t, x̃(t))), t ≥ t0 holds.

Let y∗0 = V(t0, x0). Then, y∗0 < δ1, and Inequality (28) holds for the solution y(t; t0, y∗0)
of (11). From Lemma 6, Remark 5, and Inequality (28), we have:

V(t, x̃(t)) ≤ y(t) < b(ε), t ≥ t0;

here, y(t) = y(t; t0, y∗0) is the maximal solution of (11). Then, from Condition 2(ii), we obtain:

b(||x̃(t)||) ≤ V(t, x̃(t)) < b(ε), t ≥ t0

so the result follows.

Corollary 3. Assume V ∈ Λ([t0, ∞),Rn
), V(t, 0) = 0, such that:

(i) For x0 ∈ Rn, the generalized proportional Caputo fractional derivative exists and the inequality:

(C
t0

Dα,ρV(., x(.))(t) ≤ 0, t ≥ t0 (29)
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holds where x(t) = x(t; t0, x0) is the solution of (9) and (10);
(ii) b(||x||) ≤ V(t, x) for t ≥ t0, x ∈ Rn, where b ∈ K.

Then, the zero solution of (9) is stable.

The stability property is also satisfied if the conditions for the Lyapunov functions are
satisfied on a ball:

Sλ = {x ∈ Rn : ||x|| ≤ λ}.

Theorem 2 (Stability). Assume:

1. The function h ∈ C([t0, ∞)×R,R), h(t, 0) ≡ 0;
2. There exists a constants λ > 0 and a function V ∈ Λ([t0, ∞), Sλ), V(t, 0) = 0 and:

(i) For any initial value x0 ∈ Sλ and x(t) = x(t; t0, x0) ∈ Sλ, t ≥ t0, the generalized
proportional Caputo fractional derivative exists and the inequality:

(C
t0

Dα,ρV(., x(.))(t) ≤ h(t, V(t, x(t))), t ≥ t0 (30)

holds;
(ii) b(||x||) ≤ V(t, x) ≤ a(||x||) for t ≥ t0, x ∈ Sλ where a, b ∈ K;

3. The zero solution of the scalar (11) is stable.
Then, the zero solution of (9) is stable.

Proof. Let ε ∈ (0, λ]. Then, there exists δ1 = δ1(ε) > 0 such that the inequality |y0| < δ1 implies:

|y(t; t0, y0)| < b(ε), t ≥ t0, (31)

where y(t; t0, 10) is any solution of (11).
Let δ1 = min{ε, b(ε)}.
Since a ∈ K, there exists δ2 = δ2(δ1) > 0 such that if ξ < δ2, then a(ξ) < δ1. Let

δ = min{ε, δ2}.
Choose x0 : ||x0|| < δ, and let x̃(t) = x(t; t0, x0), t ≥ t0 be the corresponding solution

of (9) and (10).
We prove:

||x̃(t)|| < ε, t ≥ t0. (32)

Assume this is false. Then, there exists a point τ > t0 such that ||x̃(t)|| < ε, t ∈ [t0, τ),
and ||x̃(τ)|| = ε, i.e., x̃(t) ∈ Sλ, t ∈ [t0, τ].

Let y∗0 = V(t0, x0). Then y∗0 < a(||x0||), a(δ2) < δ1, and Inequality (31) holds for the
solution y(t; t0, y∗0) of the scalar FrDE (11). Then, from Lemma 6, we have:

V(t, x̃(t)) ≤ y(t) < b(ε), t ∈ [t0, τ];

here, y(t) = y(t; t0, y∗0) is the maximal solution of (11). Then, from Condition 2(ii), we obtain:

b(ε) = b(||x̃(τ)||) ≤ V(τ, x̃(τ)) < b(ε).

The obtained contradiction proves Inequality (32).

Theorem 3 (Asymptotic stability). Let V ∈ Λ(R+,Rn
) and:

(i) For any initial value x0 ∈ Sλ and any solution x(t) = x(t; t0, x0) ∈ Sλ, t ≥ t0 of (9), (10),
the generalized proportional Caputo fractional derivative exists and the inequality:

(C
t0

Dα,ρV(., x(.))(t) ≤ −cV(t, x(t)), t ≥ t0

holds where c > 0;
(ii) b(||x||) ≤ V(t, x) ≤ a(||x||) for t ≥ t0, x ∈ Sλ where a, b ∈ K.

Then, the zero solution of (9) is asymptotically stable.
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Proof. According to Theorem 2, the zero solution of (9) is stable. Thus, there exists a
constant A = A(λ) ∈ (0, λ) such that the inequality ||x̃0|| < A implies:

||x(t; t0, x̃0)|| < λ for t ≥ t0, (33)

where x(t; t0, x̃0) is a solution of (9) and (10).
Let β ∈ (0, A] : a(β) ≤ b(A), and choose x0 ∈ Rn : ||x0|| < β. Consider the solution

x̃(t) = x(t; t0, x0) of (9) with initial condition x(t0) = x0. Then, b(||x0||) ≤ a(||x0||) <
a(B) < b(A), i.e., ||x0|| < A, and therefore, x̃(t) ∈ Sλ, t ≥ t0.

According to Corollary 2, we obtain:

V(t, x̃(t)) ≤ V(t0, x0)e
ρ−1

ρ (t−t0)Eα(−c(
t− t0

ρ
)α), t ≥ t0. (34)

Choose an arbitrary number ε ∈ (0, B). Consider the function η(t) = e
ρ−1

ρ tEα(−c( t
ρ )

α),

which is decreasing. Thus, there exists a number T > 0 such that η(t) < b(ε)
a(B) for

t > T. Thus,

b(||x̃(t)||) ≤ V(t, x̃(t)) ≤ V(t0, x0)e
ρ−1

ρ (t−t0)Eα(−c(
t− t0

ρ
)α)

≤ a(||x0||)e
ρ−1

ρ (t−t0)Eα(−c(
t− t0

ρ
)α) < b(ε), t ≥ T.

Therefore, ||x̃(t)|| < ε, t ≥ t0 + T holds, and the zero solution of (9), (10) is attractive.

6. Applications

Example 2. Consider the following system of fractional differential equations with the GPFD:

(C
0 Dα,ρx1)(t) = −(1− ρ)

(1 + t2)

(t2 + 2)
x1(t)− g2(t)x2(t),

(C
0 Dα,ρx2)(t) = −(1− ρ)

(1 + t2)

(t2 + 2)
x2(t) + g2(t)x1(t) for t ≥ 0

(35)

with initial condition:
x1(0) = x0

1 and x2(0) = x0
2,

where x1, x2 ∈ R, α ∈ (0, 1), ρ ∈ (0, 1], and g2 ∈ C(R+,R) is an arbitrary function.

Note that (1− ρ) (1+t2)
(t2+2) ∈ [0.5(1− ρ), (1− ρ)) for t ≥ 0.

Consider V(t, x1, x2) = x2
1 + x2

2 for t ∈ R+, x = (x1, x2) ∈ R2.
For any x1, x2 ∈ R : x = (x1, x2), apply Lemma 4, and obtain:

(C
t0

Dα,ρV(., x1(.), x2(.)))(t) = (C
t0

Dα,ρx2
1(.))(t) + (C

t0
Dα,ρx2

2(.))(t)

≤ 2x1(t)(C
t0

Dα,ρx1(.))(t) + 2x2(t)(C
t0

Dα,ρx2(.))(t)

= −2(1− ρ)
(1 + t2)

(t2 + 2)
V(t, x1, x2) ≤ −(1− ρ)V(t, x1, x2).

(36)

Case 1. Let ρ = 1 (Caputo fractional differential equation). From (36), we obtain the inequality
(C

t0
Dα,ρV(., x1(.), x2(.)))(t) ≤ 0, and according to Corollary 3, the zero solution of (35) is stable.

Case 2. Let ρ ∈ (0, 1), and from (36), according to Theorem 3, the zero solution of (35) is
asymptotically stable.

Therefore, the stability properties depend on the parameter ρ of the generalized proportional
fractional derivative.
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Consider the corresponding to (35) system with ordinary derivatives:

x′1(t) = −(1− ρ)
(1 + t2)

(t2 + 2)
(t)x1 − g2(t)x2,

x′2(t) = −(1− ρ)
(1 + t2)

(t2 + 2)
(t)x2 + g2(t)x1, for t ≥ 0, ρ ∈ (0, 1),

x1(0) = x0
1 and x2(0) = x0

2.

(37)

Case 3. Let ρ = 1. Then, the solutions are not stable (see Figure 1) (compare with Case 1).
Case 4. Let ρ = 0.9. The zero solution is asymptotically stable (see Figure 2 with x1(0) =

x2(0) = 0.52 and g2(t) ≡ −1).
Therefore, the type of the derivative (ordinary derivative, or Caputo fractional derivative, or

the GPFD) in the differential equation has a significant influence on the behavior of the solutions.

5 10 15 20 25 30

-1.5

-1.0

-0.5

0.5

1.0

1.5

x1(t)

x2(t)

Figure 1. Graph of the solutions (37) for ρ = 1, g2(t) ≡ −1.

10 20 30 40

-0.6

-0.4

-0.2

0.2

0.4

x1(t)

x2(t)

Figure 2. Graph of the solutions (37) for ρ = 0.9, g2(t) ≡ −1.

Example 3. Consider the following system of nonlinear fractional differential equations with
the GPFD:

(C
0 Dα,ρx1)(t) = a sin(x1(t))− g(t)x− 2(t),

(C
0 Dα,ρx2)(t) = g(t)x1(t) + a sin(x2(t)) for t ≥ 0, α ∈ (0.1), ρ ∈ (0, 1),

(38)
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with initial condition,
x1(0) = x0

1 and x2(0) = x0
2,

where x1, x2 ∈ R, g ∈ C([0, ∞),R) is an arbitrary function and a > 0 : a < 0.5(1− ρ)α.
Consider V(t, x1, x2) = x2

1 + x2
2 for t ∈ R+, x1, x2 ∈ R.

For any x1, x2 ∈ R, apply Lemma 4, and obtain:

(C
t0

Dα,ρV(., x1(.), x2(.)))(t) = (C
t0

Dα,ρx2
1(.))(t) + (C

t0
Dα,ρx2

2(.))(t)

≤ 2x1(t)(C
t0

Dα,ρx1(.))(t) + 2x2(t)(C
t0

Dα,ρx2(.))(t)

= 2ax1(t) sin(x1(t))− 2g(t)x1(t)x2(t) + 2x2(t)g(t)x1(t) + 2ax2(t) sin(x2(t))

≤ 2a(x2
1(t) + x2

2(t)) = 2aV(t, x1, x2).

(39)

Consider the scalar fractional Equation (11) with h(t, y) = 2ay, y ∈ R, the solution

of which according to Lemma 3 with λ = 2a is given by y(t) = y0e
ρ−1

ρ tEα(2a( t
ρ )

α). Ac-

cording to Theorem 1.2 [23], for every α ∈ (0, 1), the function, et

α − Eα(tα) is completely

monotonic and Eα(tα) < et

α , t ≥ 0. Therefore, Eα(2a( t
ρ )

α) = Eα((
α√2at

ρ )α) ≤ e
α√2at

ρ

α and

|y(t)| ≤ |y0|e
ρ−1

ρ t e
α√2at

ρ

α = |y0|
α e

ρ−1+ α√2a
ρ t.

Thus, the zero solution of the considered particular case of the scalar (11) is stable since
ρ− 1 + α

√
2a < 0. According to Theorem 1, the zero solution of the nonlinear system (38) is stable.

7. Conclusions

A system of nonlinear equations with the GPFD was considered. The stability proper-
ties of the zero solution were studied using Lyapunov functions and their GPFDs. First,
some comparison results with scalar nonlinear fractional differential equations with the
GPFD and Lyapunov functions were established and several sufficient conditions for stabil-
ity and asymptotic stability were obtained and illustrated with examples. In the future, we
hope to study other types of stability for nonlinear fractional differential equations with
the GPFD and apply them to some new models.

Author Contributions: Conceptualization, R.A., S.H. and D.O.; methodology, R.A., S.H. and D.O.;
validation, R.A., S.H. and D.O.; formal analysis, R.A., S.H. and D.O.; writing—original draft prepara-
tion, R.A., S.H. and D.O.; writing—review and editing, R.A., S.H. and D.O.; funding acquisition, S.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Bulgarian National Science Fund under Project
KP-06-N32/7.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Trigeassou, J.C.; Maamri, N.; Sabatier, J.; Oustaloup, A. A Lyapunov approach to the stability of fractional differential equations.

Signal Process. 2011, 91, 437–445. [CrossRef]
2. Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Comm. Nonlinear

Sci. Numer. Simul. 2014, 19, 2951–2957. [CrossRef]
3. Burton, T.A. Fractional Differential equations and Lyapunov functionals. Nonlinear Anal. Theory Methods Appl. 2011, 74, 5648–5662.

[CrossRef]
4. Duarte-Mermoud, M.A.; Aguila-Camacho, N.; Gallegos, J.A.; Castro-Linares, R. Using general quadratic Lyapunov functions

to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 650–659.
[CrossRef]

http://doi.org/10.1016/j.sigpro.2010.04.024
http://dx.doi.org/10.1016/j.cnsns.2014.01.022
http://dx.doi.org/10.1016/j.na.2011.05.050
http://dx.doi.org/10.1016/j.cnsns.2014.10.008


Fractal Fract. 2022, 6, 34 12 of 12

5. Hu, J.B.; Lu, G.P.; Zhang, S.B.; Zhao, L.-D. Lyapunov stability theorem about fractional system without and with delay. Commun.
Nonlinear Sci. Numer. Simulat. 2015, 20, 905–913. [CrossRef]

6. Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized
Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [CrossRef]

7. Li, C.P.; Zhang, F.R. A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 2011, 193, 27–47.
[CrossRef]

8. Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur.
Phys. J. Spec. Top. 2017, 226, 3457–3471. [CrossRef]

9. Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function
with respect to a certain function. Symmetry 2021, 13, 264. [CrossRef]

10. Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional fractional derivative
with applications. J. Ineq. Appl. 2019, 2019, 101. [CrossRef]

11. Hristova, S.; Abbas, M.I. Explicit solutions of initial-value problems for fractional generalized proportional differential equations
with and without impulses. Symmetry 2021, 13, 996. [CrossRef]

12. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst.-S 2020, 13, 709–722.
[CrossRef]

13. Laadjal, Z.; Abdeljawad, T.; Jarad, F. On existence-uniqueness results for proportional fractional differential equations and
incomplete gamma functions. Adv. Differ. Equ. 2020, 2020, 641. [CrossRef]

14. Almeida, R.; Agarwal, R.P.; Hristova, S.; O’Regan, D. Quadratic Lyapunov functions for stability of generalized proportional
fractional differential equations with applications to neural networks. Axioms 2021, 10, 322. [CrossRef]

15. Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and Caputo Derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [CrossRef]
16. Baleanu, D.; Mustafa, O.G. On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl.

2010, 59, 1835–1841. [CrossRef]
17. Das, S. Functional Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2011.
18. Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010.
19. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
20. Samko, G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Philadel-

phia, PA, USA, 1993.
21. Abbas, M.I.; Hristova, S. Existence results of nonlinear generalized proportional fractional differential inclusions via the

diagonalization technique. AIMS Math. 2021, 6, 12832–12844. [CrossRef]
22. Abbas, M.I.; Hristova, S. On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional

Differential Equations. Mathematics 2021, 9, 2720. [CrossRef]
23. Simon, T. Mittag–Leffler functions and complete monotonicity. Integral Transf. Spec. 2015, 26, 36–50. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2014.05.013
http://dx.doi.org/10.1016/j.camwa.2009.08.019
http://dx.doi.org/10.1140/epjst/e2011-01379-1
http://dx.doi.org/10.1140/epjst/e2018-00021-7
http://dx.doi.org/10.3390/sym13020264
http://dx.doi.org/10.1186/s13660-019-2052-4
http://dx.doi.org/10.3390/sym13060996
http://dx.doi.org/10.3934/dcdss.2020039
http://dx.doi.org/10.1186/s13662-020-03043-8
http://dx.doi.org/10.3390/axioms10040322
http://dx.doi.org/10.1155/2011/562494
http://dx.doi.org/10.1016/j.camwa.2009.08.028
http://dx.doi.org/10.3934/math.2021740
http://dx.doi.org/10.3390/math9212720
http://dx.doi.org/10.1080/10652469.2014.965704

	Introduction
	Notes on Fractional Calculus
	Statement of the Problem
	Comparison Results
	Main Result
	Applications
	Conclusions
	References

