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Abstract: Analytically and numerically, the study examines the stability and local bifurcations of a
discrete-time SIR epidemic model. For this model, a number of bifurcations are studied, including the
transcritical, flip bifurcations, Neimark–Sacker bifurcations, and strong resonances. These bifurcations
are checked, and their non-degeneracy conditions are determined by using the normal form technique
(computing of critical normal form coefficients). We use the MATLAB toolbox MATCONTM, which
is based on the numerical continuation method, to confirm the obtained analytical results and
specify more complex behaviors of the model. Numerical simulation is employed to present a
closed invariant curve emerging from a Neimark–Sacker point and its breaking down to several
closed invariant curves and eventually giving rise to a chaotic strange attractor by increasing the
bifurcation parameter.

Keywords: SIR epidemic model; bifurcation; normal form; continuation method; strong resonances

1. Introduction

There is a great deal that can be done to minimize the impact of infectious diseases
through research. With relevant knowledge about the dynamics of an infection, disease
transmission can often be prevented. The transmission and dynamics of most infectious
diseases are greatly influenced by seasonal factors, including climatic factors and human
phenomena [1]. It appears that intense seasonality causes erratic patterns based on some
empirical data. The presence of chaotic oscillations in response to seasonal forces has been
demonstrated in many studies focusing on seasonal influenza and measles [2,3]. When
vaccination programs are not in place, many recurrent infectious diseases exhibit strong
annual, biennial, or irregular oscillations in response to seasonality [4].

A mathematical model called the SIR allows us to estimate the number of people
infected with a disease in a closed population over time. Susceptibility, infection, and
recovery models are included in the SIR group.

The behavior of epidemic diseases is being studied in an effort to detect and con-
trol them. One of them is the dynamical epidemic model, which is used to study epi-
demics [5–14]. The dynamical nature of the measles epidemic model is analyzed in [14],
and the dynamical nature of the disease is also strongly influenced by migration processes.
The study in [15] demonstrated that chickenpox prevalence is inversely related to the size
of the population on an annual cycle.

The mathematical modeling of infectious diseases leads to detect the dynamical be-
havior of epidemics and provide sufficient disease control measures. The treatment of
epidemics is studied using a dynamic model [5–9]. An SIR (Sensitive–Infected–Improved)
model has been used to study the dynamics of the measles epidemic [14]. According to
research, the disease is very sensitive to migration, and its onset was accompanied by an
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epidemic. Based on [15], chickenpox prevalence is inversely proportional to population
size on an annual cycle. In this paper, we aim to analyze model (3) for different types of
bifurcations. The novelty of our work is that we studied the bifurcation results of discrete-
time SIR epidemic model [1,4,16,17], as none of the studies in the literature has studied the
complex dynamic behavior of the model.

According to classical infectious disease transmission models (Kermack and McK-
endrick [18], Hethcote [19]), the population is divided into three classes derived from S(ι),
I(ι), and R(ι) indicating the number of susceptibles, infected individuals, and recovered or
removed individuals at time ι, respectively. Here, we develop a model of SIR epidemics
based on a modified saturated incidence rate as follows:

d S
d ι = Λ− β S(ι) I(ι)

1+α S(ι) − δ S(ι),

d I
d ι =

β S(ι) I(ι)
1+α S(ι) − (δ + σ) I(ι),

d R
d ι = σ I(ι)− δ R(ι),

(1)

where the saturated contact rate is indicated by β S(ι) I(ι)
1+α S(ι) and more information about

parameters can be found in Table 1.

Table 1. Description of parameters.

Parameter Description

δ Incidence of natural death in the population
β Rate of incident bilinearity
Λ Population recruitment rate
σ Infection rate of infected individuals
α Disease-induced death rate

Model (1) focuses on the following model because the first two equations are not
dependent on R; see [20,21]:

d S
d ι = Λ− β S(ι) I(ι)

1+α S(ι) − δ S(ι),

d I
d ι =

β S(ι) I(ι)
1+α S(ι) − (δ + σ) I(ι).

(2)

Euler’s method is applied to (2) to obtain the following discrete time model: S 7→ S + h
(

Λ− β S I
1+α S − δ S

)
,

I 7→ I + h
(

β S I
1+α S − (δ + σ) I

)
,

(3)

where h is step size.

2. Stability of Fixed Points

First, we present a lemma that describes the dynamics of the model (1).

Lemma 1. In the first quadrant, the plane S + I + R = Λ
δ is an invariant manifold of the system

of the model (1).

Proof. When we combine the three equations in (1) and denote N(τ) = S(τ)+ I(τ)+ R(τ),
we obtain

d N
d τ

= Λ− δ N.
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For any N(τ0) ≥ 0,

N(τ) =
1
δ

[
Λ− (Λ− δ N(τ0))e−δ (τ−τ0)

]
.

is the general solution. So, we have

lim
τ→+∞

N(τ) =
Λ
δ

,

the result can be drawn from this.

There are two fixed points for model (3) as follows:

E0 =

(
Λ
δ

, 0
)

, E∗ =
(
− δ + σ

α δ + α σ− β
,

Λ α δ + Λ α σ−Λ β + δ2 + δ σ

α δ2 + 2 α δ σ + α σ2 − β δ− β σ

)
.

The fixed point E∗ exists whenR0 > 1, whereR0 = Λ β
(σ+δ)(αΛ+1) .

Assign

A0 =

−δ h + 1 − hβ Λ
Λ α+δ

0 (−hα δ+(−α σ+β)h+α)Λ−δ2h−δ hσ+δ
Λ α+δ

,

and

A∗ =

 (−Λ (δ+σ)2α2+(2 δ+2 σ)(Λ β−1/2 δ2−1/2 δ σ)α−β2Λ)h+β (δ+σ)

β (δ+σ)
−h(δ + σ)

h((−δ−σ)α+β)(−Λ α (δ+σ)+Λ β−δ2−δ σ)
β (δ+σ)

1

,

can be selected as the Jacobian matrix of (3) at E0 and E∗

Theorem 1. If R0 < 1, the fixed point E0 is asymptotically stable when − δ (δ+σ)
α δ+α σ−β < Λ <

− δ (δ h+hσ−2)
α δ h+α hσ−β h−2 α , provided that 0 < h < 2

δ .

Proof. See [22,23].

Theorem 2. In the following cases, E∗ is asymptotically stable:

1. If ∆∗ > 0 and 0 < Λ <
(−hδ (δ+σ)(δ h+hσ−2)α+β (δ2h2+δ h2σ−4))(δ+σ)

(δ h+hσ−2)((−δ−σ)α+β)2h
,

2. If ∆SIR
∗ < 0 and 0 < Λ < (δ+σ)2((−δ h−hσ+1)α+β h)δ

(δ h+hσ−1)((−δ−σ)α+β)2 ,

where ∆∗ =
∆1
∗

β2(δ+σ)2 , and see more information for ∆1
∗ in Appendix A.

Proof. See [22,23].

3. Bifurcation Analysis of the Boundary FIXED Point E0

Our goal in this part is to investigate the bifurcations of model (3) at the trivial fixed
point E0 by computing corresponding critical normal form coefficients; see [24–26].

In this section, the parameter Λ is considered as a bifurcation parameter.

Theorem 3. The critical value ΛLP,0 = δ (δ+σ)
β−α(δ+σ)

causes a transcritical bifurcation of E0.
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Proof. For Λ = ΛLP, A0 has the following multipliers:

λLP,0
1 = +1, λLP,0

2 = −δ h + 1.

When h 6= 2
δ , the Jacobian matrix A0 has a single multiplier +1 and no other multiplier

with |λ| = 1. So, the model (3) at β = βLP,0 can be reduced to its normal form

ωLP,0 7→ ωLP,0 + ϕLP,0ω2
LP,0 +O(ω3

LP,0),

where

ϕLP,0 = −h((−δ− σ)α + β)2(δ + σ)

β δ
.

E0 develops a transcritical bifurcation because it is always the fixed point and will never
disappear, and ϕLP,0 6= 0.

Theorem 4. The critical value Λ = ΛPD,0 = δ (δh+σh−2)
2 α+h(β−αδ−ασ)

causes a flip bifurcation of E0.

Proof. For Λ = ΛPD,0, A0 has the following eigenvalues:

λPD,0
1 = −1, λPD,0

2 = −δ h + 1.

When λPD,0
2 6= ±1, the Jacobian matrixA0 has a single multiplier−1 and no other multiplier

with |λ| = 1. So, the model (3) at Λ = ΛPD,0 can be reduced to its normal form

ωPD,0 7→ −ωPD,0 + φPD,0ω3
PD,0 +O(ω4

PD,0),

where

φPD,0 =
φ1

PD,0

β2h2(hδ− 2)2δ
,

and

φ1
PD,0 = (hδ + hσ− 2)(α δ h + α hσ− β h− 2 α)3

(
α δ3h2 + 2 α δ2h2σ + α δ h2σ2 − β δ2h2

−β δ h2σ− 3 α δ2h− 4 α δ hσ− α hσ2 + 2 β δ h + β hσ + 2 α δ + 2 α σ
)

.

As long as φPD,0 > 0 (φPD,0 < 0), the flip bifurcation is super-critical (sub-critical, resp.);
moreover, the two-period emerging cycle is stable (unstable, resp.).

4. Bifurcation Analysis of the Positive Fixed Point E∗
Based on the equations given in [24–26], we will determine the critical normal form

coefficient at the bifurcation points of the model (3).

4.1. One Parameter Bifurcations

Λ is referred to as a bifurcation parameter.

Theorem 5. The presence of

Λ = ΛPD,∗ =

(
−hδ (δ + σ)(δ h + hσ− 2)α + β

(
δ2h2 + δ h2σ− 4

))
(δ + σ)

h((−δ− σ)α + β)2(δ h + hσ− 2)
,

causes a flip bifurcation of E∗.
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Proof. For Λ = ΛPD,∗, A∗ has the following multipliers:

λPD,∗
1 = −1, λPD,∗

2 = − δ2h2 + δ h2σ− 3 δ h− 3 hσ + 2
δ h + hσ− 2

.

The Jacobian matrixASIR
∗ has a simple eigenvalue −1 and no other eigenvalue with |λ| = 1

if λPD,∗
2 6= ±1. So, the model (3) at Λ = ΛPD,∗ can be reduced to its normal form

ωPD,∗ 7→ −ωPD,∗ + φPD,∗ω
3
PD,∗ +O(ω4

PD,∗),

where

φPD,∗ =
φ1

PD,∗

(δ + σ)(δ2h2 + δ h2σ− 4 δ h− 4 hσ + 4)β2(δ h− 2)2 ,

and

φ1
PD,∗ = (δ h + hσ− 2)3(α δ + α σ− β)2

(
α δ3h2 + 2 α δ2h2σ + α δ h2σ2 − β δ2h2 − β δ h2σ

−3 α δ2h− 4 α δ hσ− α hσ2 + 2 β δ h + β hσ + 2 α δ + 2 α σ
)
(α δ h + α hσ− β h− 2 α).

An indication of the type of flip bifurcation is given by the sign of φPD,∗. The bifurcation is
supercritical (sub-critical) if it is positive (negative).

Theorem 6. The critical value Λ = ΛNS,∗ =
δ ((−δ h−hσ+1)α+β h)(δ+σ)2

(δ h+hσ−1)((−δ−σ)α+β)2 causes a Neimark–Sacker

bifurcation of E∗.

Proof. The multipliers of A∗ for Λ = ΛNS,∗ are as follows:

λNS,∗
1,2 =

± i h
√
−δ (4 + δ (δ + σ)h2 + (−4 δ− 4 σ)h)(δ + σ)− 2− δ (δ + σ)h2 + (2 δ + 2 σ)h

−2 + (2 δ + 2 σ)h
.

There are two conjugate multipliers on the unit circle in this case. So, model (3) at Λ = ΛNS,∗
can be reduced to its normal form

ωNS,∗ 7→ λNS,∗
1 ωNS,∗ + ιNS,∗ω

2
NS,∗ωNS,∗ +O(|ωNS,∗|4).

In Neimark–Sacker bifurcation,

υNS,∗ = <
(

λNS,∗
2 ιNS,∗

)
.

is the first Lyapunov coefficient. The sign of υNS,∗ indicates the Neimark–Sacker bifurcation
situation. A stable (unstable, resp.) closed invariant curve occurs when υNS,∗ < 0 (υNS,∗ > 0),
and the bifurcation is supercritical (subcritical, resp.), see [24–26].

4.2. Two-Parameter Bifurcations

Theorem 7. The positive fixed point E∗ undergoes a strong resonance 1:2 bifurcation in the presence of

Λ = ΛR2,∗ = −16
β δ h + α δ− 4 β

(β δ h2 − 4 β h + 4 α)
2 , σ = σR2,∗ = −

δ2h2 − 4 δ h + 4
h(δ h− 4)

.
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Proof. The Jacobian matrixA∗ for Λ = ΛR2,∗ and σ = σR2,∗ has two multipliers λR2,∗
1,2 = −1.

So, (3) can be written as(
vR2,∗
wR2,∗

)
7→
(

−vR2,∗ + wR2,∗
−wR2,∗ + υR2,∗v3

R2,∗ + γR2,∗v2
R2,∗wR2,∗

)
,

where

υR2,∗ =
υ1

R2

β2h2(δ h− 4)6 , γR2,∗ =
γ1

R2,∗

β2h2(δ h− 4)6 ,

with

υ1
R2,∗ =

(
β δ h2 − 4 β h + 4 α

)2(
β δ h2 + 2 α δ h− 4 β h− 4 α

)(
β δ2h3 − 2 β δ h2 + 8 α δ h

−8 β h− 8 α)(δ h− 2),

γ1
R2,∗ =

(
β δ h2 − 4 β h + 4 α

)2(
2 β2δ4h6 + 7 α β δ4h5 + 8 α2δ4h4 − 20 β2δ3h5 − 60 α β δ3h4

− 64 α2δ3h3 + 76 β2δ2h4 + 224 α β δ2h3 + 240 α2δ2h2 − 160 β2δ h3 − 480 α β δ h2

−384 α2δ h + 192 β2h2 + 384 α β h + 192 α2
)

.

This bifurcation is generic provided υR2,∗ 6= 0 and γR2,∗ 6= −3υR2,∗.

Theorem 8. The positive fixed point E∗ undergoes a strong resonance 1:3 bifurcation in the presence of

Λ = ΛR3,∗ = −9
β δ h + α δ− 3 β

(β δ h2 − 3 β h + 3 α)
2 , σ = σR3,∗ = −

δ2h2 − 3 δ h + 3
h(δ h− 3)

.

Proof. The Jacobian matrix A∗ for Λ = ΛR3,∗ and σ = σR3,∗ has two multipliers λR3,∗
1,2 =

− 1
2 ±

√
3

2 . So, (3) can be written as

vR3,∗ 7→ e
π
2 ivR3,∗ + υR3,∗v2

R3,∗vR3,∗ + γR3,∗vR3,∗
3 +O(|vR3,∗|4),

where

υR3,∗ =
υ1

R3,∗

2 (δ h− 3)3β h
, γR3,∗ =

γ1
R3,∗

2 β2h2(δ h− 3)6 ,

with

υ1
R3,∗ = −

(
β δ h2 − 3 β h + 3 α

)(
i
√

3β δ2h3 + i
√

3α δ2h2 − 5 i
√

3β δ h2 − β δ2h3

−3 i
√

3α δ h− 3 α δ2h2 + 6 i
√

3β h + 3 β δ h2 + 3 i
√

3α + 9 α δ h− 9 α
)

,

γ1
R3,∗ = −

(
β δ h2 − 3 β h + 3 α

)2(
−57 α β δ3h4 + 144 α β δ2h3 − 117 α β δ h2 + 7 δ4β h5α

− 19 i
√

3α β δ3h4 + 5 i
√

3δ4β h5α + 45 i
√

3α β δ h2 − 27 i
√

3β2h2 − 13 i
√

3δ3β2h5

− 39 i
√

3α2δ2h2 − 27 i
√

3α β h + 21 i
√

3β2δ2h4 + 9 i
√

3β2δ h3 + 54 i
√

3α2δ h

+ 2 i
√

3h6β2δ4 + 2 i
√

3δ4h4α2 + 6 i
√

3α2δ3h3 − 27 i
√

3α2 + 27 β2h2 + 6 h4α2δ4

+ 2 h6β2δ4 − 99 β2δ h3 + 75 β2δ2h4 − 21 β2δ3h5 + 63 α2δ2h2 − 36 α2δ3h3 + 27 α β h

−54 α2δ h + 27 α2
)

.
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As long as υR3,∗ 6= 0 and γR3,∗ 6= 0, the bifurcation is generic, and the real part of(
3
4 (2ei 4π

3 υR3,∗ − |γR3,∗|2)
)

confirms the invariant closed circle’s stability; see [25,26].

Theorem 9. The positive fixed point E∗ undergoes a strong resonance 1:4 bifurcation in the presence of

Λ = ΛR4,∗ = −4
β δ h + α δ− 2 β

(β δ h2 − 2 β h + 2 α)
2 , σ = σR4,∗ = −

δ2h2 − 2 δ h + 2
(δ h− 2)h

.

Proof. The Jacobian matrixA∗ for Λ = ΛR4,∗ and σ = σR4,∗ has two multipliers λR4,∗
1,2 = ± i.

So, (3) can be written as

vR4,∗ 7→ i vR4,∗ + υR4,∗v2
R4,∗vR4,∗ + γR4,∗vR4,∗

3 +O(|vR4,∗|4),

where

υR4,∗ =
υ1

R4,∗

2 β2h2(δ h− 2)6 , γR4,∗ =
γ1

R4,∗

2 β2h2(δ h− 2)6 ,

with

υ1
R4,∗ = −

(
β δ h2 − 2 β h + 2 α

)2(
6 iβ2δ4h6 + 12 iα2δ4h4 + 78 iβ2δ2h4 + 28 iα2δ2h2

+ 8 iα2δ h− 62 α β δ3h4 + 152 α β δ2h3 − 152 α β δ h2 + 9 α β δ4h5 − 64 iα β δ3h4

− 24 iα β δ h2 + 48 α2 − 36 iβ2δ3h5 − 36 iα2δ3h3 − 72 iβ2δ h3 − 16 iα β h + 15 iα β δ4h5

+ 84 iα β δ2h3 − 8 iα2 + 24 iβ2h2 + 72 β2δ2h4 + 48 α β h− 96 β2δ h3 + 152 α2δ2h2

+12 α2δ4h4 − 136 α2δ h + 3 β2δ4h6 − 24 β2δ3h5 − 72 α2δ3h3 + 48 β2h2
)

,

γ1
R4,∗ =

(
β δ h2 − 2 β h + 2 α

)2(
4 iα2δ4h4 + 8 iβ2δ3h5 + 40 iα2δ2h2 + 32 iβ2δ h3

− 38 α β δ3h4 + 80 α β δ2h3 − 80 α β δ h2 + 7 α β δ4h5 − 16 iβ2h2 + 26 β2δ2h4

− 24 α2δ h− 16 α2δ3h3 − 24 β2δ h3 + 28 α2δ2h2 − 12 β2δ3h5 + 32 α β h + 2 β2δ4h6

+ 4 α2δ4h4 − 4 iα β δ3h4 + 8 α2 + 8 β2h2 + 16 iα2 + 4 iα β δ2h3 + iα β δ4h5 − iβ2δ4h6

−20 iα2δ3h3 − 24 iβ2δ2h4 − 40 iα2δ h
)

.

A generic bifurcation occurs if σR4,∗ 6= 0 and γR4,∗ 6= 0 and ΠR4,∗ = −
iυR4,∗
|γR4,∗ |

determines the

bifurcation scenario near R4 point. There are two branches of fold curves emanating from
the R4 point if |ΠR4,∗| > 1.

5. Continuation Method

The numerical bifurcation analysis is performed using the MATLAB package MAT-
CONTM; see [27].

5.1. Numerical Continuation of E0

Taking into account the following fixed parameters which will lead to a numerical
continuation of E0:

α = 0.1, β = 0.25, δ = 0.3, σ = 0.4, h = 1.75.

We consider Λ as a bifurcation parameter.
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By varying Λ, the flip bifurcation occurs at E0 for Λ = 0.040541 where φPD,0 =
−5.448258 × 10−2. The sign of φPD,0 determines the sub-critical flip bifurcation. The
stability region of E0 near E0 is presented in Figure 1.

Figure 1. The stability region of E0 in space (Λ, σ).

5.2. Numerical Continuation of E∗
Taking into account the following fixed parameters which will lead to a numerical

continuation of E∗:

α = 0.01, β = 0.25, δ = 0.3, σ = 0.47, h = 1.75.

We consider Λ as a bifurcation parameter.
By varying Λ, we can obtain the following one-parameter bifurcations:

1. The Neimark–Sacker bifurcation occurs at E∗ for Λ = 3.784041 where υNS,∗ =

4.619653 × 10−3. The signs of υNS,∗ determines the sub-critical Neimark–Sacker
bifurcation. The phase portraits of model (3) near the Neimark–Sacker point are
presented in Figure 2,

2. The flip bifurcation occurs at E∗ for Λ = 9.424221 where φPD,∗ = −2.48869× 10−2.
The signs of φPD,∗ determines the sub-critical flip bifurcation. We describe some
intriguing phenomena that arise from the flip point. A bifurcation diagram of model
(3) is shown in Figure 3.
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(a) (b)

(c) (d)

Figure 2. Phase portraits of model (3). (a) A stable fixed point for Λ = 3.75. (b) The phase portrait of
model (3) for Λ = 3.780 (c) A closed invariant curve for Λ = 3.78404. (d) The broken invariant closed
curve for Λ = 3.788.

The following bifurcations can be obtained with two parameters, based on the selected
the Neimark–Sacker point and the continuation with two free parameters (Λ, σ):

1. The resonance 1:4 bifurcation occurs at E∗ for Λ = 3.741538 and σ = 0.474818 where
ΠR4,∗ = 9.557396× 10−2 − 2.715659× 10−1 i. If we compute the convergent orbits
from initial point (S, I) = (3.1984, 3.5905) with respect to Λ and σ, a two-dimensional
bifurcation diagram in the neighborhood of the R4 point can be displayed with the
period number of the corresponding orbits [28,29]; see Figure 4. In addition to the
parameter region with a period-4 cycle, there also exist regions with fixed points—
period-2, -11, -15, -17, -19 and -21 cycles—to show complex periodic dynamics. Here,
a stable period-4 cycle occurs when (Λ, σ) = (3.75, 0.45) and one of a period-4 cycle is
(3.092783505154633,3.762886597938157).

2. The resonance 1:3 bifurcation occurs at E∗ for Λ = 4.999711 and σ = 0.392641 where

<
(

3
4 (2ei 4π

3 υR3,∗ − |γR3,∗|2)
)
= 4.403109× 10−2. If we compute the convergent orbits

from initial point (S, I) = (2.8495, 5.9841) with respect to Λ and σ, a two-dimensional
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bifurcation diagram in the neighborhood of the R3 point can be displayed with the
period number of the corresponding orbits; see Figure 5. In addition to the parameter
region with a period-3 cycle, there only exist regions with fixed points and a period-2
cycle. Here, a stable period-3 cycle occurs when (Λ, σ) = (4.9, 0.38) and one of the
period-3 cycle is (2.796052631578960,5.972329721362207).

3. The resonance 1:2 bifurcation occurs at E∗ for Λ = 6.321289 and σ = 0.357760 where
υR2,∗ = −1.731233× 10−1 and γR2,∗ = 1.575539× 10−2. If we compute the convergent
orbits from initial point (S, I) = (2.7021, 8.3779) with respect to Λ and σ, a two-
dimensional bifurcation diagram in the neighborhood of the R2 point can be displayed
with the period number of the corresponding orbits; see Figure 6. In addition to the
parameter region with a period-2 cycle, there only exist regions with fixed points
and period-4, -6, and -8 cycles. Here, a stable period-2 cycle occurs when (Λ, σ) =
(5.6, 0.32) and one of the period-2 cycles is (2.232027014018290, 8.330641606985276);
see Figure 7.
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Figure 3. Bifurcation diagram of model (3) in (Λ, S)-plane.

Figure 4. Two-dimensional bifurcation diagram of (3) in the neighborhood of the R4 point.
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Figure 5. Two-dimensional bifurcation diagram of (3) in the neighborhood of the R3 point.

Figure 6. Two-dimensional bifurcation diagram of (3) in the neighborhood of the R2 point.
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Figure 7. Stable period-2 cycle.

The stability region of E∗ in space (Λ, σ) and the bifurcation curves of the flip and the
Neimark–Sacker are shown in Figures 8 and 9. Figure 9 confirms the results of Theorems 7–9.

Figure 8. The stability region of E∗ in space (Λ, σ).
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Figure 9. The bifurcation diagram of (3) near E∗.

The bifurcation curves of the second and third iterates of (3) are presented in Figure 10a,b.

(a) (b)

Figure 10. (a) The NS2 curve. (b) The NS3 curve.

6. Discussion

We presented a discrete-time SIR epidemic model with detailed complex dynamics
in this study. Using analytical and numerical methods, we analyzed the bifurcation of the
boundary and positive fixed points ESIR

0 and ESIR
∗ .

By incorporating the Neimark–Sacker bifurcation into the model, we can infer that
susceptible and infective individuals can fluctuate around some mean values of the popula-
tion recruitment rate, and these fluctuations remain stable as well as constant if υNS,∗ < 0.
According to biological theory, an invariant curve bifurcates from a fixed point, which
allows susceptible and infected individuals to coexist and produce their densities. Periodic



Fractal Fract. 2022, 6, 659 14 of 17

or quasi-periodic dynamics may be observed on an invariant curve. It appears that the
susceptible and infected individuals change from one period to the next in this model
based upon the period-doubling bifurcation. On the other hand, the strong resonances
bifurcation of the model suggests susceptible and infected individuals coexist in stable
high period cycles around some mean values of the rate of population recruitment rate and
infection rate of infected individuals. Some two-dimensional bifurcation diagrams in the
neighborhood of two-parameter bifurcation point are computed and displayed to show
possible periodic dynamics.

7. Conclusions

The dynamics of a system can be identified and predicted using bifurcation theory.
In this sense, bifurcation theory is an important branch of dynamical systems theory. In
this paper, we provide a standard research format of bifurcation analysis. The existence
and stability of fixed points are provided in Section 2. In Sections 3 and 4, one-parameter
bifurcations and two-parameter bifurcations are analyzed, respectively. Detailed instruc-
tions are given in Section 5 regarding the computation of fixed point curves. According
to Sections 3–5, the numerical observations and the analytical predictions are in excellent
agreement. Discussions are summarized in Section 6. Both analytical and numerical aspects
of bifurcations are considered in dynamic models. Some methods are more efficient than
others for studying bifurcations in each of these two aspects. The computation of the
critical normal form coefficients is a very effective analytical method in bifurcation theory.
One can see different kinds of methods employed in bifurcation analysis [30–36]. There
are many dynamical systems that are prone to notice this method, discrete or continuous;
see [37–43]. An analytical computation is performed in this paper, and the results are
also validated numerically using MATCONTM. More details can be found in Kuznetsov
and Meijer (2005) [25] and Govaerts et al. (2007) [27]. The paper also provides a robust
analytical and numerical method that can be applied to different discrete-time models.
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Appendix A

∆1
∗ = −4 Λ2α4δ6h4 − 24 Λ2α4δ5h4σ− 60 Λ2α4δ4h4σ2 − 80 Λ2α4δ3h4σ3 − 60 Λ2α4δ2h4σ4

− 24 Λ2α4δ h4σ5 − 4 Λ2α4h4σ6 + 16 Λ2α3β δ5h4 + 80 Λ2α3β δ4h4σ + 160 Λ2α3β δ3h4σ2

+ 160 Λ2α3β δ2h4σ3 + 80 Λ2α3β δ h4σ4 + 16 Λ2α3β h4σ5 − 8 Λ α3δ7h4 − 48 Λ α3δ6h4σ

− 120 Λ α3δ5h4σ2 − 160 Λ α3δ4h4σ3 − 120 Λ α3δ3h4σ4 − 48 Λ α3δ2h4σ5 − 8 Λ α3δ h4σ6

+ 8 Λ2α4δ5h3 + 40 Λ2α4δ4h3σ + 80 Λ2α4δ3h3σ2 + 80 Λ2α4δ2h3σ3 + 40 Λ2α4δ h3σ4

+ 8 Λ2α4h3σ5 − 24 Λ2α2β2δ4h4 − 96 Λ2α2β2δ3h4σ− 144 Λ2α2β2δ2h4σ2 − 96 Λ2α2β2δ h4σ3

− 24 Λ2α2β2h4σ4 + 24 Λ α2β δ6h4 + 120 Λ α2β δ5h4σ + 240 Λ α2β δ4h4σ2 + 240 Λ α2β δ3h4σ3

+ 120 Λ α2β δ2h4σ4 + 24 Λ α2β δ h4σ5 − 4 α2δ8h4 − 24 α2δ7h4σ− 60 α2δ6h4σ2 − 80 α2δ5h4σ3

− 60 α2δ4h4σ4 − 24 α2δ3h4σ5 − 4 α2δ2h4σ6 − 32 Λ2α3β δ4h3 − 128 Λ2α3β δ3h3σ

− 192 Λ2α3β δ2h3σ2 − 128 Λ2α3β δ h3σ3 − 32 Λ2α3β h3σ4 + 16 Λ2α β3δ3h4 + 48 Λ2α β3δ2h4σ

+ 48 Λ2α β3δ h4σ2 + 16 Λ2α β3h4σ3 + 16 Λ α3δ6h3 + 80 Λ α3δ5h3σ + 160 Λ α3δ4h3σ2

+ 160 Λ α3δ3h3σ3 + 80 Λ α3δ2h3σ4 + 16 Λ α3δ h3σ5 − 24 Λ α β2δ5h4 − 96 Λ α β2δ4h4σ

− 144 Λ α β2δ3h4σ2 − 96 Λ α β2δ2h4σ3 − 24 Λ α β2δ h4σ4 + 8 α β δ7h4 + 40 α β δ6h4σ

+ 80 α β δ5h4σ2 + 80 α β δ4h4σ3 + 40 α β δ3h4σ4 + 8 α β δ2h4σ5 − 4 Λ2α4δ4h2 − 16 Λ2α4δ3h2σ

− 24 Λ2α4δ2h2σ2 − 16 Λ2α4δ h2σ3 − 4 Λ2α4h2σ4 + 48 Λ2α2β2δ3h3 + 144 Λ2α2β2δ2h3σ

+ 144 Λ2α2β2δ h3σ2 + 48 Λ2α2β2h3σ3 − 4 Λ2β4δ2h4 − 8 Λ2β4δ h4σ− 4 Λ2β4h4σ2

− 40 Λ α2β δ5h3 − 160 Λ α2β δ4h3σ− 240 Λ α2β δ3h3σ2 − 160 Λ α2β δ2h3σ3 − 40 Λ α2β δ h3σ4

+ 8 Λ β3δ4h4 + 24 Λ β3δ3h4σ + 24 Λ β3δ2h4σ2 + 8 Λ β3δ h4σ3 + 8 α2δ7h3 + 40 α2δ6h3σ

+ 80 α2δ5h3σ2 + 80 α2δ4h3σ3 + 40 α2δ3h3σ4 + 8 α2δ2h3σ5 − 4 β2δ6h4 − 16 β2δ5h4σ

− 24 β2δ4h4σ2 − 16 β2δ3h4σ3 − 4 β2δ2h4σ4 + 16 Λ2α3β δ3h2 + 48 Λ2α3β δ2h2σ

+ 48 Λ2α3β δ h2σ2 + 16 Λ2α3β h2σ3 − 32 Λ2α β3δ2h3 − 64 Λ2α β3δ h3σ− 32 Λ2α β3h3σ2

− 8 Λ α3δ5h2 − 32 Λ α3δ4h2σ− 48 Λ α3δ3h2σ2 − 32 Λ α3δ2h2σ3 − 8 Λ α3δ h2σ4 + 32 Λ α β2δ4h3

+ 96 Λ α β2δ3h3σ + 96 Λ α β2δ2h3σ2 + 32 Λ α β2δ h3σ3 − 8 α β δ6h3 − 32 α β δ5h3σ

− 48 α β δ4h3σ2 − 32 α β δ3h3σ3 − 8 α β δ2h3σ4 − 24 Λ2α2β2δ2h2 − 48 Λ2α2β2δ h2σ

− 24 Λ2α2β2h2σ2 + 8 Λ2β4δ h3 + 8 Λ2β4h3σ + 8 Λ α2β δ4h2 + 16 Λ α2β δ3h2σ− 16 Λ α2β δ h2σ3

− 8 Λ α2β h2σ4 − 8 Λ β3δ3h3 − 16 Λ β3δ2h3σ− 8 Λ β3δ h3σ2 − 4 α2δ6h2 − 16 α2δ5h2σ

− 24 α2δ4h2σ2 − 16 α2δ3h2σ3 − 4 α2δ2h2σ4 + 16 Λ2α β3δ h2 + 16 Λ2α β3h2σ + 8 Λ α β2δ3h2

+ 32 Λ α β2δ2h2σ + 40 Λ α β2δ h2σ2 + 16 Λ α β2h2σ3 − 8 α β δ5h2 − 32 α β δ4h2σ− 48 α β δ3h2σ2

− 32 α β δ2h2σ3 − 8 α β δ h2σ4 − 4 Λ2β4h2 + 7 Λ α2β δ3h + 21 Λ α2β δ2hσ + 21 Λ α2β δ hσ2

+ 7 Λ α2β hσ3 − 8 Λ β3δ2h2 − 16 Λ β3δ h2σ− 8 Λ β3h2σ2 + 8 β2δ4h2 + 24 β2δ3h2σ + 24 β2δ2h2σ2

+ 8 β2δ h2σ3 − 14 Λ α β2δ2h− 28 Λ α β2δ hσ− 14 Λ α β2hσ2 + 7 α β δ4h + 21 α β δ3hσ

+ 21 α β δ2hσ2 + 7 α β δ hσ3 + 7 Λ β3δ h + 7 Λ β3hσ− 2 β2δ2 − 4 β2δ σ− 2 β2σ2.
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