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Abstract: This paper proposes a further generalization of the fractional-order filters whose limiting
form is that of the second-order filter. This new filter class can also be regarded as a superset of the
recently reported power-law filters. An optimal approach incorporating constraints that restricts
the real part of the roots of the numerator and denominator polynomials of the proposed rational
approximant to negative values is formulated. Consequently, stable inverse filter characteristics
can also be achieved using the suggested method. Accuracy of the proposed low-pass, high-pass,
band-pass, and band-stop filters for various combinations of design parameters is evaluated using
the absolute relative magnitude/phase error metrics. Current feedback operational amplifier-based
circuit simulations validate the efficacy of the four types of designed filters and their inverse functions.
Experimental results for the frequency and time-domain performances of the proposed fractional-
order band-pass filter and its inverse counterpart are also presented.

Keywords: analog filter approximation; current feedback operational amplifier; fractional-order filter;
inverse filter; optimization; power-law filter; second-order filter

1. Introduction

The concepts of fractional calculus [1], the branch of mathematics which generalizes
the integration and differentiation operations, have seen widespread applications in various
fields of science and engineering [2]. The Grunwald–Letnikov definition of a fractional
derivative of order α for a function f (t) is given by (1) [3].

aDt
α f (t) = lim

h→0

1
hα

[
t− a

h

]
∑
j=0

(−1)j
(

α
j

)
f (t− jh) (1)

where [x] denotes the integer part of x;
(

α
j

)
=

Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

represents the

binomial coefficients; a and t are the bounds of the operation; and α ∈ (0, 1). Under zero
initial conditions, the Laplace transformation of (1) is given by (2).

L{0Dα
t f (t)} = sαF(s) (2)

The presence of the additional tuning parameter α provides several fundamental
advantages to fractional-order (FO) filters when compared against the traditional (integer-
order) filters: (i) exact meeting of design specifications, which implies precise control of
filter roll-off characteristics. For instance, the fractional-order low-pass filter (FLPF) exhibits
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a roll-off rate of −20(N + α) decibel/decade (dB/dec), where N = 0, 1, . . ., and α ∈ (0, 1);
the same for the traditional filter is −20n dB/dec (n = 1, 2, . . .) [3]. The roll-off rate of
−20α dB/dec, which finds application in the music industry [4], cannot be obtained using
the integer-order filters. Similarly, a fractional-order band-pass filter (FBPF), in addition to
exhibiting an asymmetric slope, can attain a roll-off extending down to 0 dB/dec [5]. In
contrast, the minimum slope yielded for the classical band-pass filter, which always exhibits
a symmetric magnitude-frequency behavior about the center frequency, is ±20 dB/dec.
Generalization of the traditional filters, such as the Butterworth [6], Chebyshev [7], shadow
filter [8], etc., exploits the afore-mentioned advantages; (ii) various filter characteristics such
as bandwidth, center frequency, quality factor, etc., are dependent on α which provides an
additional design parameter to the circuit designer, and, hence, better flexibility [9]; and
(iii) FO filters (for example, the FO Sallen-Key filter [10]) may achieve improved stability
range compared to their classical counterparts.

The FO filters can be modeled using the fractional-order transfer function (FTF), where
the use of constant phase element for practical circuit implementation is required [11]. These
constant phase elements, also known as the FO elements or fractance devices, provide an
impedance phase characteristic which is independent of the frequency of operation and
whose value is not limited to only +90 or −90 degrees, as is usual for classical inductors
and capacitors [12]. Realization of FO filter circuits using the fractors can lead to reduced
component count compared to the alternative technique involving the approximation
of FO filters using the integer-order transfer function (ITF). For example, a 1.5th-order
Butterworth filter can be realized using a single operational amplifier (op-amp), one FO
capacitor, one conventional capacitor, and three resistors [13]. In contrast, a third-order
approximant of the same filter for six decades of design bandwidth requires four current
feedback op-amps (CFOAs), three traditional capacitors, and eight resistors [14]. Due to
the absence of commercial fractance elements, the impedance characteristics of the FO
capacitor can be emulated using passive RC ladder networks or active components [15]. For
example, the Valsa network [16] emulates the FO capacitor behavior for three decades of
frequency using a ladder structure comprising five resistors and five capacitors. Hence, the
passive component count for the FTF-based FO filter circuit can also increase substantially.

Certain FO filters may be more conveniently modeled by determining their rational
approximations. Two techniques exist in the literature for conversion of the FTF into
its integer-order counterpart: (a) substitution of the rational approximation of the sα

operator [17] in the FTF, as reported in [18], or further optimizing the obtained integer-
order model to enhance the design bandwidth [14], and (b) direct determination of the ITF
which approximates the magnitude and phase-frequency characteristics of the FO filter.
For this purpose, either optimization techniques or curve-fitting procedures have been
employed for the design of FO transitional filter [19], power-law filter (PLF) [20–23], etc.

The contributions of this paper are the following:

1. Further generalization of the FO filter of the second-order limiting form is proposed.
It is demonstrated that the PLFs reported in [20–23] are also a small subset of the class
of filters proposed in this work;

2. This new class of filters of the low-pass (LP), high-pass (HP), band-pass (BP), and
band-stop (BS) type, which attains more generic magnitude and phase-frequency
characteristics, is then approximated as a rational transfer function. The coefficients
of the ITF models are optimally determined such that the poles and zeros of the
approximant are restricted to reside in the left-half s-plane;

3. As reported in [21], the frequency-domain-based curve-fitting using the Sanathanan–
Koerner least-squares method presented in [20,22,23] can lead to unstable inverse LP
and inverse HP type PLFs for some design cases. The proposed approach to formulate
the constraints, which is different from the method adopted in [21], helps convert the
stable filter into its stable inverse counterpart also through a simple inversion. To the
best of the authors’ knowledge, these inverse filters, which further generalizes the
models reported in [21], are also presented for the first time in the literature;
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4. Circuit implementations for all the four filter types as well as their inverse counterparts
are demonstrated on Simulation Program with Integrated Circuit Emphasis (SPICE)
platform based on the CFOA being employed as an active component. Experimental
measurements for the proposed FBPF and its corresponding inverse filter are also
presented, which confirm their practical feasibility.

In the rest of the paper, the new theoretical filter transfer functions are introduced in
Section 2 along with the proposed design technique. In Section 3, MATLAB simulations are
conducted to investigate the performance of the proposed models; circuit simulations and
experimental results are also presented in this section. Finally, the conclusions and future
scope of research are outlined in Section 4.

2. Problem Formulation
2.1. Generalization of Power-Law Filter Transfer Function

The generalized FO filter transfer function whose characteristic polynomial depends
on two FO capacitors of order α, is given by (3) [24].

H(s) =
cs2α + dsα + h
s2α + 2asα + b

(3)

where a, b, c, d, and h are constant coefficients. H(s) is always stable provided the conditions
a2 ≥ b, a < 0, or b < 0 are avoided. Fractional step magnitude and phase behaviors of
the LP, HP, BP, and BS types may be obtained from (3) by setting c = d = 0, d = h = 0,
c = h = 0, and d = 0, respectively. An optimal approximant for the transfer function of
the form h/(s2α + 2asα + b) was obtained using a multi-objective optimization routine [25].
In [26], three different transfer functions, such as h/(s1+α + asα + b), h/(s1+α + as + b),
and h/(s1+α + as0.5(1+α) + b), were formulated and their coefficients were optimally de-
termined to approximate the frequency-domain characteristics of the second-order LP
filter 1/(s2 + s/Q + 1), where the quality factor Q can be adjusted to any arbitrary value.
Optimal rational approximations for FO filters of the LP, HP, and BP types, such as h/R(s),
hsα+β/R(s), and hsβ/R(s), respectively, where R(s) = sα+β + asβ + b, and β ∈ (0, 1), were
also reported [27].

A new class of FO filter, as given by (4), can be proposed by introducing a FO exponent
β in the filter transfer function defined in (3):

Hα,β
D (s) =

(
cs2α + dsα + h
s2α + 2asα + b

)β

(4)

where β ∈ (0, 1] and β ∈ [−1, 0) leads to the standard and inverse filter characteristics,
respectively. The transfer function, magnitude, and phase of the LP, HP, BP, and BS type
proposed theoretical filters are presented in Table 1.

H(s) is a special case of Hα,β
D (s) when β = 1, which implies further generalization of

the filter forms reported in [24]. The classical second-order filter can be obtained from (4)
by choosing α = β = 1. As a representative, Figure 1 shows the different magnitude and
phase-frequency characteristic curves exhibited for the theoretical FLPF (c = 0, d = 0, h = 1,
a = 1, b = 1), with α = 0.6 and β = {0.6, 0.8, 1}. The introduction of the additional tuning
parameter β in the proposed FO filter transfer function given by (4) can yield a much wider
variety of magnitude and phase-frequency characteristics which is not possible to attain
using only a single tuning knob α in (3).
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Table 1. Transfer function, magnitude, and phase of the proposed theoretical filters.

Filter Type Transfer Function Parameter Expression

Low-pass
(

h
s2α + 2asα + b

)β Magnitude hβ

[ω4α + 4a2ω2α + b2 + 2bω2α cos(απ) + 4abωα cos(απ/2) + 4aω3α cos(απ/2)]β/2

Phase −β tan−1
[

ω2α sin(απ) + 2aωα sin(απ/2)
ω2α cos(απ) + 2aωα cos(απ/2) + b

]
High-pass

(
cs2α

s2α + 2asα + b

)β Magnitude cβω2αβ

[ω4α + 4a2ω2α + b2 + 2bω2α cos(απ) + 4abωα cos(απ/2) + 4aω3α cos(απ/2)]β/2

Phase β
(

απ − tan−1
[

ω2α sin(απ) + 2aωα sin(απ/2)
ω2α cos(απ) + 2aωα cos(απ/2) + b

])
Band-pass

(
dsα

s2α + 2asα + b

)β Magnitude dβωαβ

[ω4α + 4a2ω2α + b2 + 2bω2α cos(απ) + 4abωα cos(απ/2) + 4aω3α cos(απ/2)]β/2

Phase β
(

0.5απ − tan−1
[

ω2α sin(απ) + 2aωα sin(απ/2)
ω2α cos(απ) + 2aωα cos(απ/2) + b

])
Band-stop

(
cs2α + h

s2α + 2asα + b

)β Magnitude
[

c2ω4α + h2 + 2hcω2α cos(απ)
ω4α + 4a2ω2α + b2 + 2bω2α cos(απ) + 4abωα cos(απ/2) + 4aω3α cos(απ/2)

]β/2

Phase β
(

tan−1
[

cω2α sin(απ)
cω2α cos(απ) + h

]
− tan−1

[
ω2α sin(απ) + 2aωα sin(απ/2)

ω2α cos(απ) + 2aωα cos(απ/2) + b

])
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Figure 1. Magnitude and phase responses of the theoretical FLPF for different values of β with
α = 0.6.

A different form of double FO-exponent LP and HP filter transfer functions, such as
{1/(sα + 1)}β and {sα/(sα + 1)}β, respectively, where α, β ∈ (−2, 2), were reported in [28].
Two FO elements-based band-stop filter of the form (sp + k1sq + k2)/(sp + k3sq + k2), where,
p = 1 + β1 + β2, q = 1 + β2, and β1, β2 ∈ (0, 1), was presented in [29], which is also unlike
the proposed fractional-order band-stop filter (FBSF) model. Note that the transfer function
of the PLF reported in [20–23] can be obtained from (4) by setting α = 1. Therefore, the
proposed FO filter transfer function also provides a further generalization of the PLF
models. As an example, the magnitude and phase-characteristics of the theoretical LP type
PLF [20–23] and that of the proposed filter, with (c = d = 0, h = a = b = 1, β = 0.7), are
compared in Figure 2. It can be seen that for the considered case (i.e., β = 0.7), the PLF
attains only a single characteristic curve since α is fixed at 1, whereas the proposed filter
can achieve various other responses (viz., α = 0.6, 0.8).
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Figure 2. Magnitude and phase responses of the theoretical FLPF for different values of α with
β = 0.7.

2.2. Proposed Technique

Defining an ITF as per (5), where N is a positive integer, the frequency-domain charac-
teristics of the theoretical FO filter may be approximated in the optimal sense by minimizing
the mean absolute relative magnitude and phase errors between Hα,β

D (jω) and Hα,β,N
P (jω).

Hα,β,N
P (s) =

A(s)
B(s)

=

N

∑
i=0

aisi

sN +
N−1

∑
k=0

bksk

(5)

For this purpose, the objective function for the proposed optimization (minimization)
routine is formulated according to (6), subject to the nonlinear inequality constraints which
ensure that the zeros and poles of Hα,β,N

P (s) lie strictly on the left-half s-plane.

f =
1
L

L

∑
i=1

∣∣∣∣∣∣1−
∣∣∣Hα,β,N

P (jωi, X)
∣∣∣∣∣∣Hα,β

D (jωi)
∣∣∣
∣∣∣∣∣∣+
∣∣∣∣∣1− ∠Hα,β,N

P (jωi, X)

∠Hα,β
D (jωi)

∣∣∣∣∣
 (6)

Subject to:

(i) ak > 0 (k = 0, 1, . . . , N);
(ii) bk > 0 (k = 0, 1, . . . , N − 1);
(iii) Real part of roots of A(s) and B(s) < 0.

where X denotes the vector of decision variables, i.e., X = [aN aN−1 . . . a0 bN−1 bN−2 . . . b0];
L denotes the number of log-spaced sample points in the bandwidth [ωmin, ωmax] rad/s;
and the dimension (D) of the problem is 2N + 1. The application of metaheuristics for the
optimal approximation of FO filters and systems has shown promising performances [30].
The constrained composite differential evolution (C2oDE) algorithm [31] can be employed
as the optimization problem solver for this work. C2oDE integrates the basic framework
of composite differential evolution [32], with the constraint-handling mechanisms based
on the feasibility rule [33] and the ε-constrained method [34]. The detailed discussion of
the C2oDE algorithm can be found in [31]. The proposed objective function is minimized
by C2oDE, where the FO exponents {α, β} of the theoretical filter transfer function, order
of the proposed rational approximant (N), length of data sample points (L), lower limit
(ωmin), and upper limit (ωmax) of the desired bandwidth are the user-defined inputs to
the optimization routine. The metaheuristic search procedure of C2oDE determines the
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best feasible solution (X∗), i.e., the vector of decision variables (coefficients of Hα,β,N
P (s))

which achieves the smallest value of f while also satisfying the design constraints, after
maxrun number of independent trial runs of the algorithm are conducted. Therefore, X∗ is
declared as the near-global optimal solution at the end of the proposed search optimization
procedure. In Figure 3, the flowchart of the proposed analog filter design technique
is presented.

As highlighted in [35], the issue of design stability for the inverse filters is an important
topic. A different set of constraints have been proposed here to ensure the approximant’s
stable and minimum phase response as compared to the Hurwitz determinant method
employed in [21]. While forcing the coefficients ak and bk to be positive, the proposed
constraints also ensure that the real part of all the roots of the numerator and denominator
polynomials of Hα,β,N

P (s) attains a negative value. Since all the zeros of the proposed
approximant are constrained to lie in the left-half s-plane, inverting the transfer function
Hα,β,N

P (s), i.e., [Hα,β,N
P (s)]−1, provides the stable inverse filter characteristics for the pro-

posed FLPF, fractional-order high-pass filter (FHPF), FBPF, and FBSF. The inverse filter
transfer functions proposed in this work are also different from those published in the
literature [36–41]. Henceforth, the FO inverse LP, HP, BP, and BS filters will be abbreviated
as FILPF, FIHPF, FIBPF, and FIBSF, respectively.

 

Start 

Inputs: maxmin,,,,,  NL  

Set run = 1, maxrun = 20 

Minimize  f  based on the algorithmic framework of C
2
oDE 

Store the best solution Xrun and the corresponding 

fitness function value frun 

Is 

run = = maxrun 

? 
run = run + 1 

No 

Determine the decision variables vector 

)( *X with the minimum fitness function 

value (min{ frun}) from all runs 

Output: *X  

 

End 

Yes 

Figure 3. Flowchart of the proposed filter design technique.

3. Results and Discussions

In this work, the population size and the maximum number of function evaluations for
C2oDE are chosen as 100 and 10,000D, respectively; the remaining control parameters are
set according to the recommendations provided in [31]. The lower bound of the decision
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variables is chosen as 10−6 while the upper bound is set as 20,000. For all the design cases
presented in this paper, L = 100, ωmin = 10−2 rad/s, ωmax = 102 rad/s, and maxrun = 20,
are chosen. The proposed optimization routine is implemented in MATLAB, where the
roots of A(s) and B(s) for each search agent are determined using the roots() function.
To evaluate the design accuracy, the absolute relative magnitude error (ARME) and the
absolute relative phase error (ARPE) metrics are used. These error indices are defined as
per (7) and (8), respectively:

ARME =

∣∣∣∣∣∣
∣∣∣Hα,β

D (jω)
∣∣∣− ∣∣∣Hα,β,N

P (jω)
∣∣∣∣∣∣Hα,β

D (jω)
∣∣∣

∣∣∣∣∣∣ (7)

ARPE =

∣∣∣∣∣∠Hα,β
D (jω)−∠Hα,β,N

P (jω)

∠Hα,β
D (jω)

∣∣∣∣∣ (8)

3.1. Performance Analysis
3.1.1. Fractional-Order Low-Pass Filter

The optimal model coefficients of the FLPFs (c = d = 0, h = a = b = 1) for different
combinations of α, β, and N are presented in Table 2. The stability criteria are satisfied
for all the design cases since the system poles are always located on the left-half s-plane.
For instance, the poles of the proposed FLPF with N = 4 and (α, β) = (0.6, 0.8) are
located at s = {−0.0271,−0.2303,−1.2976,−9.5261}. To achieve a stable FILPF, the zeros
of the corresponding FLPF must reside on the left-half s-plane. It is noteworthy that the
proposed design constraints in this regard are also satisfied. For example, the zeros of the
afore-mentioned design case are located at s = {−0.0315,−0.3949,−5.6393,−1054.7}.

Table 2. Optimal coefficients of the proposed FLPFs for different values of α, β, and N.

α β N [aN aN–1 . . . a0] [bN–1bN–2 . . . b0]

0.6 0.6
3 0.0142 2.5299 6.6189 0.4942 11.4218 9.2670 0.5131
4 0.0114 3.0287 25.5717 13.7481 0.4771 24.2389 55.7542 16.8974 0.4922
5 0.0092 3.4666 61.4831 110.5999 22.6230 0.4607 41.6920 208.3549 178.6875 26.2131 0.4730

0.6 0.8
3 0.0013 0.9827 1.6323 0.0935 4.7579 2.3646 0.0980
4 0.0010 1.0608 6.4002 2.5499 0.0741 11.0810 15.1524 3.2481 0.0770
5 0.0008 1.1094 15.6780 21.3117 3.5163 0.0625 21.2276 62.7773 37.1129 4.2024 0.0646

0.7 0.6
3 0.0051 1.6591 4.5010 0.3897 7.7235 5.9418 0.3968
4 0.0041 1.8637 16.5030 9.4477 0.3705 17.7793 34.5354 11.0523 0.3761
5 0.0031 2.0251 38.1221 70.6279 15.5349 0.3518 32.3963 132.0535 107.9572 17.2623 0.3562

0.9 0.5
3 0.0021 1.4230 6.3582 0.9979 7.7812 7.7812 1.0000
4 0.0018 1.5155 18.6555 16.4228 0.9982 17.9383 37.3110 17.9383 1.0000
5 0.0014 1.5881 38.2769 97.7768 30.9821 0.9986 32.5702 136.0537 136.0537 32.5702 1.0000

The effect due to variations of N on the accuracy of the proposed FLPFs is presented in
Table 3 by considering the maximum (max) and mean values of ARME and ARPE metrics.
In total, 1000 log-spaced data sample points are considered for evaluating the mean error.
This is due to the fact that the mean error remains nearly the same if a higher number of data
points are used; while the error marginally increases if a lower number of sample points are
chosen. For example, the values of {mean ARME (dB), mean ARPE (dB)} attained by the
proposed FLPF with α = 0.7, β = 0.6, and N = 4 for 100, 1000, and 10,000 sample points are
{−36.36, −32.69}, {−36.53, −32.82}, and {−36.54, −32.83}, respectively. Similar results are
also obtained for the other design cases, which justify the selection of 1000 sample points
for the evaluation of the mean errors. It is also found that the accuracy increases (i.e., error
reduces) with an increase in the design order (N) for all the cases. For instance, considering
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the FLPF for (α, β) = (0.9, 0.5), the max and mean values of ARME for N = {3, 4, 5}
are {−20.25, −25.36, −31.21} dB and {−35.53, −43.34, −51.13} dB, respectively; similarly,
the max and mean ARPE values are {−20.13, −25.31, −31.51} dB and {−31.91, −39.78,
−47.24} dB, respectively. These results are in accordance with the fact that the accuracy of
approximating any FTF with an integer-order one improves as N increases; the modeling
error being theoretically zero when the integer-order model has an order of infinity. Since
such infinite-dimensional systems are impractical, a trade-off between accuracy and order
(design/hardware complexity) is a pertinent issue in the rational approximation of any
FO system.

Table 3. Performance indices of the designed FLPFs for different values of N.

α β N
ARME (dB) ARPE (dB)

MC (dB) θC (deg) ωM (rad/s) ωθ (rad/s)
Max Mean Max Mean

0.6 0.6
3 −15.00 −26.51 −13.04 −21.96 −5.937 −35.72 1.0210 0.7918
4 −19.00 −34.16 −18.72 −29.74 −6.054 −30.85 0.9886 1.1610
5 −24.33 −41.81 −26.29 −37.09 −6.013 −32.99 1.0030 0.9484

0.6 0.8
3 −17.93 −28.88 −15.09 −25.73 −8.348 −45.08 0.9380 0.8406
4 −23.49 −36.76 −21.59 −33.59 −7.887 −42.35 1.0380 1.0530
5 −29.09 −44.52 −29.88 −41.41 −8.092 −43.52 0.9867 0.9768

0.7 0.6
3 −15.98 −28.08 −14.46 −24.99 −5.539 −40.24 1.0060 0.8658
4 −20.75 −36.53 −19.84 −32.82 −5.569 −36.66 0.9995 1.0820
5 −26.28 −44.21 −26.75 −40.12 −5.564 −38.24 0.9999 0.9723

0.9 0.5
3 −20.25 −35.53 −20.13 −31.91 −3.555 −41.18 1.0220 0.9725
4 −25.36 −43.34 −25.31 −39.78 −3.685 −40.19 0.9895 1.0150
5 −31.21 −51.13 −31.51 −47.24 −3.628 −40.63 1.0040 0.9949

The magnitude (MCT) of the theoretical FLPF at the frequency of 1 rad/s for (α, β) = (0.6,
0.6), (0.6, 0.8), (0.7, 0.6), and (0.9, 0.5) is −6.023 dB, −8.031 dB, −5.565 dB, and −3.643 dB,
respectively. The phase (θCT) of the theoretical filters at 1 rad/s for the same combinations
of (α, β) is –32.40◦, −43.21◦, −37.81◦, and −40.51◦, respectively. The magnitude and phase
of the proposed filters at 1 rad/s, denoted by MC and θC, respectively, are presented in
Table 3. Results reveal that both these values approach the theoretical ones for all the design
cases as N is increased. The frequency values attained by the proposed FLPF at MCT and
θCT are denoted by ωM and ωθ , respectively. As demonstrated in Table 3, these performance
indices also approach the theoretical frequency value of 1 rad/s with an increase in N.

Figure 4a highlights the improved accuracy in the magnitude and phase responses of
the optimal FLPFs for the design case (α = 0.7, β = 0.6) when N is increased from 3 to 5.
Further confirmation is provided in Figure 4b, which shows the reduction in ARME and
ARPE with an increase in N.

The magnitude responses of the proposed FLPFs (N = 4) for (α, β) = (0.6, 0.8)
and (0.9, 0.5) and their corresponding inverse counterparts, i.e., FILPFs (N = 4) for
(α, β) = (0.6,−0.8) and (0.9,−0.5), are presented in Figure 5a, and the phase responses are
shown in Figure 5b. Both the design cases exhibit proximity with the theoretical responses
in the desired bandwidth. The zeros and poles of the FLPF for (α, β) = (0.9, 0.5) are located
at {−0.0657, −0.8830, −11.5331, −829.4627}, and {−0.0640, −0.6091, −1.6418, −15.6234},
respectively, in the s-plane, which implies that both the FLPF and its inverse counterpart
are stable.
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Figure 4. (a) Magnitude, phase and (b) ARME, ARPE responses of the proposed FLPF (α = 0.7,
β = 0.6) for different values of N.
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Figure 5. (a) Magnitude and (b) phase responses of the proposed FLPFs and FILPFs for N = 4.
The theoretical response is shown in solid red.

3.1.2. Fractional-Order High-Pass Filter

The well-known LP-to-HP transformation technique [42], which involves replacing s
with 1/s in the FLPF transfer function, can convert the FLPF models presented in Table 2
into the FHPFs of the same order. The proposed technique can also allow the optimal design
of FHPFs directly without obtaining the FLPF model in the first stage. In Table 4, the stable
FHPF approximants for (α, β) = (0.8, 0.5) and (0.7, 0.7) with (d = h = 0, c = a = b = 1)
are obtained by carrying out the proposed optimization technique for different values of
N. For instance, the poles and zeros of the FHPF with (α, β, N) = (0.8, 0.5, 4) are obtained
as {−0.0530, −0.4949, −2.0205, −18.8688} and {−0.0025, −0.0972, −1.2887, −17.8685},
respectively, in the s-plane. Such pole-zero locations justify that both the FHPF and its
inverse model are stable.

The max and mean indices of the ARME and ARPE metrics are evaluated for the
proposed FHPF transfer functions, as shown in Table 5. A similar finding regarding the
improvement in accuracy with an increase in the design order is also noted here. The
{MCT, θCT} values of the theoretical FHPF for (α, β) = (0.8, 0.5) are {–4.178 dB, 35.99◦}; for
(α, β) = (0.7, 0.7), these are {–6.488 dB, 44.09◦}. The MC, θC, ωM, and ωθ parameters attained
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by the designed approximants for these cases are shown in Table 5, which highlights an
improved proximity with the theoretical values for an increasing N.

Figure 6a,b present the magnitude and phase plots, respectively, of both the optimal
FHPFs and their inverse functions, for N = 4. The frequency-domain characteristics of the
approximants closely match with those of the theoretical responses.

Table 4. Optimal coefficients of the proposed FHPFs for different values of α, β, and N.

α β N [aN aN–1 . . . a0] [bN–1bN–2 . . . b0]

0.8 0.5
3 0.9932 7.8453 2.0344 0.0068 9.8797 9.8797 1.0000
4 0.9944 19.1491 24.7984 2.2881 0.0056 21.4372 49.5967 21.4372 1.0000
5 0.9956 35.4326 126.2330 54.3189 2.5130 0.0044 37.9456 180.5519 180.5519 37.9456 1.0000

0.7 0.7
3 0.9806 14.6603 8.9401 0.0051 19.1412 35.6366 9.0971
4 0.9838 29.7348 70.3640 12.4674 0.0062 34.9174 142.9660 108.5833 12.1205
5 0.9867 49.5131 277.8629 204.4321 15.4272 0.0055 55.3552 426.0090 692.3231 257.6597 14.6294

Table 5. Performance indices of the designed FHPFs for different values of N.

α β N
ARME (dB) ARPE (dB)

MC (dB) θC (deg) ωM (rad/s) ωθ (rad/s)
Max Mean Max Mean

0.8 0.5
3 −16.36 −30.39 −15.52 −26.32 −4.016 37.42 0.9607 1.0750
4 −20.88 −38.15 −20.54 −34.09 −4.253 35.31 1.0240 0.9563
5 −26.75 −45.88 −27.31 −41.43 −4.150 36.25 0.9931 1.0150

0.7 0.7
3 −21.94 −32.77 −16.23 −28.43 −6.697 45.32 1.0450 1.0890
4 −27.92 −40.83 −21.92 −36.56 −6.394 43.54 0.9772 0.9723
5 −33.70 −48.61 −29.96 −44.31 −6.527 44.29 1.0100 1.0130
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Figure 6. (a) Magnitude and (b) phase responses of the proposed FHPFs and FIHPFs for N = 4.
The theoretical response is shown in solid red.

3.1.3. Fractional-Order Band-Pass Filter

The optimal coefficients of the FBPFs for two different cases, such as (α, β) = (0.65, 0.85)
and (0.7, 0.4), with (c = h = 0, d = a = b = 1), and N varying from 3 to 7, are presented in
Table 6. For (α, β, N) = (0.65, 0.85, 4), the zeros and poles are located at {−0.0052, −0.0913,
−10.9496, −191.2333} and {−0.0261, −0.2131, −4.6931, −38.2753}, respectively, in the s-
plane. Hence, the proposed model can also be inverted to yield a stable FIBPF. A similar
comment can also be made about all the other design orders and cases presented in Table 6.
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However, cancellation of a pair of pole-zero occurs for odd values of N of the designed
FBPFs. For example, the zeros and poles of the FBPF for (α, β, N) = (0.65, 0.85, 5) are
located at s = {–0.0048, –0.0792, –1.0000, –12.6216, –210.4950} and s = {–0.0233, –0.1947,
–1.0000, –5.1365, –42.8770}, respectively. Therefore, cancellation of the pole-zero pair oc-
curring at s = −1 converts the fifth-order FBPF into a fourth-order one. Hence, it may be
inferred that the design of FBPFs for even values of N is only appropriate. This issue of
order truncation is also reflected in the modeling performance, as shown in Table 7, where
the ARME and ARPE values for N = 5 and 7 are close to those obtained for N = 4 and 6,
respectively. However, a large improvement in accuracy is exhibited between two even
values of N.

Table 6. Optimal coefficients of the proposed FBPFs for different values of α, β, and N.

α β N [aN aN–1 . . . a0] [bN–1bN–2 . . . b0]

0.65 0.85

3 0.0455 4.3916 4.3916 0.0455 14.0152 14.0152 1.0000
4 0.0340 6.8775 71.8572 6.8775 0.0340 43.2076 189.9142 43.2076 1.0000
5 0.0324 7.2641 93.9189 93.9189 7.2641 0.0324 49.2315 278.9397 278.9397 49.2315 1.0000
6 0.0250 9.5746 317.2759 1481.1000 95.0273 1388.1000 3966.1000 1388.1000

317.2759 9.5746 0.0250 95.0273 1.0000
7 0.0242 9.9057 365.7414 2150.5001 2150.5001 102.9711 1704.5000 6397.6000 6397.6000

365.7414 9.9057 0.0242 1704.5000 102.9711 1.0000

0.7 0.4

3 0.2225 12.8293 12.8293 0.2225 22.5980 22.5980 1.0000
4 0.1890 24.6291 220.2190 24.6291 0.1890 62.3458 342.9724 62.3458 1.0000
5 0.1853 26.4413 291.1292 291.1292 26.4413 0.1853 69.4012 483.2816 483.2816 69.4012 1.0000
6 0.1622 40.1465 1131.1000 4864.2000 128.0391 2342.3000 7601.1000 2342.3000

1131.1000 40.1465 0.1622 128.0391 1.0000
7 0.1595 42.2490 1326.8000 7221.5000 7221.5000 137.9077 2840.7000 11974.0000 11974.0000

1326.8000 42.2490 0.1595 2840.7000 137.9077 1.0000

The MCT values of the theoretical FBPF for (α, β) = (0.65, 0.85) and (α, β) = (0.7, 0.4) are
−8.221 dB and−3.710 dB, respectively, whereas, θCT = 0◦ for both the cases. The bandwidth
(BW) of the theoretical filter, which represents the difference between the upper and lower
half-power frequencies, is 5.858 rad/s and 12.289 rad/s for (α, β) = (0.65, 0.85) and (0.7,
0.4), respectively. The MC, θC, and BW yielded by the proposed approximants for various
values of N are presented in Table 7. It is found that (i) θC for all the cases is close to the
theoretical value; (ii) the error index δM = |MCT−MC| reduces as N (considering the even
values) is increased. For example, δM attained by the proposed FBPF with (α, β) = (0.7, 0.4)
are 0.712 dB and 0.014 dB for N = 4 and N = 6, respectively; and (iii) the difference in the
bandwidth between the theoretical and proposed models also reduces with an increased
design order. For instance, the BW yielded by the proposed FBPF for the case (α, β) = (0.65,
0.85) with N = 4 is 6.073 rad/s, whereas the same for N = 6 is obtained as 5.835 rad/s.
These findings indicate an improved accuracy for the sixth-order approximant with respect
to the theoretical anticipation (BW = 5.858 rad/s).

Figure 7a,b show the magnitude and phase plots of the proposed fourth-order FBPFs
and their corresponding inverse transfer functions. Good agreement with the theoretical
responses is obtained for both the test cases.
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Figure 7. (a) Magnitude and (b) phase responses of the proposed FBPFs and FIBPFs for N = 4.
The theoretical response is shown in solid red.

Table 7. Performance indices of the designed FBPFs for different values of N.

α β N
ARME (dB) ARPE (dB)

BW (rad/s) MC (dB) θC (deg)
Max Mean Max Mean

0.65 0.85

3 −14.76 −19.32 −4.86 −11.75 13.205 −9.527 −0.0035
4 −21.68 −34.50 −17.52 −27.36 6.073 −8.358 −0.0070
5 −23.21 −34.64 −15.06 −25.71 6.417 −8.433 −0.0067
6 −36.08 −49.89 −30.04 −41.07 5.835 −8.242 −0.0079
7 −38.61 −49.95 −27.18 −39.68 5.840 −8.255 −0.0078

0.7 0.4

3 −18.03 −22.91 −3.53 −9.83 25.571 −4.676 −0.0015
4 −26.72 −38.04 −15.16 −24.90 11.947 −3.812 −0.0037
5 −28.00 −37.99 −12.91 −23.35 12.380 −3.868 −0.0035
6 −41.30 −53.22 −27.44 −38.60 12.601 −3.724 −0.0043
7 −43.93 −53.12 −24.66 −37.14 12.621 −3.734 −0.0042

3.1.4. Fractional-Order Band-Stop Filter

Table 8 presents the optimal values of coefficients of the FBSF approximants
(d = 0, c = h = a = b = 1) obtained for N = {4, 6} with two different values of (α, β), such
as (0.75, 0.65) and (0.6, 0.9). Stability and minimum phase response are attained for all the
designed models. For example, the locations of the zeros and poles of the proposed FBSF for
(α, β, N) = (0.75, 0.65, 4) in the s-plane are at {−0.0486, −0.7257+0.6880i, −0.7257−0.6880i,
−20.5874} and {−0.0444, −0.3934, −2.5419, −22.5195}, respectively. Similar to the FBPFs, a
pole-zero pair occurs at s = −1 for odd values of N, which can lead to order truncation.
Hence, designs for only even values of N are presented here. The improvement in modeling
accuracy with increasing N is justified using the max and mean values of ARME and ARPE,
as presented in Table 9.

The theoretical FBSF yields the {MCT, BW} of {–7.252 dB, 1.754 rad/s} and {–7.768 dB,
3.329 rad/s} for (α, β) = (0.75, 0.65) and (0.6, 0.9), respectively; θCT = 0◦ for both the design
cases. The values of MC, θC, and BW attained by the optimal models are presented in
Table 9, which confirms good agreement with the theory.

The magnitude and phase plots of the fourth-order FBSFs and FIBSFs are illustrated in
Figure 8a,b, respectively. The responses of the proposed approximants remain in proximity
with the theoretical characteristics throughout the design bandwidth.
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Table 8. Optimal coefficients of the proposed FBSFs for different values of α, β, and N.

α β N [aN aN–1 . . . a0] [bN–1bN–2 . . . b0]

0.75 0.65
4 0.9888 21.8400 31.5924 21.8400 0.9888 25.4992 68.2322 25.4992 1.0000
6 0.9926 58.0809 430.8486 556.5188 62.5308 575.3021 1133.4000

430.8486 58.0809 0.9926 575.3021 62.5308 1.0000

0.6 0.9
4 0.9562 31.9360 76.3241 31.9360 0.9562 41.7298 179.7455 41.7298 1.0000
6 0.9683 77.7410 845.4961 1556.4000 90.9584 1287.8000 3595.6000

845.4961 77.7410 0.9683 1287.8000 90.9584 1.0000

Table 9. Performance indices of the designed FBSFs for different values of N.

α β N
ARME (dB) ARPE (dB)

BW (rad/s) MC (dB) θC (deg)
Max Mean Max Mean

0.75 0.65 4 −30.30 −43.99 −15.30 −28.03 2.018 −6.991 0.0186
6 −43.71 −57.38 −25.92 −41.60 1.793 −7.196 0.0213

0.6 0.9 4 −32.43 −41.32 −15.42 −26.59 3.709 −7.563 0.0102
6 −48.63 −56.24 −28.33 −41.33 3.350 −7.736 0.0119
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Figure 8. (a) Magnitude and (b) phase responses of the proposed FBSFs and FIBSFs for N = 4.
The theoretical response is shown in solid red.

3.1.5. Comparison with the Literature

Comparisons regarding the modeling accuracy for the designed filters with the PLFs
reported in the literature [20] are carried out. For demonstration purposes, the value of β
is fixed as 0.3, whereas, two different values of α (viz., 0.7 and 1), are considered for each
type of filter. The designs reported in the published literature can model (4) for only α = 1.
Hence, such a method is not applicable for the design of generalized PLFs (where fractional
value of α such as 0.7 occurs); in contrast, the proposed method exhibits no such limitation.
For comparison purposes, the values of quality factor and pole frequency for the PLFs
reported in [20] are chosen as 0.5 and 1 rad/s, respectively. Therefore, the coefficients of
the theoretical PLF transfer function in [20] are the same as that of the values of the filter
coefficients a, b, c, d, and h chosen in Sections 3.1.1–3.1.4. The coefficients of the FLPF, FHPF,
FBPF, and FBSF approximants based on the proposed method and the cited literature are
presented in Table 10. Results presented in Table 11 show that the proposed filters attain
comparable or lower ARME and ARPE values than the designs published in the literature
for α = 1.
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Table 10. Coefficients of the proposed and reported filters for β = 0.3 (NA: Not Applicable).

Type Reference α [aN aN–1 . . . a0] [bN–1bN–2 . . . b0]

FLPF

[20] 0.7 NA NA
Present Work 0.7 0.0848 11.9870 109.7033 87.4632 4.6137 43.3927 178.5692 96.6050 4.6538

[20] 1 0.02219 6.6070 171.1000 877.9000 999.4000 58.4100 578.6000 1477.0000 999.5000
Present Work 1 0.0197 7.1837 219.3990 1221.6000 1427.9000 70.6331 781.3135 2078.2000 1427.9000

FHPF

[20] 0.7 NA NA
Present Work 0.7 0.9914 18.7939 23.5728 2.5757 0.0182 20.7582 38.3705 9.3241 0.2149

[20] 1 1.0000 0.8784 0.1712 0.006611 2.22× 10−5 1.4780 0.5789 0.05844 0.001001
Present Work 1 1.0000 0.8556 0.1537 0.0050 1.379× 10−5 1.4555 0.5472 0.0495 7.0034× 10−4

FBPF

[20] 0.7 NA NA
Present Work 0.7 0.2927 32.2869 264.4314 32.2869 0.2927 64.3533 368.5848 64.3533 1.0000

[20] 1 0.2457 18.1300 97.4600 18.1300 0.2457 31.8200 99.4300 31.8200 1.0000
Present Work 1 0.1772 19.9502 149.8006 19.9502 0.1772 48.3274 189.2569 48.3274 1.0000

FBSF

[20] 0.7 NA NA
Present Work 0.7 0.9919 23.9259 47.8177 23.9259 0.9919 25.9647 66.3058 25.9647 1.0000

[20] 1 0.9994 0.9467 2.0690 0.9467 0.9994 1.5350 2.2660 1.5350 1.0000
Present Work 1 0.9993 0.9207 2.0600 0.9207 0.9993 1.5080 2.2460 1.5080 1.0000

Table 11. Error metrics comparison of the proposed filters with the reported literature for β = 0.3
(NA: Not Applicable).

Type Reference α
ARME (dB) ARPE (dB)

Max Mean Max Mean

FLPF

[20] 0.7 NA NA NA NA
Present Work 0.7 −21.59 −38.13 −16.17 −28.87

[20] 1 −23.82 −50.60 −33.80 −51.11
Present Work 1 −29.17 −53.97 −35.52 −52.44

FHPF

[20] 0.7 NA NA NA NA
Present Work 0.7 −21.55 −38.12 −16.18 −28.87

[20] 1 −23.78 −50.68 −33.66 −51.78
Present Work 1 −27.73 −52.98 −35.18 −52.54

FBPF

[20] 0.7 NA NA NA NA
Present Work 0.7 −28.15 −40.40 −15.21 −25.08

[20] 1 −11.50 −13.19 −11.69 −26.76
Present Work 1 −23.87 −35.13 −15.42 −25.35

FBSF

[20] 0.7 NA NA NA NA
Present Work 0.7 −39.47 −50.71 −15.61 −27.11

[20] 1 −9.56 −49.46 −1.41 −33.64
Present Work 1 −11.63 −48.97 −1.64 −33.12

3.2. Circuit Realization
3.2.1. SPICE Validation

Practical implementations of FO filters using integrated forms [18,22], discrete compo-
nents [5,13], and field-programmable analog arrays [23,43] have been reported. The use of
CFOAs for electronic filter realization has gained prominence due to several reasons, such
as improved gain-bandwidth product, lower component count, etc. [44]. Previous works
on the applicability of CFOAs for FO filter implementation can be found in [21,39]. The
CFOA-based circuit topology reported in [21] can be used to realize the proposed filters and
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their inverse counterparts. The circuit (see Figure 9) and its transfer function are repeated
here for the sake of completeness.
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Figure 9. CFOA-based circuit to realize the proposed filters.

The transfer functions of the proposed filters, as given by (10)–(17), are chosen as
demonstrative cases for circuit realization.

H0.6,0.8,4
FLPF (s) =

0.0010s4 + 1.0608s3 + 6.4002s2 + 2.5499s + 0.0741
s4 + 11.0810s3 + 15.1524s2 + 3.2481s + 0.0770

(10)

H0.6,0.8,4
FILPF (s) = H0.6,−0.8,4

FLPF (s) =
1000s4 + 11081s3 + 15152.4s2 + 3248.1s + 77

s4 + 1060.8s3 + 6400.2s2 + 2549.9s + 74.1
(11)

H0.8,0.5,4
FHPF (s) =

0.9944s4 + 19.1491s3 + 24.7984s2 + 2.2881s + 0.0056
s4 + 21.4372s3 + 49.5967s2 + 21.4372s + 1.0000

(12)

H0.8,0.5,4
FIHPF (s) = H0.8,−0.5,4

FHPF (s) =
1.0056s4 + 21.5579s3 + 49.8760s2 + 21.5579s + 1.0056

s4 + 19.2569s3 + 24.9381s2 + 2.3010s + 0.0056
(13)

H0.65,0.85,4
FBPF (s) =

0.0340s4 + 6.8775s3 + 71.8572s2 + 6.8775s + 0.0340
s4 + 43.2076s3 + 189.9142s2 + 43.2076s + 1.0000

(14)

H0.65,0.85,4
FIBPF (s) = H0.65,−0.85,4

FBPF (s) =
29.4118s4 + 1270.8s3 + 5585.7s2 + 1270.8s + 29.4118

s4 + 202.2794s3 + 2113.4s2 + 202.2794s + 1.0000
(15)

H0.75,0.65,4
FBSF (s) =

0.9888s4 + 21.8400s3 + 31.5924s2 + 21.8400s + 0.9888
s4 + 25.4992s3 + 68.2322s2 + 25.4992s + 1.0000

(16)

H0.75,0.65,4
FIBSF (s) = H0.75,−0.65,4

FBSF (s) =
1.0113s4 + 25.7880s3 + 69.0051s2 + 25.7880s + 1.0113

s4 + 22.0874s3 + 31.9502s2 + 22.0874s + 1.0000
(17)

The component values to realize the proposed filters, as shown in Table 12, considering
a shift frequency of 1000 rad/s, are chosen from the industrial E24 and E12 series for the
resistors and capacitors, respectively. The actual values of R1 and R5 for the FLPF and
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FHPF are evaluated as 10 MΩ and 1.78 MΩ, respectively; for practical purposes, these
values are set as ∞ Ω (i.e., open circuit). Circuit simulations are carried out in OrCAD
PSPICE software with the AD844A/AD IC SPICE model used as the CFOA. The SPICE
simulated magnitude and phase responses of the proposed filters are shown in Figure 10a,b;
the same for their inverse functions are presented in Figure 11a,b;. It is found that the
frequency-domain behavior of the proposed filters designed using the nominal values
of components attain good agreement with the theoretical characteristics. Quantitatively,
the absolute maximum deviations in {magnitude, phase} of the designed FLPF, FILPF,
FHPF, FIHPF, FBPF, FIBPF, FBSF, and FIBSF from the theoretical characteristics are {0.0374,
6.72◦}, {1.9915, 6.76◦}, {0.0360, 11.65◦}, {3.1215, 3.36◦}, {0.0170, 2.87◦}, {1.3074, 8.48◦},
{0.0633, 4.74◦}, and {0.1128, 5.76◦}, respectively. The ARME and ARPE indices with
L = 100 log-spaced data sample points, yielded for the SPICE-simulated filters based on
the nominal values of passive components are presented in Table 13; in Figure 12a,b, the
broken line graphs of these error indices for each design case are also presented.

Monte-Carlo simulations are conducted in PSPICE to determine the performance of
the filters due to 5% and 10% deviations (following a Gaussian distribution) from the
nominal values of resistors and capacitors, respectively. In total, 100 Monte-Carlo runs
are carried out for each case and the magnitude and phase plots are shown in green in
Figures 10 and 11. The minimum (min), max, mean, and standard deviation (SD) indices
for the magnitude and phase at 1000 rad/s of the practical filters are presented in Table 14.
The small values of SD justify good agreement with the theoretical (ideal) characteristics.

Table 12. Values of components to realize the proposed filters. [Note: Numbers in parenthesis
represent (α, β)].

Component FLPF FILPF FHPF FIHPF FBPF FIBPF FBSF FIBSF
(0.6, 0.8) (0.6, 0.8) (0.8, 0.5) (0.8, 0.5) (0.65, 0.85) (0.65, 0.85) (0.75, 0.65) (0.75, 0.65)

R (kΩ) 10 100 10 100 7.5 100 75 100
RF (kΩ) 10 1 10 100 7.5 100 75 100

Rout (kΩ) 10 100 10 11 7.5 10 75 110
Rin (kΩ) 10 10 10 10 7.5 10 75 100
R1 (kΩ) ∞ 1 10 100 220 3.3 75 100
R2 (kΩ) 100 1 11 91 47 16 91 82
R3 (kΩ) 24 4.3 20 51 20 39 160 47
R4 (kΩ) 13 8.2 91 11 47 16 91 82
R5 (kΩ) 10 10 ∞ 0.56 220 3.3 75 100
C1 (nF) 10 1 4.7 0.56 3.3 0.047 0.56 0.47
C2 (nF) 68 1.8 47 8.2 33 1 4.7 6.8
C3 (nF) 470 27 220 100 560 100 33 15
C4 (µF) 3.9 0.33 2.2 3.9 5.6 2.2 0.33 0.22

Table 13. ARME and ARPE performances of the SPICE-simulated proposed filters based on nominal
values of components.

Metric Index FLPF FILPF FHPF FIHPF FBPF FIBPF FBSF FIBSF
(0.6, 0.8) (0.6, 0.8) (0.8, 0.5) (0.8, 0.5) (0.65, 0.85) (0.65, 0.85) (0.75, 0.65) (0.75, 0.65)

ARME (dB) Max −15.84 −15.52 −20.50 −22.19 −16.05 −16.66 −22.85 −23.72
Mean −27.80 −22.10 −30.05 −29.94 −28.24 −24.11 −26.94 −31.91

ARPE (dB) Max −11.77 −11.32 −0.56 7.88 −8.07 2.90 6.97 8.67
Mean −21.61 −20.20 −15.92 −14.56 −26.31 −16.47 −12.57 −12.87
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Table 14. Statistical indices about the magnitude/phase at the shift frequency of the designed filters
based on 100 Monte-Carlo simulation runs.

Parameter Index FLPF FILPF FHPF FIHPF FBPF FIBPF FBSF FIBSF
@ 1 krad/s (0.6, 0.8) (0.6, 0.8) (0.8, 0.5) (0.8, 0.5) (0.65, 0.85) (0.65, 0.85) (0.75, 0.65) (0.75, 0.65)

Magnitude

Min −10.56 5.60 −5.98 1.68 −10.75 5.99 −9.10 4.95
Max −6.22 9.79 −1.72 6.11 −6.18 10.15 −4.58 8.98

Mean −7.99 7.55 −4.05 3.78 −8.50 8.03 −6.88 7.08
(dB) SD 0.932 0.921 0.972 0.962 0.898 0.851 0.902 0.850

Ideal −8.02 8.02 −4.18 4.18 −8.22 8.22 −7.25 7.25

Phase

Min −52.42 34.16 31.03 −51.45 −4.19 −4.02 −14.24 −11.79
Max −31.51 54.64 49.47 −27.64 4.24 5.99 9.63 9.86

Mean −41.07 42.07 38.10 −36.59 −0.13 2.15 −1.07 −0.56
(deg) SD 4.154 3.875 4.287 4.587 1.875 1.747 4.393 4.692

Ideal −43.20 43.20 36.00 −36.00 0.00 0.00 0.00 0.00
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Figure 10. SPICE simulated (a) magnitude and (b) phase responses of the proposed FLPF, FHPF,
FBPF, and FBSF. [Note: Theoretical responses are shown in dashed red; responses based on nominal
values of components are shown in solid black; Monte-Carlo simulation-based responses are shown
in green].

3.2.2. Experimental Validation

The hardware circuit realizations of the proposed FBPF and FIBPF, whose transfer
functions are defined by (14) and (15), respectively, are demonstrated as representative
cases in this section. The commercial Analog Devices AD844AN-type CFOAs were em-
ployed as the active elements. The ICs were provided with the supply voltage from the
Agilent E3630A power supply. The OMICRON Lab Bode 100 network analyzer was used
to measure the frequency response (magnitude and phase) of the practical filter circuits.
The level of the testing harmonic signal was set to 1 V and 100 mV (peak-to-peak values)
for the FBPF and FIBPF circuits, respectively. An Agilent InfiniiVision DSO-X 2002A digital
storage oscilloscope was used to observe the time-domain response of the filters. The FBPF
and FIBPF circuits were subjected to a peak-to-peak signal of 1 V and 100 mV, respectively,
from the Agilent 33521A function/arbitrary waveform generator. The photograph of the
experimental set-up for the FIBPF is illustrated in Figure 13.
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Figure 11. SPICE simulated (a) magnitude and (b) phase responses of the proposed FILPF, FIHPF,
FIBPF, and FIBSF. [Note: Theoretical responses are shown in dashed red; responses based on nominal
values of components are shown in solid black; Monte-Carlo simulation-based responses are shown
in green].
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Figure 12. Broken line plots of the (a) ARME and (b) ARPE responses for the SPICE simulated
proposed FLPF, FHPF, FBPF, FBSF, and their inverse counterparts realized using the nominal values
of components.
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Figure 13. Photograph of the experimental set-up.
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Figure 14. Magnitude and phase responses of the proposed (a) FBPF and (b) FIBPF based on
experimental measurements.

The experimentally measured magnitude and phase responses of the FBPF and FIBPF
are presented in Figure 14a,b, respectively. Comparisons with the theoretical charac-
teristics reveal that: (i) the {max ARME (dB), mean ARME (dB), max ARPE (dB), and
mean ARPE (dB)} values for the FBPF and FIBPF are {−15.19,−27.20, 5.82,−22.53} and
{−7.28,−22.07, 10.54,−13.37}, respectively; (ii) the responses of the FBPF stay in proximity
to the theoretical plots throughout the design range; (iii) for the FIBPF, the magnitude and
phase responses deviate from the theoretical ones in the frequency range [10, 48.49] rad/s
and [10, 129] rad/s, respectively; (iv) the magnitude of the FBPF at the center frequency
(ω0 = 952.53 rad/s), lower half-power frequency (ωH,low = 164.18 rad/s), and upper
half-power frequency (ωH,high = 5.52 krad/s) is −8.55 dB, −11.61 dB, and −11.61 dB,
respectively. The corresponding theoretical magnitude values at these frequencies are
−8.22 dB, −11.25 dB, and −10.96 dB; and (v) the magnitude at ω0 (=912.44 rad/s),
ωH,low (=171.53 rad/s), and ωH,high (=5.26 krad/s) for the theoretical FIBPF is 8.23 dB,
11.12 dB, and 10.81 dB, respectively. The corresponding measured values from the prac-
tical filter are 8.14 dB, 10.96 dB, and 11.13 dB, which demonstrate closeness with the
theoretical anticipations.

Figure 15a–c present the time–domain response measurements of the FBPF when the
input signal frequency is ω0, ωH,low, and ωH,high, respectively. The peak-to-peak output
voltage (VOUT,P-P) for these considered cases is obtained as 370 mV, 260 mV, and 260 mV,
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respectively, which matches closely with the theoretical values of 384.27 mV, 271.10 mV,
and 280.30 mV. The time-domain waveforms of the FIBPF for these same frequencies are
illustrated in Figure 16a–c. It is found that VOUT,P-P of 258 mV, 357 mV, and 364 mV is yielded
by the practical filter, which agrees with the theoretical values of 260.51 mV, 363.34 mV, and
350.61 mV, at the excitation frequencies ω0, ωH,low, and ωH,high, respectively.

VIN

VOUT 

(a)

VOUT 

VIN

(b)

VOUT 

VIN

(c)

Figure 15. Time-domain input-output waveforms observed in oscilloscope for the proposed
FBPF with an input frequency of (a) ω0 = 952.53 rad/s, (b) ωH,low = 164.18 rad/s, and (c)
ωH,high = 5.52 krad/s.
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Figure 16. Time-domain input-output waveforms observed in oscilloscope for the proposed
FIBPF with an input frequency of (a) ω0 = 912.44 rad/s, (b) ωH,low = 171.53 rad/s, and (c)
ωH,high = 5.26 krad/s.
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In Figure 17a–c, the Fast Fourier Transform spectrum measurements displayed up to
the sixth harmonic above −92 dBV of the FBPF at ω0, ωH,low, and ωH,high, are presented.
The Spurious-Free Dynamic Range (SFDR) for these three cases are obtained as 54.80 dBc,
51.12 dBc, and 54.63 dBc, respectively; the Total Harmonic Distortion (THD) is determined
from the first six harmonics as 0.25%, 0.34%, and 0.29%, respectively. The experimentally
obtained Fourier spectrums up to the sixth harmonic above −92 dBV for the FIBPF at
frequencies of ω0, ωH,low, and ωH,high are shown in Figure 18a–c. Experimental results
reveal that the {SFDR, THD} for these three cases are {68.40 dBc, 0.06%}, {58.40 dBc, 0.17%},
and {57.73 dBc, 0.16%}, respectively.
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Figure 17. Experimentally obtained Fourier spectrums of the proposed FBPF at frequency of (a)
ω0 = 952.53 rad/s, (b) ωH,low = 164.18 rad/s, and (c) ωH,high = 5.52 krad/s.

0 . 0
3 . 0 x 1 0 3 6 . 0 x 1 0 3

- 1 2 0
- 9 0
- 6 0
- 3 0

0
- 2 1 .

9 2

- 9 0 .
3 2

 F I B P F - � 0 :  T H D  =  0 . 0 6 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( r a d / s )
( d )

S F D R  =
6 8 . 4 0  d B c

(a)

0 . 0
6 . 0 x 1 0 2 1 . 2 x 1 0 3

- 1 2 0
- 9 0
- 6 0
- 3 0

0
- 1 8 .

7 5

- 7 8 .
0 1 - 7 7 .

1 5

- 8 7 .
6 1 - 8 5 .

3 6

 F I B P F - � H , l o w :  T H D  =  0 . 1 7 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( r a d / s )
( e )

S F D R  =
5 8 . 4 0  d B c

(b)

0 . 0
1 . 8 x 1 0 4 3 . 6 x 1 0 4

- 1 2 0
- 9 0
- 6 0
- 3 0

0
- 1 8 .

7 8

- 8 2 .
0 7 - 7 6 .

5 1

- 8 7 .
3 0 - 8 3 .

8 1

 F I B P F - � H , h i g h :  T H D  =  0 . 1 6 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( r a d / s )
( f )

S F D R  =
5 7 . 7 3  d B c

(c)

Figure 18. Experimentally obtained Fourier spectrums of the proposed FIBPF at frequency of (a)
ω0 = 912.44 rad/s, (b) ωH,low = 171.53 rad/s, and (c) ωH,high = 5.26 krad/s.

4. Conclusions

Further generalization of the fractional-order filters exhibiting the low-pass, high-pass,
band-pass, and band-stop behavior of the second-order limiting form is presented along
with their optimal and stable rational approximation in this paper. It is demonstrated that
the power-law filters [20–23] can be treated as a particular case of the proposed filters,
since the proposed model introduces an additional degree-of-freedom (viz. the new tuning
parameter α) in the transfer function of the power-law filter. A different approach is adopted
to formulate the design constraints compared to the published literature [21]. The proposed
strategy also allows the attainment of stable inverse filters since the zeros and poles of the
approximant pertaining to the standard filter are constrained to lie in the left-half s-plane.

The performance of the proposed models in approximating the frequency-domain
characteristics of the theoretical filter is investigated using different error indices. Cur-
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rent feedback operational amplifiers are employed as active components to realize the
discrete components based circuits for the proposed filters and their inverse counterparts.
Monte-Carlo simulations conducted in SPICE environment highlight good agreement in
the magnitude and phase responses of the designed models with the theory. Hardware
implementations of the proposed fractional-order band-pass (both normal and inverse)
filters and their magnitude-frequency, phase-frequency, AC transients, and Fourier analysis
are also presented to demonstrate the practical viability.

Future work will investigate the effectiveness of the proposed transfer function in im-
proving the design performances of the power law compensator [45] and the bioimpedance
models [46].
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Abbreviations
The following abbreviations are used in this manuscript:

ARME Absolute relative magnitude error
ARPE Absolute relative phase error
BP Band-pass
BS Band-stop
CFOA Current feedback operational amplifier
C2oDE Constrained composite differential evolution
FBPF Fractional-order band-pass filter
FBSF Fractional-order band-stop filter
FHPF Fractional-order high-pass filter
FIBPF Fractional-order inverse band-pass filter
FIBSF Fractional-order inverse band-stop filter
FIHPF Fractional-order inverse high-pass filter
FILPF Fractional-order inverse low-pass filter
FLPF Fractional-order low-pass filter
FO Fractional-order
FTF Fractional-order transfer function
HP High-pass
ITF Integer-order transfer function
LP Low-pass
PLF Power-law filter
SD Standard deviation
SFDR Spurious-free dynamic range
SPICE Simulation program with integrated circuit emphasis
THD Total harmonic distortion
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