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Abstract: This paper deals with the new oscillator structures that contain new elements, so-called
memory elements, known as memristor, meminductor, and memcapacitor. Such circuits can exhibit
oscillations as well as chaotic behavior. New mathematical models of fractional-order elements
and whole oscillator circuits are proposed as well. An illustrative example to demonstrate the
oscillations and the chaotic behavior through the numerical solution of the fractional-order circuit
model is provided.
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1. Introduction

Although classical electrical elements such as a resistor, capacitor, and inductor have
been known for a long time, memristors, memcapacitors, and meminductors are relatively
new nonlinear elements with memory [1]. As a novel memory device, the memristor was
postulated by Leon Chua in 1971 [2] and manufactured for the first time in 2008 by HP
Labs [3]. Until this time, an investigation of the memristor concept was very limited due to
the lack of a solid-state implementation of this postulated device.

The memcapacitor and meminductor are also members of a huge family of new circuit
elements postulated by Leon Chua in 1978 [4]. The idea of Chua extended the concept of
memory elements in an electrical circuit to capacitive and inductive systems, respectively.
The memcapacitor and the meminductor were formally defined and described in 2009 [5].
Some elements of the electronic circuit, namely the memcapacitor and the meminductor,
require not only the well-known four state variables but also the time integrals of the elec-
tric charge and flux [6]. These new state variables, due to integration, lead us to so-called
“memory” devices, which are a particular class of higher-order elements (devices) and
belong to a broad group of memory systems [4]. They are passive memory devices that can
store information without a power supply. Currently, the applications of these memory
devices in nonlinear circuits have gained a great deal of attention, and their potential value
has attracted many researchers. However, the absence of semiconductor implementation of
memcapacitors and meminductors prevents the use of unique functions of these devices
in practical implementation. Their properties were so far investigated mainly via mathe-
matical models, equivalent circuits, or emulators [7–10]. Such investigation is not accurate
because it analyzes just their approximation, not fundamental elements.

There are also a considerable number of electrical circuits where non-integer order
(or fractional) calculus can be used (see, for example, [11–14], etc.), with classical electrical
circuit theory being limited to variables u (voltage), i (current), q (charge), and φ (flux),
which are used to describe all four essential components (resistor, capacitor, inductor, and
memristor). Models of the non-integer order can also describe the type noted above of
memristive systems [15–21]. In addition, in practice, there is no ideal electrical element,
and almost all electrical elements lie between two ideal ones, for example, a fractor (re-
sistor/capacitor) or a fractductor (resistor/inductor) [12,22,23]. Here, we consider it also
for the real memristive elements. That means that all real memristive elements should lie
in between two ideals, similar to the classical electrical elements noted above. We used
a mathematical model of supposed new fractional-order memory elements in the specific
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oscillator circuit. According to the author’s best knowledge, such an oscillator structure
described in this article was used for the first time.

In this article, a new oscillator based on memory devices is studied. The rest of the
manuscript is structured as follows: In Section 2 a definition of the fractional calculus
and method for the numerical solution of the initial value problem is described. Section 3
presents the fractional-order elements models. In Section 4 the new fractional-order models
of the oscillator circuits are proposed. In Section 5 some ideas for further research are
discussed. Section 6 concludes this article with some additional comments.

2. Preliminaries
2.1. Definition of Fractional-Order Operator

Fractional calculus has been known since regular calculus, probably with the first
evidence dated 30 September 1695, in letter correspondence between Gottfried W. Leibniz
and Guillaume de l’Hospital. They mentioned a half order derivative for the first time.
The fractional calculus is a generalization of differentiation and integration to common
non-integer γ-order, γ ∈ R, operator aDγ

t , where a and t of interval [a, t] are the bounds of
the join operation (fractional-order integrals for γ < 0 and derivatives for γ > 0).

There are many different definitions for the fractional-order operator aDγ
t , but in this

paper, we will limit ourselves only to two fundamentals: Caputo’s definition (CD), and
Grünwald–Letnikov’s definition (GLD).

The CD can be written as [24]:

aDγ
t f (t) =

1
Γ(n− γ)

∫ t

a

f (n)(τ)
(t− τ)γ−n+1 dτ, n− 1 < γ < n, (1)

where Γ(.) denotes Euler gamma function. The CD can be used for electrical circuits
where non-integer order derivatives are used in the fractional (non-integer) order model
of electrical circuit elements. The main benefit is that the initial conditions for fractional
differential equations with Caputo derivatives are the same as for ordinary differential
equations, i.e., f (n)(0) = cn, ∀n ∈ N.

The GLD is given as follows [24,25]:

aDγ
t f (t) = lim

hs→0

1
hγ

s

⌊
t−a
hs

⌋
∑
i=0

(−1)i
(

γ

i

)
f (t− ihs), (2)

where bzc is the floor function, i.e., the greatest integer smaller than z, and (γ
i ) are the

binomial coefficients with (γ
0) = 1. This form of the definition is beneficial for obtaining

a numerical solution of the fractional differential equation.

2.2. Numerical Solution of Fractional Differential Equation

Based on the fact that both definitions, CD, and GLD, are equivalent for a wide class
of the functions, for numerical calculation of the fractional-order derivative, we can use the
relation (3) derived from the GLD (2). The relation for the numerical approximation of the
γth derivative at the points khs, (k = 1, 2, 3, . . . ) has the following form [24]:

(k−Lm/hs)D
γ
tk

f (t) ≈ h−γ
s

k

∑
i=0

b(γ)i f (tk−i), (3)

where Lm is the “memory length”, tk = khs, hs is the time step of calculation (definition (3)
is valid only as hs tends towards 0 and that the accuracy of the simulation depends on the
value of hs), and b(γ)i (i = 0, 1, 2, . . . ) are the binomial coefficients. For their calculation we
may use the following expression:
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b(γ)0 = 1, b(γ)i =

(
1− 1 + γ

i

)
b(γ)i−1. (4)

Thus, general numerical solution of the fractional differential equation

0Dγ
t u(t) = f (t, u(t)), 0 ≤ t ≤ T,

can be expressed as follows [22]:

u(tk) = f (tk, u(tk))h
γ
s −

k

∑
i=1

b(γ)i u(tk−i). (5)

For the memory term expressed by the sum in (5), a “short memory” principle for
various memory lengths of Lm can be used. An evaluation of the effect of the memory
length and convergence relation of the error between short and long memory was described
in [24]. However, this article uses a whole (long) memory to preserve calculation accuracy.

3. Fractional-Order Memristive Elements

Many authors have so far studied the real capacitor and the real inductor, and the
experimental evidence of their non-integer order of models has undoubtedly been con-
firmed [13,26]. The real memristor, memcapacitor, and meminductor have not yet been
experimentally studied, only using their simulation models or emulators [10,27,28]. It
is because they do not exist as a single component except, for the memristor element
constructed in the HP Lab in 2008. However, there are many electrical circuits where mem-
ristors, memcapacitors, and meminductors have been used on the theoretical level [29–32].

Using the relations described in [6] for memcapacitor and meminductor and the well-
known connections between the four essential components (resistor, capacitor, inductor,
memristor), we can obtain the next floor using the square symmetry shown in Figure 1.

Figure 1. Connections between all known electrical elements (inspired by Refs. [6,33]).

However, as we can observe in Figure 1, there could be some additional electrical
element that has not been discovered yet.
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3.1. Memristor

The memristor used in this article is a flux-controlled memristor that is characterized
by the relation

i(t) = W(φ(t))u(t), (6)

where W(φ(t)) = dq(φ)/dφ is a memductance of the memristor. Here, we consider the
following model:

q(φ) = m1φ(t) + m2φ3(t), (7)

where m1 and m2 are real constants. The memductance function W that is obtained from
the q(φ) function is [30]:

W(φ) =
dq(φ)

dφ
= m1 + 3m2φ2(t). (8)

Moreover, for such a memristor, a monotone-increasing piecewise-linear characteristic was
assumed in [34] and used in [35].

Similarly, as in the case of the real capacitor and real inductor [13,26,36], the memris-
tor is also not an ideal element and we may consider the fractional-order model of this
element [37].

3.2. Memcapacitor

An ideal charge-controlled memcapacitor is defined as [5,31]:

u(t) = C−1
M (σ)q(t), C−1

M (σ) = dφ(σ)/dσ, (9)

where q(t) is the charge on the memcapacitor and u(t) is the corresponding voltage across
memcapacitor at time t, σ is the time-domain integral of electric charge q passing through
the memcapacitor, φ(σ) is the flux that goes through the memcapacitor, and C−1

M (σ) is
the inverse memcapacitance, which depends on the state of the device. In this paper,
a charge-controlled memcapacitor is formulated in accordance with its definition [31]:

u(t) = (α + βσ2)q(t) =

(
α + β

(∫ t

t0

q(τ)dτ

)2
)

q(t), (10)

where α and β are constants, and their units are F−1 and (C2S2F)−1, respectively.
Following a linear capacitor model proposed by Westerlund and Ekstam in 1994, for

a general input voltage u(t), applied at t = 0, the current is [26]:

i(t) = C 0Dδ
t u(t), 0 < δ ≤ 1, for t > 0, (11)

where C is the capacitance of the capacitor with unit [F/s1−δ]. It is related to the kind of
dielectric. Another constant δ (order), δ ∈ R, is related to the losses of the capacitor. We
may predict a fractional-order model of the real memcapacitor as well [15,17].

3.3. Meminductor

Similar to the definition of a memcapacitor, the ideal flux-controlled meminductor is
given as [5,31]:

i(t) = L−1
M (ρ)φ(t), L−1

M (ρ) = dq(ρ)/dρ, (12)

where φ(t) and i(t) denote the flux and current go through a meminductor at time t, ρ is
the time-domain integral of electric flux φ passing through the meminductor, q(ρ)is the
charge that goes through the meminductor, which is a function of ρ, and L−1

M (ρ) is the
inverse meminductance, which depends on their inner variables. By providing a concrete
expression of L−1

M (ρ), the flux-controlled mathematic model is shown as follows [31]:
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i(t) = (α′ + β′ρ(t))φ(t) =
(

α′ + β′
∫ t

t0

φ(τ)dτ

)
φ(t), (13)

where α′ and β′ are constants, and their units are H−1 and (WbSH)−1, respectively.
For a linear inductor model suggested in [13,36], the voltage is

u(t) = L 0Dµ
t i(t), 0 < µ ≤ 1, for t > 0, (14)

where L is the inductance of the inductor with unit [H/s1−µ]. It is related to the kind of coil
core material and depends on the geometry of inductor. Another constant µ (order), µ ∈ R,
is related to the proximity effect of the inductor. Similarly, we may predict a fractional-order
model of the real meminductor as well [15].

4. Models of the Fractional-Order Chaotic Systems
4.1. Memcapacitor–Meminductor Oscillator

Let us start with the oscillator structure consisting of two memory elements, namely
meminductor and memcapacitor, which was designed in [31].

Based on the aforementioned charge-controlled memcapacitor and flux-controlled
meminductor, a novel chaotic circuit is depicted in Figure 2. The suggested oscillator
consists of a meminductor (LM), a memcapacitor (CM), a capacitor (C1), a linear resistor
(R), and a negative resistor (−G). This circuit is also supplied by energy for maintaining
the oscillating state.

Figure 2. Chaotic oscillator circuit based on two memory elements [31].

According to Kirchhoff’s laws for two current nodes and one voltage loop, the follow-
ing set of differential equations is obtained [31]:

du1(t)
dt

=
1

C1

(
iLM(t)−

u1(t)
R

)
,

dqCM(t)
dt

= GuCM(t)− iLM(t), (15)

dφLM(t)
dt

= uCM(t)− u1(t).

Substituting Equations (10) and (13) into the above Equation (15), then adding the two
well-known relations: dρLM(t)/dt = φLM(t) and dσCM(t)/dt = qCM(t) to them (ρLM(t)
is the integral of flux φLM(t) passing through the meminductor, σCM(t) is the integral of
charge qCM(t) passing through the memcapacitor), we obtain the differential equations [31]:
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du1(t)
dt

=
1

C1

(
(α′φLM(t) + β′ρLM(t)φLM(t))−

u1(t)
R

)
,

dqCM(t)
dt

= G
(

αqCM(t) + βqCM(t)σ
2
CM

(t)
)
−
(
α′φLM(t) + β′ρLM(t)φLM(t)

)
,

dφLM(t)
dt

= αqCM(t) + βqCM(t)σ
2
CM

(t)− u1(t), (16)

dρLM(t)
dt

= φLM(t),

dσCM(t)
dt

= qCM(t).

For additional dynamical analysis, by setting τ = t/RC1 and scale transformations
x = u1, y = qCM , z = φLM , w = ρLM , v = σCM , the dynamical system (16) converts into
dimensionless form as follows [31]:

dx(τ)
dτ

= az(τ) + bz(τ)w(τ)− x(τ),

dy(τ)
dτ

= dy(τ) + ey(τ)v2(τ)− f z(τ)− gz(τ)w(τ),

dz(τ)
dτ

= hy(τ) + jy(τ)v2(τ)− kx(τ), (17)

dw(τ)

dτ
= n1z(τ),

dv(τ)
dτ

= n2y(τ),

where its parameters are: a = α′R, b = β′R, d = GαRC1, e = GβRC1, f = α′RC1,
g = β′RC1, h = αRC1, j = βRC1, k = RC1, n1 = RC1, and n2 = RC1.

The nonlinear dynamical system (17), depicted in Figure 2, will exhibit chaotic attractor
for the following parameters [31]: a = 1.73, b = −2.04, d = 0.46, e = 0.04, f = 0.67,
g = 0.19, h = 0.48, j = 0.52, k = n1 = n2 = 0.21, and the initial values setting: x(0) = 0.2,
y(0) = 0.5, z(0) = 0.45, w(0) = 0.1, v(0) = 0.5.

Taking into account the consideration described in the previous section, the fractional-
order models of the elements (capacitor, memcapacitor, and meminductor) used in the
chaotic oscillator shown in Figure 2 could be applied to Kirchhoff laws. Then, instead of
the system (17), we obtain the following set of fractional differential equations:

0Dγ1
τ x(τ) = az(τ) + bz(τ)w(τ)− x(τ),

0Dγ2
τ y(τ) = dy(τ) + ey(τ)v2(τ)− f z(τ)− gz(τ)w(τ),

0Dγ3
τ z(τ) = hy(τ) + jy(τ)v2(τ)− kx(τ), (18)

0Dγ4
τ w(τ) = n1z(τ),

0Dγ5
τ v(τ) = n2y(τ),

where γ1, γ2, γ3, γ4, and γ5 are the real orders of aforementioned elements used in the
chaotic oscillator displayed in Figure 2.

For simulation purposes, a numerical solution of the fractional differential Equation (18)
obtained using the relationships (3)–(5), was proposed [38]:
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x(tk) = [az(tk−1) + bz(tk−1)w(tk−1)− x(tk−1)]h
γ1
s −

k

∑
i=1

b(γ1)
i x(tk−i),

y(tk) = [dy(tk−1) + ey(tk−1)v(tk−1)
2 − f z(tk−1)− gz(tk−1)w(tk−1)]h

γ2
s

−
k

∑
i=1

b(γ2)
i y(tk−i),

z(tk) = [hy(tk−1) + jy(tk−1)v(tk−1)
2 − kx(tk−1)]h

γ3
s −

k

∑
i=1

b(γ3)
i z(tk−i), (19)

w(tk) = [n1z(tk−1)]h
γ4
s −

k

∑
i=1

b(γ4)
i w(tk−i),

v(tk) = [n2y(tk−1)]h
γ5
s −

k

∑
i=1

b(γ5)
i v(tk−i),

where Tsim is the simulation time, hs is the calculation time step, k = 1, 2, 3 . . . , N, for
N = [Tsim/hs], and initial conditions are (x(0), y(0), z(0), w(0), v(0)). The binomial coeffi-
cients b(γ1)

i , b(γ2)
i , b(γ3)

i , b(γ4)
i , and b(γ5)

i are calculated according to relation (4), respectively.
Figure 3 depicts the simulation results of the system (18) using numerical solu-

tion (19) for the parameters: a = 1.73, b = −2.04, d = 0.46, e = 0.04, f = 0.67,
g = 0.19, h = 0.48, j = 0.52, k = n1 = n2 = 0.21, orders γ1 = 0.9 (real capacitor C1),
γ2 = γ3 = γ4 = γ5 = 1 (ideal memcapacitor CM and ideal meminductor LM), initial
conditions x(0) = 0.2, y(0) = 0.5, z(0) = 0.45, w(0) = 0.1, v(0) = 0.5, step hs = 0.005,
and simulation time 500 s. The Lyapunov exponents of this system with the above param-
eters, computed according to the algorithm described in [39], have the following values:
0.5807,−0.1683,−0.0047,−0.9647,−1.0267, which confirm the system is chaotic because at
least one exponent is positive.
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Figure 3. One-scroll attractors of the system (18) in state space (left) and state plane (right).

4.2. Memristor–Memcapacitor–Meminductor Oscillator

Following the oscillator based on the charge-controlled memcapacitor and the flux-
controlled meminductor, which was described in the previous subsection, a novel chaotic
circuit containing the flux-controlled memristor (8) instead of the negative resistor was
suggested, depicted in Figure 4. The proposed oscillator consists of a meminductor (LM), a
memristor (M), a memcapacitor (CM), a linear resistor (R), and a capacitor (C1). As in the
previous case, this novel circuit is also supplied by energy to maintain the oscillating state.
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Figure 4. Chaotic oscillator circuit based on three memory elements.

According to Kirchhoff’s laws for two current nodes and one voltage loop, the follow-
ing set of differential equations can be obtained:

du1(t)
dt

=
1

C1

(
iLM(t)−

u1(t)
R

)
,

dqCM(t)
dt

= iM(t)− iLM(t), (20)

dφLM(t)
dt

= uCM(t)− u1(t),

dφM(t)
dt

= uCM(t).

Substituting Equations (6), (8), (10) and (13) into the above Equation (20), the same
as in the previous case, adding the two well-known relations: dρLM(t)/dt = φLM(t) and
dσCM(t)/dt = qCM(t) to them (ρLM(t) is the integral of flux φLM(t) passing through the
meminductor, σCM(t) is the integral of charge qCM(t) passing through the memcapacitor),
we get the following set of equations:

du1(t)
dt

=
1

C1

(
(α′φLM(t) + β′ρLM(t)φLM(t))−

u1(t)
R

)
,

dqCM(t)
dt

= (m1 + 3m2φ2
M
(t))

(
αqCM(t) + βqCM(t)σ

2
CM

(t)
)
−
(
α′φLM(t) + β′ρLM(t)φLM(t)

)
,

dφLM(t)
dt

= αqCM(t) + βqCM(t)σ
2
CM

(t)− u1(t), (21)

dφM(t)
dt

= αqCM(t) + βqCM(t)σ
2
CM

(t),

dρLM(t)
dt

= φLM(t),

dσCM(t)
dt

= qCM(t).

By setting the same state variables transformation as in the previous example and
taking into account the fractional-order models of all three memory elements shown in
Figure 4, the dynamical system (21) can be mapped into dimensionless form as follows:

0Dγ1
τ x(τ) = az(τ) + bz(τ)w(τ)− x(τ),

0Dγ2
τ y(τ) = dy(τ) + ey(τ)v2(τ) + y(τ)u2(τ)(p + rv2(τ))− f z(τ)− gz(τ)w(τ),

0Dγ3
τ z(τ) = hy(τ) + jy(τ)v2(τ)− kx(τ),

0Dγ4
τ u(τ) = hy(τ) + jy(τ)v2(τ), (22)

0Dγ5
τ w(τ) = n1z(τ),

0Dγ6
τ v(τ) = n2y(τ),
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where parameters are: a = α′R, b = β′R, d = m1αRC1, e = m1βRC1, f = α′RC1, g = β′RC1,
h = αRC1, j = βRC1, k = RC1, p = 3m2αRC1, r = 3m2βRC1, n1 = RC1, and n2 = RC1, and
where γ1, γ2, γ3, γ4, γ5, and γ6 are the real orders of the elements used in the oscillator
circuit. As in system (18), the equilibrium point of the dynamical system (22) is in the origin.

Numerical solutions of the fractional differential Equations (22) obtained using rela-
tionships (3)–(5) are given as:

x(tk) = [az(tk−1) + bz(tk−1)w(tk−1)− x(tk−1)]h
γ1
s −

k

∑
i=1

b(γ1)
i x(tk−i),

y(tk) = [dy(tk−1) + ey(tk−1)v(tk−1)
2 + y(tk−1)u(tk−1)

2(p + rv(tk−1)
2)

− f z(tk−1)− gz(tk−1)w(tk−1)]h
γ2
s −

k

∑
i=1

b(γ2)
i y(tk−i),

z(tk) = [hy(tk−1) + jy(tk−1)v(tk−1)
2 − kx(tk−1)]h

γ3
s −

k

∑
i=1

b(γ3)
i z(tk−i), (23)

u(tk) = [hy(tk−1) + jy(tk−1)v(tk−1)
2)]hγ4

s −
k

∑
i=1

b(γ4)
i z(tk−i),

w(tk) = [n1z(tk−1)]h
γ5
s −

k

∑
i=1

b(γ5)
i w(tk−i),

v(tk) = [n2y(tk−1)]h
γ6
s −

k

∑
i=1

b(γ6)
i v(tk−i),

where Tsim is the simulation time, hs is the calculation time step, k = 1, 2, 3 . . . , N, for
N = [Tsim/hs], and initial conditions are (x(0), y(0), z(0), u(0), w(0), v(0)). The bino-
mial coefficients b(γ1)

i , b(γ2)
i , b(γ3)

i , b(γ4)
i , b(γ5)

i and b(γ6)
i are calculated using Equation (4),

respectively.
Figure 5 shows simulation results of the system (18) in state space, using numerical

solution (19), for the parameters: a = 1.73, b = −2.04, d = 0.46, e = 0.04, f = 0.67, g = 0.19,
h = 0.48, j = 0.52, k = n1 = n2 = 0.21, m1 = 1, m2 = 0, orders γ1 = γ2 = γ3 = γ4 = γ5 = 0.9,
initial conditions x(0) = 0.7, y(0) = 0.5, z(0) = 0.45, u(0) = 0.3, w(0) = 0.1, v(0) = 0.5,
step hs = 0.005, and simulation time 500 s.
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Figure 5. Orbits of the fractional-order oscillator (22) in state spaces x− y− z, u−w− v, respectively.

Figure 6 depicts the simulation results of the system (22) in state space, using numerical
solution (23), for the parameters: a = 1.73, b = −2.04, d = 0.51, e = 0.04, f = 0.67, g = 0.19,
h = 0.48, j = 0.52, k = n1 = n2 = 0.21, m1 = 1, m2 = 0.001, p = 3dm2, r = 3em2, orders
γ1 = 0.99 (capacitor), γ2 = 0.98 (memcapacitor), γ3 = 0.96 (meminductor), γ4 = 0.97
(memristor), γ5 = γ6 = 1, initial conditions x(0) = 0.2, y(0) = 0.5, z(0) = 0.45, u(0) = 0.3,
w(0) = 0.1, v(0) = 0.5, step hs = 0.005, and simulation time 500 s. The Lyapunov exponents
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of this system with the above parameters, computed according to the algorithm described
in [39], have the following values: 0.0020,−0.1341, 0.0002,−0.7573,−1.0016,−0.0019, which
confirm the system is chaotic because at least one exponent is positive.
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Figure 6. One-scroll attractors of the system (22) in state space x− y− z (left) and u− w− v (right).

5. Discussion

Simulation results presented in this article confirm that new memory elements pro-
posed only a few decades ago could be beneficial in new electronic circuit theory and
practice. Moreover, a mathematical model for such elements should be a fractional order
due to the memory of these parts. So far, it is possible only for a few well-known classical
elements and the memristor [37]. Because the memory elements as memcapacitor and
meminductor do not exist as a single electronic part, it is challenging to identify derivative
order from experimental data. It will be possible when such elements are on sale. However,
we may use an analogy with a classical capacitor and inductor to predict the real order
in their mathematical models. Some experiments made by other authors confirm this
theory [15,17].

Based on results depicted in Figures 5 and 6, we can see that the new oscillator
proposed in this article, depicted in Figure 4, may generate oscillation as well as chaotic
behavior. Slight changes in parameters, orders, and initial conditions may produce different
results. It could be significant in using such an oscillator with memory in secure communi-
cation, coding/decoding, and a new kind of memory circuits for future computers.

Here, we also present an idea for further work. Let us consider the circuit shown in
Figure 7.

Figure 7. New oscillator circuit based on all known electrical elements.

An important question is: Is it possible to generate chaos or hyperchaos using an
electrical circuit, depicted in Figure 7, containing all known elements? It is an open problem.
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6. Conclusions

This short article presents a new oscillator based on fractional-order elements with
memory. We obtain a new circuit model described by the fractional differential equations.

Such a model was proposed as a numerical solution for simulation purposes as well
as further investigation and analysis, for example, calculation of eigenvalues, Lyapunov
exponents, Poincaré maps, and bifurcation diagrams. Moreover, the system (22) can work
as a chaotic oscillator under appropriate parameters and initial values.

Such a combination of the fractional-order memory elements in the new oscillator
circuit is presented for the first time. New is the part where an oscillator with three memory
elements was proposed and its mathematical model and the numerical solution were
derived. Both practical and theoretical relevance is significant for further circuit analysis.
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