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Abstract: A framework of distributed interval observers is introduced for fractional-order multiagent
systems in the presence of nonlinearity. First, a frame was designed to construct the upper and
lower bounds of the system state. By using monotone system theory, the positivity of the error
dynamics could be ensured, which implies that the bounds could trap the original state. Second,
a sufficient condition was applied to guarantee the boundedness of distributed interval observers.
Then, an extension of Lyapunov function in the fractional calculus field was the basis of the sufficient
condition. An algorithm associated with the procedure of the observer design is also provided. Lastly,
a numerical simulation is used to demonstrate the effectiveness of the distributed interval observer.
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1. Introduction

Fractional calculus is the definition of the differential and integral of arbitrary order
systems. During the last 20 years, fractional calculus grew into a hot topic and attracted
increasing interest [1,2]. It plays an important role when people are faced with natural
dynamics problems. It works well when it is applied in describing the memory and
hereditary properties of manifold materials. In addition, the applications of fractional
calculus are rapidly expanding, such as non-Fickian dynamics [3], fractional boundary
value problems [4], and variable-order thermostat models [5].

Due to the inaccessibility of the system state in many physical backgrounds and the
availability of output information, research on observation problems is very significant.
With the indepth study of observation problems, interval observers are widely accepted
as an efficient tool in reconstructing the system state with nonlinearity or bounded uncer-
tainty [6,7]. The concept of interval observers was first proposed by Gouzé, and it was
successfully applied to uncertain biological systems [8]. After that, research on interval
observers can be divided into two parts. The first is based on monotone system theory,
and the second was developed from set-membership estimation. The monotone-system-
theory-based method requires researchers to design suitable observer gains in order to
ensure that the error dynamics is positive and bounded. In this case, the bounds from the
interval observer converge to the original system. Inspired by this idea, there are many
new techniques for various systems emerging. For linear time-invariant systems, the time-
varying coordinate transformation technique was used in interval observer design [9].
Efimov et al. also extended the interval estimation technique to nonlinear time-varying
systems [10]. An interval observer for switched systems was also introduced in [11]. On the
other hand, a set-membership estimation-based method combined robust observer design
with reachability analysis [12]. Interval observers in this framework obviously improved
estimation accuracy. Additionally, scholars presented a new integrated version of interval
observers that achieved an expected tradeoff between robust estimation conservatism and
computational complexity [13]. In general, research on interval observers for integer-order
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systems is fruitful, which is instructive for us to design interval observers of fractional-order
systems.

A tremendous expansion for multiagent systems (MASs) has been witnessed, which
mainly regards output regulation [14], observer design [15] and consensus control [16]. It
started from simple two-order systems and attracted more attention on various complex
MASs, such as switched [17], nonlinear [18], and time-delaying [19] systems. The observers
designed for MASs are called distributed observers if the communication topology is
taken into account. A distributed observer was designed for leader-following MASs, and
an actual vehicle model was used to verify the function of the distributed observer [20].
In [21], the existence condition of the distributed observer was established to recover
the state of nonlinear MASs. There are some works for fractional-order MASs in [22]
and [23]. The consensus control problem for fractional-order MASs under a fixed topology
was studied by stability theory and the Lyapunov method [22]. For unknown nonlinear
dynamics, an adaptive control protocol was introduced that was used in a trajectory
tracking problem [23]. There were also some interesting results about the observation
problem in [24–27]. Traditional observers and distributed controllers were both used in
fractional-order MASs [24]. Compared with [24], the time-varying formation control was
investigated, and the consensus protocol was designed to match a switching topology [25].
For the fractional-order heterogeneous nonlinear MASs, the consensus control problem
was converted into the stabilisation problem using the distributed control technique [26].
In [27], the object was the fractional-order system with unknown orders, and a robust
observer-based controller was formulated to solve the consensus problem.

For these works [24–27], the introduced observers were all Luenberger-like. When
the original system suffers from uncertain disturbance or nonlinearity, Luenberger-like
observers are unable to recover the system state. It is challenging to recover the system
state when the general fractional-order system has a complex communication with its
neighborhood. Therefore, a distributed interval observer is a better choice for fractional-
order MASs. In many physical problems such as trajectory tracking or output regulation,
distributed interval observers provide a more accurate state information, which is a great
step forward for the consensus control protocol design. However, there is not any paper fo-
cusing on distributed interval observers for fractional-order MASs. In the field of fractional
calculus, there are some interesting works about fractional-order systems, including state
reconstruction and algorithm programming [28–30]. Motivated by the interval observer
mentioned above, we developed a framework of distributed interval observers for the
general fractional-order MASs. The specific contributions are outlined as follows:

1. By investigating the fractional differential problem, a novel fractional-order Lyapunov
function is proposed for the boundedness problem in the observer deign, which is an
approach to prove that a matrix is Hurwitz.

2. Different from linear MASs, nonlinear MASs are considered, and the solution for
Lipschitz functions is combined with the distributed interval observer design.

3. For fractional-order MASs, the communication topology is applied to the observer
design. Each observer of the corresponding agent could accept the information from
its adjacent observers. A novel distributed interval observer was first designed for the
fractional-order MASs.

The rest of the paper is structured as follows. Section 2 mainly presents some prepara-
tion work, including the fractional differential, graph theory and fractional-order systems.
Section 3 proposes the distributed interval observer design method for fractional-order
MASs. An illustrative example is given in Section 4 to verify the validity of the designed
observer. Lastly, conclusions and future work are drawn in Section 5.

Notations: For two vectors x ∈ Rn and y ∈ Rn, x < (≤)y are understood with
xi < (≤)yi, i ∈ {1, . . . , n}. For A ≺ 0 and A � 0, symbol ≺ (�) means that matrix A is
positive(negative) definite. For a matrix B, there exist three properties: B+ = max(B, 0),
B− = B+ − B and |B| = B+ + B−. Matrix BT denotes the transpose of B, and He(B) is
defined as He(B) = B + BT . λmin(A) represents the minimal nonzero eigenvalue of A. ⊗ is
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the Kronecker product used in MASs. 1N means a N-order column vector, and all elements
are 1.

2. Preliminaries
2.1. Fractional Calculus

There are several definitions used to regard the fractional differentiation operator, such
as the Grünwald–Letnikov, Riemann–Liouville and Caputo definitions introduced in [31].
Among them, the Caputo definition is the most frequently used and has many applications
in the engineering field. In the Caputo definition, the initial value of the differentiation
is considered.

The Caputo fractional derivative for a function f (t) is

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α−n+1 dτ, (1)

where C
t0

Dα
t is the fractional integration differentiation operator, t0 represents the initial time,

and α ∈ [n− 1, n] is the order of the system. Γ(·) is a gamma function that is introduced
in Definition 1. f (t) is a differentiable function with the nth derivative. In this paper, we
mainly focus on the fractional-order system with n = 1 and t0 = 0, then we have 0 < α < 1.
When n = 1, f (t) is only required to have the first derivative. For the sake of simplicity,
the differentiation operator C

t0
Dα

t is replaced by Dα
t .

The Grünwald-Letnikov fractional derivative for a function f (t) is

GL
t0

Dα
t f (t) = lim

N→∞
[
t− t0

N
]−α∑N−1

j=0 (−1)j f (t− j[
t− t0

N
]). (2)

The Riemann-Liouville fractional derivative for a function f (t) is

RL
t0

Dα
t f (t) =


1

Γ(−α)

∫ t
t0
(t− τ)−α−1 f (τ)dτ, α < 0

f (t), α = 0
Dn

t [
RL
t0

Dα−n
t f (t)], α > 0

(3)

with n− 1 ≤ α < n.
For a wide class of functions, the Grünwald–Letnikov and Riemann–Liouville defini-

tions are equivalent [32]. However, it is difficult for the Grünwald-Letnikov definition to
have a Laplace transform. The Laplace transform of the Riemann–Liouville definition is

L[RL
0 Dα

t f (t)] =

{
sαF(s), q ≤ 0

sαF(s)−∑n−1
k=0 skRL

0 Dα−k−1
t f (0), n− 1 ≤ q < n

(4)

where F(s) is the Laplace transform of f (t).
The Laplace transform of the Caputo definition is

L[C0 Dα
t ] = sαF(s)−∑n−1

k=0 sα−1−k f (k)(0). (5)

Comparing (4) and (5), it is obvious that the Riemann–Liouville fractional derivative
is unsuitable for the Laplace transform technique because it requires the knowledge of
noninteger-order derivatives of the function at t = 0, while the Caputo fractional derivative
only requires the knowledge of integer-order derivatives of the function. This is why
Caputo fractional derivative was chosen.
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Definition 1 ([33]). Gamma function is an important element for the Caputo fractional differentia-
tion operator, which is defined by

Γ(a) =
∫ ∞

0
e−tta−1dt, (6)

where value Γ(a) is in the convergence of the right-hand side of the complex plane.

2.2. Graph Theory

A communication topology G(N , ξ,A) contains three elements: N ∈ {1, . . . , N} is the
node set of MASs, ξ ⊂ N ×N represents an edge set for nodes in MASs, and A ∈ RN×N

is an adjacent matrix of the graph. For A = [aij] ∈ RN×N , aji is the weight from node i to
node j. In this paper, the graph has no self loops, i.e., aii = 0, i ∈ N . aji 6= 0 if and only if
(i, j) ∈ ξ. For node i, its neighborhood is denoted asNi = {j|j ∈ N , aji 6= 0, j 6= i}. For G, it
is defined as a strongly connected graph if and only if any node in it is mutually reachable.
For adjacent matrix A, the corresponding Laplacian matrix is defined as L = [lij]N×N ,
where lii = ΣN

j=1aij and lij = −aij, i 6= j. If a topology is call as a balanced topology,
the edges of it must be balanced, which means that edge (i, j) belongs to set ξ if edge (j, i)
belongs to set ξ.

Lemma 1 ([34]). for a Laplacian matrix L, zero is one of the eigenvalues and it has a fixed right
eigenvector 1N . The other nonzero eigenvalues are all positive. If there exists a directed spanning
tree in G, zero is a simple eigenvalue of L.

Lemma 2 ([35]). considering G as a strongly connected graph, suppose that r = [r1, . . . , rN ] is
the left eigenvector connected with the eigenvalue zero. Then, we have RL+ LT R ≥ 0, where
R = diag{r1, . . . , rN}. For a balanced graph, we have r1 = · · · = rN .

Lemma 3 ([35]). If G is a strongly connected graph; its generalized algebraic connectivity is

define as a(L) = min
rT x=0,x 6=0

xT(RL+LT R)x
2xT Rx . Due to the topology in this paper being defined as

balanced, matrix R can be converted into R = r1 IN . The generalized algebraic connectivity is equal
to a(L) = λmin(

He(L)
2 ).

2.3. Fractional-Order Systems

Consider the following fractional-order system for the i-th agent.{
Dα

t xi(t) = Axi(t) + f (xi(t)),

yi(t) = Cxi(t),
(7)

where xi ∈ Rn is the system state, yi ∈ Rm is the output, and f (xi) ∈ Rn is the Lipschitz
function. A ∈ Rn×n and C ∈ Rm×n are matrices with suitable dimensions. Communication
topology G for (7) is a strongly connected balanced graph.

Property 1. Given a matrix M ∈ Rn×n, M is a Metzler matrix if all its elements outside the main
diagonal are non-negative. For example, the following matrix is Metzler:

M =

[
−1 1
2 0.5

]
.
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Property 2. Given a matrix N ∈ Rn×n, M is a Hurwitz matrix if its all real parts of the eigenvalues
are negative. For example, the following matrix is Hurwitz:

N =

[
−3 −2
−2 −3

]
.

For nonlinearity f (xi), we began the analysis with the following properties.

Property 3 ([36]). the differentiable global Lipschitz function f (xi) can be divided into two in-
creasing functions a(xi) and b(xi); their relationship is

f (xi) = a(xi)− b(xi). (8)

Property 4 ([36]). for a Lipschitz function f (xi), there exists a differentiable global Lipschitz
function f̃ (xk1

i , xk2
i ), such that

• f̃ (xk1
i , xk2

i ) = a(xk1
i )− b(xk2

i ),
• f̃ (xi, xi) = f (xi),

• ∂ f̃
∂a(xi)

≥ 0 and ∂ f̃
∂b(xi)

≤ 0.

Remark 1. In Property 3, a Lipschitz function is transformed into two increasing functions,
which is just for us to introduce the function f̃ (·, ·). Because a(xi) and b(xi) are both increasing

functions, one can deduce that ∂ f̃
∂a(xi)

≥ 0 and ∂ f̃
∂b(xi)

≤ 0 easily. For x ≤ x ≤ x, we have

f̃ (x, x) ≤ f̃ (x, x) ≤ f̃ (x, x), which are the upper and lower bounds of the Lipschitz function f (x)
in the structure of distributed interval observers.

Assuming that the bounds of the system state satisfy xi ≤ xi ≤ xi, on the basis of
Properties 3 and 4, one can deduce that

f̃ (xi, xi) ≤ f̃ (xi, xi) = f (xi) ≤ f̃ (xi, xi). (9)

By using the generalized Taylor formula, f̃ (xi, xi)− f̃ (xi, xi) is written as

f̃ (xi, xi)− f̃ (xi, xi) =
∫ 1

0

∂ f̃
∂δ1

(τδ1 + (1− τ)δ2)dτ(δ1 − δ2), (10)

where δ1 =

[
x
x

]
and δ2 =

[
x
x

]
. It follows from Property 4 that

f̃ (xi, xi)− f̃ (xi, xi) = [
∫ 1

0

∂a
∂x

(τx + (1− τ)x)dτ

−
∫ 1

0

∂b
∂x

(τx + (1− τ)x)dτ](δ1 − δ2)

= [F1(x, x)−F2(x, x)](δ1 − δ2).

(11)

Similarly, we have

f̃ (xi, xi)− f̃ (xi, xi) = [F3(x, x)−F4(x, x)](δ1 − δ2), (12)

where matrices Fi, i ∈ {1, . . . , 4} are non-negative and can be derived from (11). On the
basis of the above discussion, the following property is presented.
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Property 5 ([36]). for f (xi) and f̃ (·, ·) defined in Property 4, if Jacobian matrix ∂ f̃
∂δ1

is bounded,
there exist matrices Fi, i ∈ {1, . . . , 4} such that{

f̃ (xi, xi)− f̃ (xi, xi) ≤ F1ei + F2ei,

f̃ (xi, xi)− f̃ (xi, xi) ≤ F3ei + F4ei,
(13)

where ei = xi − xi and ei = xi − xi.

Example 1. For nonlinear function f (x) = sinx, corresponding functions f̃ (x, x) and f̃ (x, x) are
defined as {

f̃ (x, x) = sin(x) + x− x,

f̃ (x, x) = sin(x) + x− x,

where f (x), f̃ (x, x) and f̃ (x, x) satisfy Properties 3 and 4.
The functions mentioned in Property 3 are defined as a(x) = sin(x) + x and b(x) = x. a(x)

and b(x) are both obviously increasing functions. Then, f̃ (x, x)− f̃ (x, x) can be transformed into

f̃ (x, x)− f̃ (x, x)

= sin(x) + x− x− sin(x)

= (sin(x)− sin(x)) + (x− x) + (x− x)

≤ 2(x− x) + (x− x).

(14)

From Property 5, we have f̃ (x, x)− f̃ (x, x) ≤ F1e + F2e. Combining (14) with Property 5,
we chose F1 = 2I and F2 = I. Similarly, we have F3 = I and F4 = 2I.

From Example 1, Property 5 is feasible, and the result from Formulas (9)–(12) stands.

For System (7), nonlinear function f (xi(t)) was assumed to satisfy Properties 3–5;
then, the interval observer for (7) was designed with{

Dα
t xi(t) = Axi(t) + L(yi(t)− Cxi(t)) + γM∑N

i=1 aij(xj(t)− xi(t)) + f̃ (xi, xi),

Dα
t xi(t) = Axi(t) + L(yi(t)− Cxi(t)) + γM∑N

i=1 aij(xj(t)− xi(t)) + f̃ (xi, xi),
(15)

where M and L are interval observer gains.
The error dynamics of the interval observer is

Dα
t ei(t) = Dα

t xi(t)− Dα
t xi(t)

= (A− LC− γM∑N
j=1 Lij)ei(t) + f̃ (xi, xi)− f̃ (xi, xi),

Dα
t ei(t) = Dα

t xi(t)− Dα
t xi(t)

= (A− LC− γM∑N
j=1 Lij)ei(t) + f̃ (xi, xi)− f̃ (xi, xi).

(16)

Then, e(t), f̃ (x, x), f̃ (x, x) and f̃ (x, x) are defined as

e(t) =

 e1
...

eN

, f̃ (x, x) =

 f̃ (x1, x1)
...

f̃ (xN , xN)

, f̃ (x, x) =

 f̃ (x1, x1)
...

f̃ (xN , xN)

, f̃ (x, x) =

 f̃ (x1, x1)
...

f̃ (xN , xN)

.

System (16) can be written in the following form:{
Dα

t e(t) = (IN ⊗ (A− LC)− γ(L⊗M)e(t) + f̃ (x, x)− f̃ (x, x),

Dα
t e(t) = (IN ⊗ (A− LC)− γ(L⊗M))e(t) + f̃ (x, x)− f̃ (x, x).

(17)
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3. Main Results

Proving the boundedness of the distributed interval observer is equal to proving the
convergence of the error dynamics. The Lyapunov function is a great choice for it. For error
dynamics ė(t) = Aee(t), the following Lyapunov function is constructed:

V(t) = eT(t)Pe(t), (18)

where P is a positive symmetric matrix with suitable dimensions.
In the integer-order system, V̇(t) < 0 is the sufficient condition to prove the conver-

gence of error dynamics. V̇(t) < 0 is equivalent to

AT
e P + PAe ≺ 0. (19)

Equation (19) is the strict LMI that can be computed with MATLAB. Formula (19) can
yield that Ae is a Hurwitz matrix. By configuring matrix Ae, the convergence of the system
can be reached.

However, the above details are mainly about the integer-order system. There are no
corresponding lemmas about the fractional-order system. Therefore, the fractional-order
extension of a Lyapunov candidate function is introduced to demonstrate the convergence
of the error dynamics by referring [37].

Lemma 4. Consider error dynamics e(t) ∈ Rn to be a continuous and derivable function. Then,
for any time t ≥ 0, the fractional derivative of the Lyapunov function is

Dα
t V(t) ≤ (Dα

t eT(t))Pe(t) + eT(t)P(Dα
t e(t)), (20)

where V(t) = eT(t)Pe(t) is the Lyapunov function connected with e(t).

Proof. Denote that J = (Dα
t eT)Pe + eT P(Dα

t e)− Dα
t V.

According to the definition of fractional calculus, Dα
t V(t) is equivalent to

Dα
t V(t) =

1
Γ(1− α)

∫ t

0

V̇(τ)

(t− τ)α
dτ

=
1

Γ(1− α)

∫ t

0

eT(τ)Pė(τ) + ėT(τ)Pe(τ)
(t− τ)α

dτ.
(21)

Considering (21), J is rewritten as

J =
1

Γ(1− α)

∫ t

0

eT(t)Pė(τ) + ėT(τ)Pe(t)− eT(τ)Pė(τ)− ėT(τ)Pe(τ)
(t− τ)α

dτ

=
1

Γ(1− α)

∫ t

0

(eT(t)− eT(τ))Pė(τ) + ėT(τ)P(e(t)− e(τ))
(t− τ)α

dτ

= − 1
Γ(1− α)

∫ t

0

żT(τ)Pz(τ) + zT(τ)Pż(τ)
(t− τ)α

dτ,

(22)

where z(τ) = e(t)− e(τ).
Then, the proof for Lemma 1 is equivalent to proving that

1
Γ(1− α)

∫ t

0

(żT(τ))Pz(τ) + zT(τ)Pż(τ)
(t− τ)α

dτ ≤ 0. (23)

For u = zT(t)Pz(t), one can deduce that

du
dt

= żT Pz(t) + zT(t)Pż(t). (24)
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Then, v(τ) = (t−τ)−α

Γ(1−α)
is denoted, which yields

dv(τ) =
α(t− τ)−α−1

Γ(1− α)
dτ. (25)

On the basis of (24) and (25), (23) is equal to

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

|t0 −
α

Γ(1− α)

∫ t

0

zT(τ)Pz(τ)
(t− τ)α

dτ ≤ 0, (26)

with
zT(τ)Pz(τ)

Γ(1− α)(t− τ)α
|t0 =

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

|τ=t −
zT(0)Pz(0)

Γ(1− α)(t)α
. (27)

When τ = t, the first term of (27), has nondeterminacy, and the analysis of its limitation
is necessary:

lim
τ→t

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

=
−ėT(τ)Pe(t) + ėT(τ)Pe(τ)− eT(t)Pė(τ) + eT(τ)Pė(τ)

−Γ(1− α)α(t− τ)α−1

=
−ėT(τ)Pe(t) + ėT(τ)Pe(τ)− eT(t)Pė(τ) + eT(τ)Pė(τ)

−Γ(1− α)α
(t− τ)1−α.

(28)

Due to α ∈ (0, 1), it is obvious that zT(τ)Pz(τ)
Γ(1−α)(t−τ)α → 0 when τ = t.

Expression (26) can be simplified to

− zT(0)Pz(0)
Γ(1− α)tα

− α

Γ(1− α)

∫ t

0

zT(τ)Pz(τ)
(t− τ)α

dτ ≤ 0. (29)

For P � 0 and Γ(·) > 0, it is certain to stand.

Theorem 1. For System (15), there exist bounds x and x, such that x(t) ≤ x(t) ≤ x(t) if the
following conditions are satisfied:

1. Ω = IN ⊗ (A− LC)− γ(L⊗M) is Metzler;
2. The initial condition of (7) satisfies x(0) ≤ x(0) ≤ x(0);
3. Nonlinear function f (xi(t)) possesses the features introduced in Properties 3–5.

Proof. From Properties 3 and 4, the upper bound of the nonlinear function is equal to

f̃ (xi, xi) = a(xi)− b(xi). (30)

Then, it follows from (30) that

f̃ (xi, xi)− f̃ (xi, xi) = (a(xi)− a(xi))− (b(xi)− b(xi)). (31)

Functions a(·) and b(·) are all increasing, which yields

f̃ (xi, xi)− f̃ (xi, xi) ≥ 0. (32)

Similarly, one can deduce that

f̃ (xi, xi)− f̃ (xi, xi) ≥ 0. (33)

From x(0) ≤ x(0) ≤ x(0), the initial value of the error dynamics satisfies e(0) ≥ 0
and e(0) ≥ 0. If matrix Ω is Metzler, and (32) and (33) are true, it follows that e(t) ≥ 0 and
e(t) ≥ 0, i.e., x(t) ≤ x(t) ≤ x(t), for any t ≥ 0.
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Remark 2. For Theorem 1, we constructed a frame for (7). The positivity of the error dynamics is
guaranteed, which implies x(t) ≤ x(t) ≤ x(t). However, an interval observer not only requires the
error dynamics be positive, but also that the upper and lower errors are in a convergence of zero.
Then, we give the following theorem.

Theorem 2. On the basis of the result in Theorem 1, given constant τ > 0 and positive matrix
P = PT , if there exists a solution such that

Π̂ =

[
He(PA−UC + PN1)− 2τ I PN2 + NT

3 P
PN3 + NT

2 P He(PA−UC + PN4)− 2τ I

]
≺ 0,

γ >
τ

a(L) ,

where γ is the coupling strength, L = P−1U and M = P−1 are the observer gains, then System (15)
is a distributed interval observer.

Proof. The Lyapunov function is chosen as follows:

V(t) =
N

∑
i=1

rieT
i (t)Pei(t) +

N

∑
i=1

rieT
i (t)Pei(t). (34)

From Lemma 1, the fractional derivative of V(t) is

Dα
t V(t) ≤

N

∑
i=1

ri(Dα
t eT

i )(t)Pei(t) +
N

∑
i=1

rieT
i (t)P(Dα

t ei(t))

+
N

∑
i=1

ri(Dα
t eT

i )(t)Pei(t) +
N

∑
i=1

rieT
i (t)P(Dα

t ei(t)).

(35)

Substituting the error dynamics into (35)

Dα
t V(t) =

N

∑
i=1

ri(Ωiei + ∆ f (xi))
T Pei +

N

∑
i=1

rieT
i P(Ωiei + ∆ f (xi))

+
N

∑
i=1

ri(Ωiei + ∆ f (xi))
T Pei +

N

∑
i=1

rieT
i P(Ωiei + ∆ f (xi))

≤
N

∑
i=1

ri(Ωiei + F1ei + F2ei)
T Pei +

N

∑
i=1

rieT
i P(Ωiei + F1ei + F2ei)

+
N

∑
i=1

rieT
i P(Ωiei + F3ei + NFei) +

N

∑
i=1

ri(Ωiei + F3ei + F4ei)
T Pei

= ((R⊗ (A− LC)− γRL⊗M)e + R⊗ F1e + R⊗ F2e)T(I ⊗ P)e

+ eT(I ⊗ P)((R⊗ (A− LC)− γRL⊗M)e + R⊗ F1e + R⊗ F2e

+ ((R⊗ (A− LC)− γRL⊗M)e + R⊗ N3e + R⊗ F4e)T(I ⊗ P)e

+ eT(I ⊗ P)((R⊗ (A− LC)− γRL⊗M)e + R⊗ F3e + R⊗ N4e)

= eT(R⊗ (He(PA− PLC + PF1))− γ(RL+ LT R)⊗ PM)e

+ eT(R⊗ (He(PA− PLC + PF4))− γ(RL+ LT R)⊗ PM)e

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e,

(36)

where Ωi = A− LC− γM∑N
j=1 Lij, ∆ f (xi) = f̃ (xi, xi)− f̃ (xi, xi) and ∆ f (xi) = f̃ (xi, xi)−

f̃ (xi, xi).
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According to Lemma 3, RL+ LT R could be simplified as

2a(L)eT Re ≤ eT(RL+ LT R)e, (37)

2a(L)eT Re ≤ eT(RL+ LT R)e. (38)

Taking M = P−1, (37) and (38) into account, it follows from (36) that

Dα
t V(t) ≤ eT(R⊗ (He(PA− PLC + PF1))− 2γa(L)R⊗ In)e

+ eT(R⊗ (He(PA− PLC + PF4))− 2γa(L)R⊗ Ine

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e.

(39)

Considering γ > τ
a(L) , we have

Dα
t V(t) ≤ eT(R⊗ (He(PA− PLC + PF1))− 2τR⊗ Ine

+ eT(R⊗ (He(PA− PLC + PF4))− 2τR⊗ Ine

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e

= εT(t)R⊗Πε(t),

where ε(t) = [eT(t), eT(t)]T and

Π =

[
He(PA− PLC + PF1)− 2τ In PF2 + FT

3 P
PF3 + FT

2 P He(PA− PLC + PF4)− 2τ In

]
.

To satisfy the LMI toolbox, U = PL is applied in Π, which leads to

Π̂ =

[
He(PA−UC + PF1)− 2τ In PF2 + FT

3 P
PF3 + FT

2 P He(PA−UC + PF4)− 2τ In

]
.

Then, matrix Π̂ ≺ 0 is equal to Dα
t V(t) < 0, which implies that limt→∞ e(t) = 0 and

limt→∞ e(t) = 0. The boundedness of the error dynamics could be guaranteed.

Remark 3. Constant τ is simple without an actual effect. However, it is a parameter connected
with γ. If we just compute γ, the LMI toolbox just gives one feasible solution. Nevertheless, if we
compute τ, γ > τ

a(L) would have more regions to select.

On the basis of Theorem 2, an algorithm was constructed to design distributed interval
observers for fractional-order MASs.

4. Simulation

Considering a fractional-order MAS with nonlinearity, the state-space model is similar
to (7), where

A =

[
−0.5 2

0 −1

]
, C =

[
0 1

]
, f (xi) = sin(xi).

For nonlinear function f (xi), corresponding function f̃ (xi, xi) is defined as

f̃ (xi, xi) = sin(xi) + xi − xi.
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For functions a(xi) = sin(xi) + xi and b(xi) = xi, it is obvious that a(xi) and b(xi) are
increasing functions. a(xi) = sin(xi) + xi and b(xi) = xi are substituted into (13); then,

sin(xi) + xi − xi − sin(xi)

= (sin(xi)− sin(xi)) + (xi − xi) + (xi − xi)

≤ 2(xi − xi) + (xi − xi)

= F1ei + F2ei.

We chose F1 = 2I and F2 = I. Similarly, we have F3 = I and F4 = 2I.
Laplacian matrix L is

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1

.

By using Lemma 3, we obtained generalized algebraic connectivity a(L) = 1. By solv-
ing the LMI in Theorem 2, the observer gains can be computed:

L =

[
−1.1771
−0.2282

]
, M =

[
0.1906 0.0757
0.0757 0.1470

]
, τ = 2.9151.

Then we chose γ = 3. The initial value of the original system state is defined as
x(0) = [1 2 3 5 2 − 1 − 1 4]T . The initial value of the distributed interval observer is
defined as x(0) = [6 7 8 10 7 4 4 9]T and x(0) = [−4 − 3 − 2 0 − 4 − 6 − 6 − 1]T .

By performing Steps 5–8 in Algorithm 1, we can obtain Figures 1–6. Then, Figures 1 and 2
show the original system state of the four agents. Figures 3 and 4 display the bounds from
a distributed interval observer. vij means the upper bound of the jth state of the ith agent,
while uij means the lower bound of the jth state of the ith agent. From Figures 3 and 4,
the bounds of the distributed observer trap the state of the original system. Define that
e+ij = xij − xij and e+ij = xij − xij. For Figures 5 and 6, the error between the observer and
the original system could be reduced to a bounded value, which implies that the distributed
interval observer is feasible.

Algorithm 1 Distributed interval estimation for fractional-order MASs.

Step 1: Given the constant matrix L, compute the generalized algebraic connectivity a(L);
Step 2: For given matrices A ∈ Rn×n, C ∈ Rm×n, compute the observer gains L and M and

the constant τ from Theorem 2;
Step 3: Select appropriate constant γ > τ

a(L) ;

Step 4: Ensure that the matrix Ω is a Metzler matrix;
Step 5: For the total time t = 10, choosing the step size h = 0.001, the step N = T/h can

be calculated.
Step 6: Based on Step 5, construct two loops. The first loop is for the original fractional-

order system and the other loop is for the distributed interval observer.
Step 7: Construct an array with N + 1 volumes to store the output of the original system in

step 6.
Step 8: Establish a distributed interval observer based on the output in Step 7 and the other

loop proposed in Step 6.
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Figure 1. The first state of the four-agents.

0 1 2 3 4 5 6 7 8 9 10

t/second

-1

0

1

2

3

4

5

T
h

e
 s

e
c
o

n
d

 s
ta

te
s
 o

f 
th

e
 f

o
u

r 
a

g
e

n
ts

x
12

x
22

x
32

x
42

Figure 2. The second state of the four-agents.
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Figure 3. The bounds of the first state for the four-agents.
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Figure 4. The bounds of the second state for the four-agents.
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Figure 5. The error of the first state for the four-agents.

0 2 4 6 8 10

t/sec

0

2

4

6

e
1

2

e
+

12

e
-

12

0 2 4 6 8 10

t/sec

0

2

4

6

e
2

2

e
+

22

e
-

22

0 2 4 6 8 10

t/sec

0

2

4

6

e
3

2

e
+

32

e
-

32

0 2 4 6 8 10

t/sec

0

2

4

6

e
4

2

e
+

42

e
-

42

Figure 6. The error of the second state for the four-agents.
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5. Conclusions

In this paper, a distributed interval observer design methodology for linear fractional-
order MASs with nonlinearity was proposed. A Lyapunov method that is useful for
observer and controller design was first introduced for general fractional-order systems.
For MASs, graph theory was applied to fractional-order systems, and the strict LMI and
an effective algorithm were presented for observer design. Lastly, an example was given
to demonstrate the effectiveness of the proposed method. In the future, by using the H∞
technique, we aim to focus on research regarding the consensus control or formation control
of fractional-order MASs.
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