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Abstract: In this paper, we establish the existence and uniqueness of a strong solution to a fractional
mean field games system with non-separable Hamiltonians, where the fractional exponent σ ∈ ( 1

2 , 1).
Our result is new for fractional mean field games with non-separable Hamiltonians, which generalizes
the work of D.M. Ambrose for the integral case. The important step is to choose the new appropriate
fractional order function spaces and use the Banach fixed-point theorem under stronger assumptions
for the Hamiltonians.

Keywords: fractional Laplacian; mean field game; non-separable Hamiltonians

1. Introduction

In this paper, we consider the following time-dependent fractional mean field games
systems with non-separable Hamiltonians:

ut − (−∆)σu +H(t, x, Du, m) = 0 (t.x) ∈ [0, T]×Tn, (1)

mt + (−∆)σm + div
(
mHp(t, x, Du, m)

)
= 0 (t.x) ∈ [0, T]×Tn, (2)

where Tn is the tours Rn/Zn, n ≥ 2, u is a value function, m is a probability distribution,
H = H(t, x, Du, m) is a Hamiltonian,Hp denotes ∂

∂pH(t, x, p, m), and σ ∈ ( 1
2 , 1). Here, we

define the fractional Laplacian (−∆)σ by the Fourier decomposition. For any u ∈ Tn, if

u(x) = ∑
k∈Zn

û(k)eikx with û(k) =
1

(2π)n

∫
Tn

u(x)eikxdx,

where i2 = −1, then its fractional Laplacian is defined by

(−∆)σu = ∑
k∈Zn

k2σû(k)eikx.

We especially consider the initial-terminal problem of Equations (1) and (2) (i.e., the
initial value of m and the terminal value of u are prescribed functions):

m(0, x) = m0(x), u(T, x) = uT(x). (3)

The mean field games (MFG) system describes systems with very large numbers
of identical agents in noncooperative differential games. Assume each agent wants to
control his or her own trajectory in the same state space, which is affected by a stochastic
differential equation:

dXt = αtdt + dWt, (4)
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where Wt is a stochastic noise. Meanwhile, each agent is rational and aims to minimize the
following cost functional:

J(t, x, α) = E
[∫ T

t
L(Xs, αs, m(s))ds + G(XT , m(T))

]
,

where T > 0 is the finite horizon of the problem and L and G are given continuous
maps. Originally, there were two different approaches to solving such a problem from two
different points of view, which were proposed independently by Lasry and Lions [1–3]
in the mathematics community and Huang, Malhamé, and Caines [4] in the engineering
field almost at the same time. The main idea of MFG is to implement strategies based on
the distribution of the other agents. In recent years, MFG theory has attracted more and
more interest and been used in more fields widely. Lachapelle, Salomon, and Turinici [5]
presented a model for the choice of insulation technology in households using an MFG
model. They obtained an existing result for the associated optimization problem and gave a
monotonic algorithm to find the mean field equilibria. Based on the SIR model, Lee et al. [6]
introduced an effective mean-field game model for controlling the propagation of epidemics
and provided fast numerical algorithms based on proximal primal-dual methods. There are
more and more applications in engineering, finance, AI optimization problems, pandemic
and vaccine control, etc. We refer the reader to [7–10] for a fairly large description of the
current literature on the models and their applications.

If the stochastic noise W(t) in Equation (4) is a Brownian motion, we define the value
function u as

u(t, x) = inf
α

J(t, x, α).

By the dynamic programming principle, we formally obtain the integral order equation
MFG system:

ut + ∆u +H(t, x, Du, m) = 0, (5)

mt − ∆m + div
(
mHp(t, x, Du, m)

)
= 0, (6)

where the Hamiltonian H : R+ ×Rn ×Rn ×P(Rn)→ R is defined by

H(t, x, p, m) := sup
a∈A

[−L(x, a, m)− p · b(x, a, m)].

The MFG system of partial differential equations takes the form of a backward
Hamilton–Jacobi equation coupled with a forward Fokker–Planck equation. We say the
system is separable if the HamiltonianH can be written in the following form:

H(t, x, p, m) = H(t, x, p) + F(t, x, m).

Otherwise, we say the system is non-separable. In the case of a separable Hamiltonian,
MFG systems are well analyzed. The existence and uniqueness of smooth solutions for
the second-order MFG system with non-local terms is given in [2,3]. The existence and
uniqueness of weak solutions with local terms and different types of boundary conditions
were proven in [11–13]. In particular, Porretta [11,12] obtained the existence and uniqueness
of weak solutions to one kind of planning problem, where the equation is only prescribed
with the initial and terminal conditions for the density m (i.e., m(0) = m0, m(T) = m1,
where m0, m1 > 0 are smooth functions). In [13], Porretta also developed a complete weak
framework for the well-posed nature of weak solutions. The key work of his was to find
new results for Fokker–Planck equations under minimal assumptions on the drift. We
also refer to the MFG system with standard diffusion terms [9,14], degenerated diffusion
terms [15], and first-order systems [16,17].

Recently, fractional MFG systems have also interested many researchers. In such cases,
the stochastic noise W(t) in Equation (4) is modeled by a symmetric σ stable noise, which
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is a jump process or anomalous diffusion. In [18], the subcritical order of the fractional
case σ ∈ ( 1

2 , 1) was studied in the case of local and non-local coupling between equations.
In [19], the authors established the existence and uniqueness of solutions to the evolution
fractional MFG system σ ∈ (0, 1) with regularized coupling by the vanishing viscosity
method. In [20], the authors studied the fractional and non-local parabolic MFG systems
driven by jump Lévy processes in the whole space. They obtained the existence and
uniqueness of classical solutions of MFG systems with local and non-local couplings for
separable Hamiltonians.

In the case of non-separable Hamiltonians, many works are concerned with the stan-
dard diffusion term. The existence theorem of classical solutions by the Schauder fixed-
point theorem is shown in [21]. The existence theorem of weak solutions of stationary
problems was proven in [22,23]. In [24,25], the author proved the existence and uniqueness
theorem for strong solutions to time-dependent problems, and in [26], the author also
studied the existence and uniqueness theory for non-separable mean field games in Sobolev
spaces. To the best of our knowledge, there are few theories involved fractional mean field
games with non-separable Hamiltonians.

In this paper, we study the existence and uniqueness results for strong solutions of
the fractional MFG system in the case of a non-separable Hamiltonian when σ ∈ ( 1

2 , 1).
Our main ideas stem from [24,25]. We adopt the similar function space based on Wiener
algebra and the Banach fixed-point theorem for a short time of existence. While different
from [24,25], we find that when the value function u and the probability distribution m are
in the same function space, it becomes tricky to extend the result to the fractional Laplacian.
Therefore, we consider enhancing the regularity of the value function u to a higher case
than the probability distribution m as in [26]. In addition, as long as the non-separable
Hamiltonian satisfies the assumption A1 in Section 3, we can draw a conclusion: if the
initial measure m0 is close enough to its uniform measure on Tn, and the terminal value
uT is small enough, then the solutions to the problems in Equations (1)–(3) exists and are
unique in a ball about the origin.

This paper is organized as follows. In Section 2, we show some preliminaries, including
the property of the norm in the function space and the estimation of operators to the case
of a fractional Laplacian. In Section 3, we give the main result and use the contraction
principle to prove our first main theorem (Theorem 1). Finally, in Section 4, for the payoff
boundary conditions, we make the assumption that the payoff function G satisfies the
condition A2 and obtain the second theorem of this paper.

2. Preliminaries

In this section, we state some necessary lemmas about function spaces as in [24,25]
that will be used below. Indeed, our main work is to extend the integer order space to a
fractional order function space.

Let T > 0 and α ∈
(

0, T
2

)
be given. As in [24,25], the function β : [0, T] → [0, α] is

defined by

β(s) =

{
2αs/T, s ∈ [0, T/2],
2α− 2αs/T, s ∈ [T/2, T].

(7)

Let s be a positive real number. The space Bs consists of continuous functions f from
Tn to R such that the norm ‖ f ‖Bs is finite (i.e., the following is true):

‖ f ‖Bs = ∑
k∈Zn

(1 + |k|s)| f̂ (k)| < ∞.

In addition, similar to the function space defined in [24,25], an extended space-time
version Bs

α consists of all functions in C([0, T]; Bs) such that ‖ f ‖Bs
a is finite (i.e., we have

the following):
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‖ f ‖Bs
a = ∑

k∈Zn
sup

t∈[0,T]
(1 + |k|s)eβ(t)|k|| f̂ (t, k)| < ∞. (8)

Before we prove some properties of B j
α, we need the following algebra property:

Lemma 1. For any j ∈ N, there exists cj > 0 such that if f ∈ B j
α and g ∈ B j

α, then f g ∈ B j
α with

the estimate
‖ f g‖B j

a
≤ cj‖ f ‖B j

a
‖g‖B j

a
.

The proof of Lemma 1 follows along the same lines as that in [25], except for minor
modifications which are omitted here.

Since the MFG system is a couple of backward and forward evolution equations, we
introduce the operators I+σ and I−σ for the fractional nonhomogeneous heat equation, which
are defined as follows:

(I+σ h)(t, ·) =
∫ t

0
e−(−∆)σ(t−s)h(s, ·)ds, (9)

(I−σ h)(t, ·) =
∫ T

t
e−(−∆)σ(s−t)h(s, ·)ds. (10)

For any j ∈ N and σ ∈ ( 1
2 , 1), we show that I+σ and I−σ are bounded linear operators

from B j
α to B j+2σ

α :

Lemma 2. For any σ ∈ ( 1
2 , 1), if h ∈ Bj

α with
∫
Td h(t, x)dx = 0, then we have

(I+σ h)(t, ·) ∈ B j+2σ
α and

‖(I+σ h)(t, ·)‖B j+2σ
α
≤ C‖h(t, ·)‖B j

α
. (11)

Proof. Through Equation (9) and a convolution formula, we have

( Î+σ h)(t, ·) =
∫ t

0
e−(t−s)|k|2σ

ĥ(s, ·)ds,

and

‖I+σ h‖B j+2σ
α

= ∑
k∈Zn

(
1 + |k|j+2σ

)
sup

t∈[0,T]
eβ(t)|k|

∣∣∣∣∫ t

0
e−(t−s)|k|2σ

ĥ(s, ·)ds
∣∣∣∣.

Since
∫
Td h(t, x)dx = 0, ĥ(s, 0) = 0, then we have∥∥I+σ h
∥∥
B j+2σ

a

≤ 2 ∑
k∈Zn\{0}

|k|j+2σ sup
t∈[0,T]

eβ(t)|k|
∣∣∣∣∫ t

0
e−|k|

2σ(t−s)e−β(s)|k|eβ(s)|k| ĥ(s, k)ds
∣∣∣∣

≤ 2 ∑
k∈Zn\{0}

|k|j+2σ sup
t∈[0,T]

[
eβ(t)|k|

∫ t

0
e−|k|

2σ(t−s)e−β(s)|k| sup
τ∈[0,T]

[
eβ(τ)|k||ĥ(τ, k)|

]
ds

]

≤ 2 ∑
k∈Zn\{0}

[
|k|j sup

τ∈[0,T]
eβ(τ)|k||ĥ(τ, k)|

]
[ sup
t∈|0,T]

|k|2σeβ(t)|k|
∫ t

0
e−|k|

2σ(t−s)−β(s)|k|ds]

≤ 2

[
sup

t∈[0,T]
sup

k∈Zn\{0}
|k|2σeβ(t)|k|

∫ t

0
e−|k|

2σ(t−s)−β(s)|k|ds

]
‖h‖B j

α
.
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Therefore, to verify that I+σ is a bounded linear operator between B j
α and B j+2σ

α , we
have to prove that

sup
t∈[0,T]

sup
k∈Zn\{0}

|k|2σeβ(t)|k|−t|k|2σ
∫ t

0
e|k|

2σs−β(s)|k|ds < ∞.

First, when t ∈ [0, T/2], we have β(s) = 2αs/T by (7). Then, we obtain that

∫ t

0
e|k|

2σs−β(s)|k|ds =
∫ t

0
e|k|

2σs−2αs|k|/Tds =
exp

{
|k|2σt− 2αt|k|/T

}
− 1

|k|2σ − 2α|k|/T
. (12)

Since α ∈ (0, T/2) and σ ∈ ( 1
2 , 1), by Equation (12), we have

sup
t∈[0,T/2]

sup
k∈Zn\{0}

|k|2σeβ(t)|k|−t|k|2σ
∫ t

0
e|k|

2σs−β(s)|k|ds

= sup
t∈[0,T/2]

sup
k∈Zn\{0}

|k|2σ exp
{

2αt|k|/T − t|k|2σ
}
·

exp
{
|k|2σt− 2αt|k|/T

}
− 1

|k|2σ − 2α|k|/T
(13)

= sup
t∈[0,T/2]

sup
k∈Zn\{0}

1− exp
{

2αt|k|/T − t|k|2σ
}

1− 2α(|k|1−2σ)/T

≤ 1
1− 2α/T

.

Next, we consider the case of t ∈ [T/2, T]. From Equation (7), we know β(s) =
2α− 2αs/T. Therefore, we have∫ t

0
e|k|

2σs−β(s)|k|ds =
∫ T/2

0
e|k|

2σs−β(s)|k|ds +
∫ t

T/2
e|k|

2σs−β(s)|k|ds. (14)

The second integral on the right side of (14) can be written as∫ t

T/2
e|k|

2σs−β(s)|k|ds =
∫ t

T/2
e|k|

2σs−2α|k|+2αs|k|/Tds

= e−2α|k|
(

exp
{
|k|2σt + 2αt|k|/T

}
− exp

{
|k|2σT/2 + α|k|

}
|k|2σ + 2α|k|/T

)
. (15)

By combining Equation (12) with Equation (15), we have found that for t ∈ [T/2, T],
the following equality holds:

∫ t

0
e|k|

2s−β(s)|k|ds =
exp

{
|k|2σt− 2αt|k|/T

}
− 1

|k|2σ − 2α|k|/T

+ e−2α|k|
(

exp
{
|k|2σt + 2αt|k|/T

}
− exp

{
|k|2σT/2 + α|k|

}
|k|2σ + 2α|k|/T

)
.

When t ∈ [T/2, T], we set

sup
t∈|T/2,T]

sup
k∈Zn\{0}

|k|2σeβ(t)|k|−t|k|2σ
∫ t

0
e|k|

2σs−β(s)|k|ds ≤ I + I I.

where I and I I are given by
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I = sup
t∈[T/2,T]

sup
k∈Zn\{0}

|k|2σ exp(2α|k| − 2α|k|t/T − t|k|2σ)
exp(|k|2σT/2− α|k|)− 1

|k|2σ − 2α|k|/T
,

I I = sup
t∈[T/2,T]

sup
k∈Zn\{0}

|k|2σ exp(−2α|k|t/T − t|k|2σ)·

exp(|k|2σt + 2αt|k|/T)− exp(|k|2σT/2 + α|k|)
|k|2σ + 2α|k|/T

.

Finally, we will prove that I and I I are bounded. It is obvious that

I = sup
t∈[0,T/2]

sup
k∈Zn\{0}

exp(2α|k| − 2α|k|t/T − t|k|2σ)

1− 2α|k|1−2σ/T

(
exp(|k|2σT/2− α|k|)− 1

)
= sup

t∈[0,T/2]
sup

k∈Zn\{0}

exp(α|k| − 2α|k|t/T − (t− T
2 )|k|2σ)− exp(2α|k| − 2α|k|t/T − t|k|2σ)

1− 2α|k|1−2σ/T
.

Using the conditions t ≥ T/2, σ ∈ ( 1
2 , 1) , α ∈ (0, T/2), and k ∈ Zn\{0}, we have

exp
{
|k|2σT/2− α|k|

}
− 1 > 0, α|k| − 2α|k|t/T − (t− T

2
)|k|2σ < 0.

Then, we have

I ≤ sup
k∈Zn\{0}

1
1− 2α|k|1−2σ/T

≤ 1
1− 2α/T

=
T

T − 2α
. (16)

Now, let us consider I I. As in the above discussion, we have

1− exp
{
|k|2σ

(
T
2
− t
)
+ α|k|

(
1− 2t

T

)}
> 0.

and

I I = sup
t∈[T/2,T]

sup
k∈Zn

1
1 + 2α|k|1−2σ/T

(
1− exp

{
|k|2σ

(
T
2
− t
)
+ α|k|

(
1− 2t

T

)})
≤ sup

k∈Zn\{0}

1
1 + 2α|k|1−2σ/T

= 1. (17)

Based on Equations (13), (16) and (17), we proved that I+σ is a bounded linear operator
and the operator norm satisfies

‖I+σ ‖B j
α→B

j+2σ
α
≤
(

2T
T − 2α

+ 2
)

.

Regarding I−σ , we have a similar result, and we omitted its proof.

Lemma 3. For any σ ∈ ( 1
2 , 1), if h ∈ Bj

α with
∫
Td h(t, x)dx = 0, then we have

(I−σ h)(t, ·) ∈ B j+2σ
α and

‖(I−σ h)(t, ·)‖B j+2σ
α
≤ C‖h(t, ·)‖B j

α
. (18)

At last, we have the following lemma:
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Corollary 1. For any σ ∈ ( 1
2 , 1), if f ∈ B2σ, then

sup
t∈[0,T]

‖e−(−∆)σt f ‖B2σ
α
+ sup

t∈[0,T]
‖e−(−∆)σ(T−t) f ‖B2σ

α
≤ C‖ f ‖B2σ .

Proof. Using the definition B2σ, we have

sup
t∈[0,T]

‖e−(−∆)σt f ‖B2σ
α

= sup
t∈[0,T]

∑
k∈Zn

(
1 + |k|2σ

)
eβ(t)|k|e−t|k|2σ

f̂

≤ ∑
k∈Zn

(
1 + |k|2σ

)
f̂ sup

t∈[0,T]
eβ(t)|k|−t|k|2σ

≤ C| f |B2σ .

Using similar methods, we can find e−(−∆)σ(T−t) f ∈ B2σ
α .

3. Main Result and Its Proof

In this section, we first state the definition of the strong solution for the problems in
Equations (1)–(3). Then, we show the existence and uniqueness theorem and give its proof.

3.1. Strong Solution Formulation

Let P be the projection operator, which removes the mean value of the periodic function
(i.e., the following is true):

P f = f − 1
vol(Tn)

∫
Tn

f (x)dx.

We define w = Pu and µ = Pm = m − m̄, where m̄ = 1/ vol(Tn). Since m is a
probability measure at each time, its integral in the spatial domain will always be equal to
one. Then, from Equation (1), we can find the evolution equation of w:

wt − (−∆)σw + PH(t, x, Dw, µ) = 0,

Additionally, from Equation (2), we have the following evolution equation for µ:

µt + (−∆)σµ + div
(
µHp(t, x, Dw, µ)

)
+ m̄ div

(
Hp(t, x, Dw, µ)

)
= 0.

Of course, the initial-terminal condition is taken as w(T, ·) = wT := PuT , µ(0, ·) =
µ0 := m0 − m̄.

Before writing the Duhamel formula for w and µ. We assume thatPH can be expressed as

PH = Pb(t, x)µ + PΥ(t, x, Dw, µ).

The conditions satisfied by b and Υ will be given below.
We then have the following Duhamel formula for µ:

µ(t, ·) =e−(−∆)σtµ0

+ I+σ
(
div
(
µHp(·, ·, Dw, µ)

))
(t, ·) + m̄(I+σ (div(Hp(·, ·, Dw, µ))))(t, ·),

(19)

In addition, by integrating backward in time, we find

w(t, ·) = e−(−∆)σ(T−t)wT − I−σ (PΥ(·, ·, Dw, µ))− I−σ (P(bµ))(t, ·). (20)

Indeed, by substituting Equation (19) into Equation (20), we obtain the following
equation for w:
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w(t, ·) =e−(−∆)σ(T−t)wT − I−σ (PΥ(·, ·, Dw, µ))− I−σ (P(be(−∆)σ ·µ0))(t)

− I−σ
(
P(bI+σ div(µHp(·, ·, Dw, µ))(·)

)
)(t)

− m̄I−σ
(
P(bI+ div(Hp(·, ·, Dw, µ))(·))

)
(t).

(21)

We say (u, m) is a strong solution of the problems in Equations (1)–(3) if (w, µ) ∈
B2σ+1

α ×B2σ
α such that the integral equalities in Equations (21) and (19) hold.

3.2. Main Theorem

In order to obtain the existence of strong solutions for the problems in Equations (1)–(3),
we assume that the HamiltonianH satisfies the following assumption:

(A1) Let σ ∈ ( 1
2 , 1), Υ(·, ·, 0, 0) = 0 andHp(·, ·, 0, 0) = 0. There exists a continuous func-

tion Φ1 : B2σ+1
α ×B2σ

α → R such that as (w1, w2, µ1, µ2)→ 0, we have Φ1(w1, w2, µ1, µ2)→
0 and

‖Hp(·, ·, Dw1, µ1)−Hp(·, ·, Dw2, µ2)‖(B1
α)

n

≤ Φ1(w1, w2, µ1, µ2)

(
‖Dw1 − Dw2‖(B2σ

α )
n + ‖µ1 − µ2‖B2σ

α

)
.

(22)

There exists a continuous function Φ2 : B2σ+1
α ×B2σ

α → R so that as (w1, w2, µ1, µ2)→
0, we have Φ2(w1, w2, µ1, µ2)→ 0 and

‖PΥ(·, ·, Dw1, µ1)− PΥ(·, ·, Dw2, µ2)‖B1
α

≤ Φ2(w1, w2, µ1, µ2)
(
‖Dw1 − Dw2‖(B2σ

α )n + ‖µ1 − µ2‖B2σ
α

)
.

(23)

From the preparations above, we now give the first main theorem. Our proof depends
on the Banach fixed-point theorem as in [25]:

Theorem 1. Let T > 0 and α ∈ (0, T/2) be given. Let assumption (A1) be satisfied, and assume
b ∈ B1

α. There exists δ > 0 such that if uT and the probability measure m0 are such that wT = PuT
and µ0 = m0 −m satisfy ‖wT‖B2σ+1 + ‖µ0‖B2σ < δ, then the system in Equations (1)–(3) has a
strong, locally unique solution (u, m) ∈ B2σ+1

α ×B2σ
α .

Proof. Let (a0, b0) be

(a0, b0) =
(

e−(−∆)σ(T−t)wT − I−σ (P(be−(−∆)σ ·µ0))(t), e−(−∆)σtµ0

)
. (24)

We set X to be the closed ball in B2σ+1
α ×B2σ

α centered at a point (a0, b0) with a radius
r∗, where r∗ will be determined later:

X =
{
(w, µ) ∈ B2σ+1

α ×B2σ
α : ‖w− a0‖B2σ+1 + ‖µ− b0‖B2σ < r∗

}
.

We define a mapping T (w, µ) = (T1(w, µ), T2(w, µ)) on X based on Equations (21)
and (20) (i.e., we have the following):

T1(w, µ) =e−(−∆)σ(T−t)wT − I−σ (PΥ(·, ·, Dw, µ))− I−σ (P(be−(−∆)σ ·µ0))(t)

− I−σ (P(bI+σ div(µHp(·, ·, Dw, µ))(·)))(t) (25)

− m̄I−σ (P(bI+σ div(Hp(·, ·, Dw, µ))(·)))(t),

T2(w, µ) =e−(−∆)σtµ0 + I+σ (div(µHp(·, ·, Dw, µ)))(t, ·) (26)

+ m̄(I+σ (div(Hp(·, ·, Dw, µ))))(t, ·).
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First, we prove that T maps X to X. Because of µ0 ∈ B2σ, it is easy to know that b0 =

e−(−∆)σtµ0 ∈ B2σ
α from the inference in Corollary 1. By the definition of a0 in Equation (24)

and the property of I−σ given earlier in the previous section, we have

‖a0‖B2σ+1
α

= ‖e−(−∆)σ(T−t)wT − I−σ (P(be−(−∆)σ ·µ0))(t)‖B2σ+1
α

≤ ‖e−(−∆)σ(T−t)wT‖B2σ+1
α

+ ‖I−σ (P(be−(−∆)σ ·µ0))(t)‖B2σ+1
α

≤ ‖e−(−∆)σ(T−t)wT‖B2σ+1
α

+ C‖b‖B1
α
‖e−(−∆)σ ·µ0‖B2σ

α
.

Using b ∈ B1
α and wT ∈ B2σ+1, it is easy to know that a0 ∈ B2σ+1

α .
To demonstrate that T maps X to X, we will only need to show that

‖T1(w, µ)− a0‖B2σ+1
α
≤ r∗/2 and ‖T2(w, µ)− b0‖B2σ

α
≤ r∗/2.

We begin with T1. Recalling the definition in Equation (25), we only need to prove the
following inequality:

‖I−σ (PΥ(·, ·, Dw, µ))‖B2σ+1
α
≤ r∗/6, (27)

‖I−σ
(
P(bI+ div(µHp(·, ·, Dw, µ))(·))

)
(t)‖B2σ+1

α
≤ r∗/6, (28)

‖m̄I−σ
(
P(bI+ div(Hp(·, ·, Dw, µ))(·))

)
(t)‖B2σ+1

α
≤ r∗/6. (29)

By assuming Equation (22) in (A1) and the property of I−σ , we have

‖I−σ (PΥ(·, ·, Dw, µ))‖B2σ+1
α
≤ C‖PΥ(·, ·, Dw, µ)‖B1

α

≤ CΦ2(w, 0, µ, 0)(‖Dw‖B2σ
α
+ ‖µ‖B2σ

α
)

≤ CΦ2(w, 0, µ, 0)(‖w‖B2σ+1
α

+ ‖µ‖B2σ
α
). (30)

Since w ∈ X and µ ∈ X, we have

‖w‖B2σ+1
α

+ ‖µ‖B2σ
α
≤ ‖a0‖B2σ+1

α
+ ‖b0‖B2σ

α
+ r∗.

Let µ0 and wT be small enough that

‖a0‖B2σ+1
α

+ ‖b0‖B2σ
α
≤ r∗. (31)

By combining Equations(30), (38) and (31), we have

‖I−σ (PΥ(·, ·, Dw, µ))‖B2σ+1
α
≤ 2Cr∗Φ2(w, 0, µ, 0). (32)

Since Φ2 is continuous and Φ2(0, 0, 0, 0) = 0, we may have µ0, wT and r∗ at small
enough values such that

max
(w,µ)∈X

Φ2(w, 0, µ, 0) ≤ 1
12Cr∗

.

Then, Equation (32) implies Equation (27).
Next, we demonstrate Equation (28). By the properties of I−σ and I+σ , and the fact

that the divergence is a first-order operator, combined with the algebra porperty of B j
α in

Lemma 1, we have
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‖I−σ (P(bI+ div(µHp(·, ·, Dw, µ))(·)))(t)‖B2σ+1
α

≤ C‖(P(bI+ div(µHp(·, ·, Dw, µ))(·)))(t)‖B1
α

≤ C‖b‖B1
α
‖(I+ div(µHp(·, ·, Dw, µ))(·))(t)‖B1

α

≤ C‖b‖B1
α
‖(I+ div(µHp(·, ·, Dw, µ))(·))(t)‖B2σ

α

≤ C‖b‖B1
α
‖(div(µHp(·, ·, Dw, µ))(·))(t)‖B0

α

≤ C‖b‖B1
α
‖µ‖B1

α
‖Hp(·, ·, Dw, µ)(·)(t)‖B1

α
.

(33)

Since 1
2 < σ < 1, w ∈ X, and µ ∈ X, we have

‖µ‖B1
α
≤ ‖µ‖B2σ

α
≤ ‖a0‖B2σ+1

α
+ ‖b0‖B2σ

α
+ r∗.

From assumption (23) in (A1), we have

‖Hp(·, ·, Dw, µ)(·)(t)‖B1
α
≤ Φ1(w, 0, µ, 0)

(
‖Dw‖B2σ

α
+ ‖µ‖B2σ

α

)
≤ Φ1(w, 0, µ, 0)

(
‖w‖B2σ+1

α
+ ‖µ‖B2σ

α

)
≤ Φ1(w, 0, µ, 0)

(
‖a0‖B2σ+1

α
+ ‖b0‖B2σ

α
+ r∗

)
.

(34)

We again require that µ0 and wT are small enough that

‖a0‖B2σ+1
α

+ ‖b0‖B2σ
α
≤ r∗. (35)

By combining Equations (33) and (34) with Equation (35), we have

‖I−σ
(
P
(
bI+ div

(
µHp(·, ·, Dw, µ)

)
(·)
))
(t)‖B2σ+1

α

≤4C(r∗)2 max
(w,µ)∈X

Φ1(w, 0, µ, 0)‖b‖B1
α
. (36)

Thus, if r∗ is chosen to be a value small enough that

4C(r∗)2 max
(w,µ)∈X

Φ1(w, 0, µ, 0)‖b‖B1
α
≤ r∗

6
,

then Equation (36) implies Equation (28).
Finally, we will demonstrate Equation (29). Similar to the proof of Equation (28),

we have

‖m̄I−σ (P(bI+ div(Hp(·, ·, Dw, µ))(·)))(t)‖B2σ+1
α

≤Cm̄‖(P(bI+ div(Hp(·, ·, Dw, µ))(·)))(t)‖B1
α

≤Cm̄‖b‖B1
α
‖(I+ div(Hp(·, ·, Dw, µ))(·))(t)‖B1

α

≤Cm̄‖b‖B1
α
‖Hp(·, ·, Dw, µ)(·)(t)‖B1

α

≤Cm̄‖b‖B1
α

max
(w,µ)∈X

Φ1(w, 0, µ, 0)(‖a0‖B2σ+1
α

+ ‖b0‖B2σ
α
+ r∗).

(37)

If µ0 and wT are chosen to be values small enough that

‖a0‖B2σ+1
α

+ ‖b0‖B2σ
α
≤ r∗ and max

(w,µ)∈X
Φ1(w, 0, µ, 0) ≤ 1

12Cm̄‖b‖B1
α

,

then Equation (37) implies Equation (29).
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Next, we consider T2. Recalling the definition in Equation (26), we only need to prove
the following inequalities:

‖I+σ
(
div
(
µHp(·, ·, Dw, µ)

))
(t, ·)‖B2σ

α
≤ r∗

4
, (38)

‖m̄(I+σ (div(Hp(·, ·, Dw, µ))))(t, ·)‖B2σ
α
≤ r∗

4
. (39)

We begin by establishing Equation (38). It is obvious that

‖I+σ (div(µHp(·, ·, Dw, µ)))(t, ·)‖B2σ
α
≤ C‖(div(µHp(·, ·, Dw, µ)))(t, ·)‖B0

α

≤ C‖µ‖B1
α
‖Hp(·, ·, Dw, µ)(t, ·)‖B1

α
. (40)

Adopting a method similar to that in Equation (28), we know if r∗ is chosen to be small
enough that

4C(r∗)2 max
(w,µ)∈X

Φ1(w, 0, µ, 0) ≤ r∗

4
,

then Equation (40) implies Equation (38).
Then, we demonstrate Equation (39). It is immediate that

‖m̄(I+σ (div(Hp(·, ·, Dw, µ))))(t, ·)‖B2σ
α

≤Cm̄‖Hp(·, ·, Dw, µ)(t, ·)‖B1
α

≤Cm̄ max
(w,µ)∈X

Φ1(w, 0, µ, 0)(‖a0‖B2σ+1
α

+ ‖b0‖B2σ
α
+ r∗).

(41)

If r∗, µ0 and wT are chosen to be small enough that

max
(w,µ)∈X

Φ1(w, 0, µ, 0) ≤ min

{
1

12Cm̄‖b‖B1
α

,
1

8Cm̄

}
,

then Equation (41) implies Equation (39). Therefore, we proved that when choosing r∗, µ0,
and wT appropriately, T maps X to X.

Now, we are ready to demonstrate the contraction estimate (i.e., we will demonstrate
that if r∗, µ0, and wT are sufficiently small, then there exists λ ∈ (0, 1) such that for all
(w1, µ1) ∈ X and (w2, µ2) ∈ X, we have the following):

‖T (w1, µ1)− T (w2, µ2)‖B2σ+1
α ×B2σ

α
≤ λ(‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α
). (42)

Considering the definitions in Equations (25) and (26), we will demonstrate that

‖T1(w1, µ1)− T1(w2, µ2)‖B2σ+1
α
≤ λ1

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
,

‖T2(w1, µ1)− T2(w2, µ2)‖B2σ
α
≤ λ2

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
.

It can be seen that repeated use of the triangle inequality implies that it is sufficient to
establish the following bounds:
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∥∥I−σ (P(Υ(·, ·, Dw1, µ1)− Υ(·, ·(Dw2, µ2))))
∥∥
B2σ+1

α
≤ 1

6

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
, (43)∥∥I−σ

(
P
(
bI+

(
div
(
µ1Hp(·, ·Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2)

))))∥∥
B2σ+1

α

≤ 1
6

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
, (44)

m̄
∥∥I−σ

(
P
(
bI+σ

(
div
(
Hp(·, ·Dw1, µ1)−Hp(·, ·, Dw2, µ2)

))))∥∥
B2σ+1

≤ 1
6

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
, (45)∥∥I+σ

(
div
(
µ1Hp(·, ·, Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2)

))∥∥
B2σ

α

≤ 1
6

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
, (46)

m̄
∥∥I+σ

(
div
(
Hp(·, ·Dw1, µ1)−Hp(·, ·Dw2, µ2)

))∥∥
B2σ

α

≤ 1
6

(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
. (47)

We begin by establishing Equation (43). By following the assumptions and using
the tools from before, such as triangle inequalities, the properties of B j

α, and the mapping
properties of I+σ and I−σ , we have

‖I−σ (P(Υ(·, ·, Dw1, µ1)− Υ(·, ·Dw2, µ2)))‖B2σ+1
α

≤ C‖P(Υ(·, ·, Dw1, µ1)− Υ(·, ·Dw2, µ2))‖B1
α

≤ CΦ2(w1, w2, µ1, µ2)(‖Dw1 − Dw2‖B2σ
α
+ ‖µ1 − µ2‖B2σ

α
)

≤ CΦ2(w1, w2, µ1, µ2)(‖w1 − w2‖B2σ+1
α

+ ‖µ1 − µ2‖B2σ
α
).

(48)

Since Φ2 is continuous and Φ2(0, 0, 0, 0) = 0, if r∗, µ0, and wT are small enough
such that

max
(w1,µ1),(w2,µ2)∈X

Φ2(w1, w2, µ1, µ2) ≤
1

6C
,

then Equation (48) implies Equation (43).
Now, we will demonstrate Equation (44). Similar to the above proof, we have the

following facts:

‖I−σ
(
P
(
bI+(div(µ1Hp(·, ·Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2)))

))
‖B2σ+1

α

≤ C‖b‖B1
α

∥∥(µ1Hp(·, ·Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2))
∥∥
B1

α

≤ C‖b‖B1
α
‖(µ1Hp(·, ·Dw1, µ1)− µ1Hp(·, ·, Dw2, µ2))‖B1

α

+ C‖(µ1Hp(·, ·Dw2, µ2)− µ2Hp(·, ·, Dw2, µ2))‖B1
α

≤ C‖b‖B1
α
(‖µ1‖B1

α
‖Hp(·, ·Dw1, µ1)−Hp(·, ·, Dw2, µ2)‖B1

α

+ ‖µ1 − µ2‖B1
α
‖Hp(·, ·, Dw2, µ2)‖B1

α
) (49)

≤ Cr∗‖b‖B1
α
(‖Hp(·, ·Dw1, µ1)−Hp(·, ·, Dw2, µ2)‖B1

α

+ Cr∗ max
(w,µ)∈X

Φ1(w, 0, µ, 0)‖µ1 − µ2‖B2σ
α
)

≤ Cr∗‖b‖B1
α

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2)‖w1 − w2‖B2σ+1
α

+ Cr∗‖b‖B1
α

(
max

(w1,µ1),(w2,µ2)∈X
Φ1(w1, w2, µ1, µ2) + max

(w,µ)∈X
Φ1(w, 0, µ, 0)

)
‖µ1 − µ2‖B2σ

α
.
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Since Φ1 is continuous and Φ1(0, 0, 0, 0) = 0, if r∗, µ0, and wT are small enough, we
can obtain

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2) + max
(w,µ)∈X

Φ1(w, 0, µ, 0) ≤ 1
6Cr∗‖b‖B1

α

.

Then, Equation (49) implies Equation (44).
Next, we will demonstrate Equation (45). Similar to the above proof, we have the

following facts:

m̄
∥∥I−σ (P(bI+σ (div(Hp(·, ·Dw1, µ1)−Hp(·, ·, Dw2, µ2)))))

∥∥
B2σ+1

α

≤ Cm̄‖b‖B1
α

∥∥(Hp(·, ·Dw1, µ1)−Hp(·, ·, Dw2, µ2))
∥∥
B1

α

≤ Cm̄‖b‖B1
α

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2)
(
‖w1 − w2‖B2σ+1

α
+ ‖µ1 − µ2‖B2σ

α

)
.

(50)

If r∗, µ0, and wT are small enough such that

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2) ≤ min

{
1

6Cm̄‖b‖B1
α

,
1

12Cr∗‖b‖B1
α

}
,

then Equation (50) implies Equation (45).
Our task now moves to proving Equation (46). It is immediate that∥∥I+σ

(
div(µ1Hp(·, ·, Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2))

)∥∥
B2σ

α

≤ C
∥∥µ1Hp(·, ·, Dw1, µ1)− µ2Hp(·, ·, Dw2, µ2)

∥∥
B1

α

≤ C‖µ1‖B1
α

∥∥Hp(·, ·, Dw1, µ1)−Hp(·, ·, Dw2, µ2)
∥∥
B1

α

+ C‖Hp(·, ·, Dw2, µ2)‖B1
α
‖µ1 − µ2‖B1

α

≤ Cr∗ max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2)‖w1 − w2‖B2σ+1

+ Cr∗
(

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2) + max
(w,µ)∈X

Φ1(w, 0, µ, 0)
)
‖µ1 − µ2‖B2σ

α
.

(51)

If r∗, µ0, and wT are small enough, we will have

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2) ≤ min

{
1

6Cm̄‖b‖B1
α

,
1

12Cr∗‖b‖B1
α

,
1

12Cr∗

}
.

Then, Equation (51) implies Equation (46).
Finally we have to show Equation (47). It is easy to find that

m̄‖I+σ (div(Hp(·, ·Dw1, µ1)−Hp(·, ·Dw2, µ2)))‖B2σ
α

≤ m̄
∥∥(Hp(·, ·Dw1, µ1)−Hp(·, ·Dw2, µ2)

)∥∥
B1

α

≤Cm̄ max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2)(‖w1 − w2‖B2σ+1
α

+ ‖µ1 − µ2‖B2σ
α
).

(52)

If r∗, µ0 and wT are small enough, we have

max
(w1,µ1),(w2,µ2)∈X

Φ1(w1, w2, µ1, µ2) ≤ min

{
1

6Cm̄‖b‖B1
α

,
1

12Cr∗‖b‖B1
α

,
1

12Cr∗
,

1
6Cm̄

}
.

Then, Equation (52) implies Equation (47).
We established the estimates in Equations (43)–(47) and successfully proved the con-

stant λ = 5
6 in Equaiton (42). This completes the proof of Theorem 1.
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4. The Payoff Problem

The above formulation and existence theorem can be readily adapted to the payoff
problem, in which Equation (3) is replaced by

m(0, x) = m0(x), u(T, x) = G(m(T, ·)). (53)

The needed modification in the formulation is that Equation (21) is replaced with

w(t, ·) =e−(−∆)σ(T−t)PG(µ(T, ·))− I−σ (PΥ(·, ·, Dw, µ))− I−σ
(
P
(

be(−∆)σ ·µ0

))
(t)

− I−σ
(
P
(
bI+σ div

(
µHp(·, ·, Dw, µ)

)
(·)
))
(t)

− m̄I−σ
(
P
(
bI+σ div

(
Hp(·, ·, Dw, µ)

)
(·)
))
(t).

In addition, we need to make assumptions about the payoff function PG:
(A2) PG(0) = 0, and PG is in the neighborhood of the origin in B2σ+1. Specifically,

we assume that there exists c > 0 and ε > 0 such that for all a1, a2 satisfies |a1|B2σ < ε and
|a2|B2σ < ε:

|PG(a1)− PG(a2)|B2σ+1 ≤ c|a1 − a2|B2σ .

For example, G(a) = (−∆)−
1
2 a and thus certainly satisfies this assumption:

Theorem 2. Let T > 0 and α ∈ (0, T/2) be given. Let assumptions (A1) and (A2) be satisfied,
and assume b ∈ B1

α. There exists δ > 0 such that if uT and the probability measure m0 are such
that wT = PuT and µ0 = m0 −m satisfy |µ0|B2σ < δ, then the system in Equations (1), (2) and
(53) has a strong, locally unique solution (u, m) ∈ B2σ+1

α ×B2σ
α .

The proof of this result is quite similar to that given earlier for Theorem 1, and thus it
was omitted.
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