
����������
�������

Citation: Khader, M.M.; Adel, M.

Modeling and Numerical Simulation

for Covering the Fractional

COVID-19 Model Using Spectral

Collocation-Optimization Algorithm.

Fractal Fract. 2022, 6, 363. https://

doi.org/10.3390/fractalfract6070363

Academic Editors: Lanre Akinyemi,

Mostafa M. A. Khater, Mehmet Senol

and Hadi Rezazadeh

Received: 26 May 2022

Accepted: 27 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Modeling and Numerical Simulation for Covering the
Fractional COVID-19 Model Using Spectral
Collocation-Optimization Algorithm
Mohamed M. Khader 1,2,* and Mohamed Adel 3

1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh 11566, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt
3 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt;

adel@sci.cu.edu.eg or mohammedadel@cu.edu.eg
* Correspondence: mmkhader@imamu.edu.sa

Abstract: A primary aim of this study is to examine and simulate a fractional Coronavirus disease
model by providing an efficient method for solving numerically this important model.
In the Liouville-Caputo sense, the examined model consists of five fractional-order differential equa-
tions. With the Vieta-Lucas spectral collocation method, the unknown functions can be discretized
and fractional derivatives can be obtained. With the system of nonlinear algebraic equations obtained,
we can simplify the examined problem. In this system, the unknown coefficients are discovered by
constructing and solving it as a restricted optimization problem. Some theoretical investigations
are stated to examine the convergence analysis and stability analysis of the proposed approach and
model. The results produced using the fractional finite difference technique (FDM), where the frac-
tional differentiation operator was discretized using the Grünwald-Letnikov approach, are compared.
The FDM relies heavily upon accurately turning the proposed model into a system of algebraic
equations. To assess the algorithm’s correctness and usefulness, a numerical simulation is included.

Keywords: fractional COVID-19 model; LC-fractional derivative; Vieta-Lucas polynomials; spectral
collocation method; optimization algorithms; convergence analysis; numerical simulation

MSC: 65N20; 41A30

1. Introduction

Coronavirus infection is one of the most well-known infections nowadays
(COVID-19) [1]. This pandemic sickness, which was designated by the World Health
Organization (WHO) on March 11, compelled large and small countries to take preventa-
tive steps in order to save the lives of its inhabitants and residents. The global economy has
suffered as a result of the spread of this pandemic sickness. Companies, colleges, markets,
and a variety of other institutions have adopted unusual precautionary steps as a result
of this widely spread pandemic sickness. Travel within and outside of the countries has
been halted for several months, and curfews have been implemented to reduce crowding
and hence disease spread, according to [2]. The danger of this pandemic comes from its
incredible ability to spread and the various types of infection that humans can contract.

Mathematical modeling plays an important role in our life [3–5]. Mathematical models
are crucial not only in the forecast of disease outbreaks, but also in the prevention and treat-
ment of disease outbreaks, according to [6]. One of the most important uses for modeling is
to research infectious illnesses and how to develop effective control techniques. Depending
on the assumptions made about transmission methods, there are a variety of models. For
example, susceptible-infected-susceptible (SIS) systems have been used to model nonlinear
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occurrence rates and double pandemic theories [7], SIR (susceptible-infected-recovered)
models have been used to consider whether or not an individual is aware of the existence
of a disease [8], and many other models [9–11]. Researchers have been using and constructing
mathematical models to gain insight into the pandemic’s mode of spread, propagation, effect,
prevention, and control, as well as the effects of preventive measures like handwashing with
disinfection and using hand sanitizer, since the debut of COVID-19 [12–16].

In reality, we cannot examine infectious disease dynamical systems using standard
derivatives and integrals. Ordinal operators (derivatives and integrals) are not suited
when the situation is unexpected, such as in the case of COVID-19, due to uncertainties
related to the pandemic. Fractional-order models are more appropriate and accurate than
integer-order models because they are more consistent with real-world challenges [17,18].

Finding a novel fractional derivative with non-singular kernels is critical, according
to some writers, to address the demand for mathematical modeling of numerous real-world
situations in various sectors of daily life [19,20]. Also, the role of these new operators are
appearing in many applications like engineering, chemistry, electricity, and many other
applications [21,22]. Because fractional differential equations (FDEs) rarely have a precise
solution, they are frequently studied using approximate techniques [23–25]. The fractional
order will be studied in this article in the Liouville-Caputo meaning (LC).

Definition 1. The fractional derivative Dα of order α in the sense of Liouville-Caputo of a function
ϕ(t) is defined as [26]:

Dα ϕ(t) =
1

Γ(m− α)

∫ t

0

ϕ(m−1)(τ)

(t− τ)α−m+1 dτ, t > 0, m− 1 < α ≤ m, m ∈ N.

Following are a few properties of the LC-fractional derivative operator [20].
For some constants ci, i = 0, 1, . . . , n, we have:

Dα

(
n

∑
i=0

ciψi(t)

)
=

n

∑
i=0

ciDαψi(t), (1)

and

Dαtn =
Γ(n + 1)

Γ(n + 1− α)
tn−α, n > α− 1. (2)

Definition 2. The shifted Grünwald-Letnikov fractional derivative is defined as [20]:

dα ϕ(t)
dtα

= lim
h−→0

1
hα

[ t
h ]+1

∑
i=0

(−1)i
(

α
i

)
ϕ(t− (i− 1)h), h ∈ R is a constant. (3)

Lemma 1. ([27]) Assume that ρ a constant, if | t |< ρ and ρ ϕ(t) can be expressed in terms
of a power series. Then

Dα
R ϕ(τ) =

1
hα

∆α
h ϕ(nh) + O(h), (h −→ 0), (4)

for 0 < α < ρ and a series of step size h, τ
h ∈ N, where Dα

R is the RL fractional derivative; and

∆α
h ϕ(nh) =

n

∑
i=0

(−1)i
(

α
i

)
ϕ(tn−i).

In the instance of LC sense, we can find the following by considering the relation
between both definitions [27] for 0 < α ≤ 1:

Dα ϕ(τ) =
1
hα

∆α
h ϕ(nh)− τ−α

Γ(1− α)
ϕ(0) + O(h), (h −→ 0). (5)
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For more properties, and theoretical results [19,20].
Many researchers have presented a variety of numerical techniques to study and simulate

the behavior of solutions for differential equations, including the finite difference method [25],
the finite volume method [28], spectral methods [29], and many others [22,30].
One of the most effective techniques for simulating FDEs is the spectral approaches. The
most well-known virtue of these techniques are their capacity to produce reliable results
with very low degrees of freedom error [31]. Some polynomials, such as Vieta-Lucas
polynomials, have an orthogonality property that can be utilized to estimate functions
on the interval [a, b]. These polynomials play a crucial part in the FDEs [31] techniques.
The Vieta-Lucas spectral collocation approach was used in this research to discretize the un-
known functions and fractional derivatives of the proposed model’s solution, and the model
under consideration was turned into a simple system of nonlinear algebraic equations
using the method.

The fundamental goal of this study, as well as its originality, is to expand the Covid-19
system to a fractional-order model. The numerical solution for the suggested model is
derived utilizing the spectral collocation approach to attain this goal. The unknown
coefficients of the series-solution are discovered by constructing and solving the ob-
tained nonlinear system of algebraic equations as a restricted optimization problem,
substantially simplifying it to find these coefficients and the solution. We also com-
pare the suggested method via fractional FDM to the Grünwald-Letnikov approach.
The qualitative analysis of the model is examined. Finally, we present comparison research.
We emphasize the study’s fundamental weakness, which is the lack of real data, thus we
examine the model from a theoretical standpoint using its equivalent system of ODEs.
The manuscript is structured as following: Section 2 contains preliminaries and some
concepts concerning the model formulation and proves the nonnegative solutions, equi-
librium points, and the stability of the model; in addition it defines some concepts about
the introduced polynomials. Section 3 presents an approximate of the LC-derivative and
the convergence analysis. Section 4 gives numerical implementation the proposed methods,
where we implement the proposed method, and the fractional FDM. In addition, numer-
ical simulation is given in Section 5. Finally, in Section 6, we give the conclusion as well
as future work that is planned.

2. Preliminaries and Some Concepts
2.1. General Notes and Formulation the Fractional Covid-19 Model

Based on the natural death rate of susceptible individuals φ, a constant increase ε
in the susceptible population is maintained. People’s susceptibility will decrease at con-
stant rates γ1 and γ2 as they come in contact with exposed or infected individuals, leading
to a greater number of exposed individuals. As individuals exposed to Covid-19 become
infected, θ + φ + ρ1 decreases and increases; in this formula, θ represents a patient’s re-
covery rate from exposure to Covid-19, and ρ1 represents the mortality rate of individuals
infected with it. Likewise, as a percentage of recovered individuals die due to natural
causes, the number of exposed, infected, and quarantined individuals declines, and oth-
ers [32,33]. Furthermore, the number of individuals quarantined in relation to the total
number of individuals exposed increases by q1 and decreases at rate (Λ + φ + ρ2)Q, whereas
q is the recovery rate from quarantine to recovery and ρ2 is the death rate of quarantined
individuals.

Consider the following classifications in this population:

N(t): the whole human population,
S(t): Susceptible individuals,
E(t): Exposed individuals,
I(t): Infected individuals,
Q(t): Quarantined persons,
R(t): Those who have recovered/removed themselves from Covid-19.
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As a result of these considerations, the following nonlinear system of FDEs is proposed
as a mathematical model to characterize Covid-19 propagation dynamics (∀ t ≥ 0):

DνS(t) = ε− (γ1 I(t) + γ2E(t))S(t)− φS(t),

DνE(t) = (γ1 I(t) + γ2E(t))S(t)− (q1 + ω + α + φ)E(t),

Dν I(t) = αE(t)− (θ + φ + ρ1)I(t),

DνQ(t) = q1E(t)− (Λ + φ + ρ2)Q(t),

DνR(t) = ωE(t) + θ I(t) + ΛQ(t)− φR(t).

(6)

The SEIQR model’s employed coefficients (parameters) are defined as follows and
Figure 1 [34]: γ1 and γ2 are contact rates of susceptible individuals with infected indi-
viduals and susceptible individuals with exposed individuals, respectively; q1 and q2 are
the quarantined rates of exposed individuals and infected individuals, respectively; Λ, ω
and θ are the recovery rates of quarantine to recovered, exposed individuals due to immu-
nity during the latent period, and of exposed individuals due to immunity, respectively;
ρ2 and ρ1 are the death rates caused by COVID-19 in confined individuals and infected
individuals, respectively; α represent the rate at which people who have been exposed
to the virus get infected following a latent period; ε and φ represent the recruitment rate
of individuals and the natural death rate of individuals, respectively.

Figure 1. Flowchart depicting the kinetics of COVID-19 propagation in an SEIQR model.

The total population is N(t) = S(t) + E(t) + I(t) + Q(t) + R(t). Let S0, E0, I0, Q0 and
R0 reflect the original sizes of the subpopulations vulnerable, exposed, infected, quaran-
tined, and recovered. In addition, the following requirements are met:

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, R(0) = R0.

Using this model (6) in its fractional version, we may more clearly assess the impact
of the COVID-19 pandemic’s transmission in the future and in past, thanks to the memory
effect of fractional derivatives. While mathematical models with integer derivatives are
crucial for understanding the dynamics of epidemiological systems, they have certain limits
because these systems lack memory or non-local effects, and hence these models in their
current state are not always appropriate. As a result, in order to effectively examine various
natural phenoms, it is important to convert several epidemiological models into FDEs.
FDEs are extensively used in the study of unusual events in nature and the theory of com-
plex systems in general, and they take into account the curve’s characteristics to a large
extent. Finally, it can explain temporal delays, fractal features, and other phenomena.
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The following two cases are considered [34] to derive and compute the reproductive
number R0:

1. In the absence of COVID-19, the system ξ0 =
(
S0
∗, E0
∗, I0
∗ , Q0

∗, R0
∗
)
= (α/φ, 0, 0, 0, 0)

as equilibrium point.
2. Otherwise, the equilibrium assumes the form ξ1 =

(
S1
∗, E1
∗, I1
∗ , Q1

∗, R1
∗
)
, where

S1
∗ =

(q1 + ω + α + φ)(θ + φ + ρ1)

γ1α + γ2(θ + φ + ρ1)
, E1

∗ =

(
ε− φS1

∗
)
(θ + φ + ρ1)

[γ1α + γ2(θ + φ + ρ1)]S1∗
,

I1
∗ =

αE1
∗

θ + φ + ρ1
, Q1

∗ =
q1E1
∗

Λ + φ + ρ2
, R1

∗ =
ωE1
∗ + θ I1

∗ + ΛQ1
∗

φ
.

The Jacobian matrix of the system (6) in the cases of ξ0 and ξ1 are, respectively [34]:

F =


γ2ε
φ

γ1ε
φ 0 0

0 0 0 0
0 0 0 0
0 0 0 0

, V =


ω + α + φ + q1 0 0 0

−α θ + φ + ρ1 0 0
−q1 0 Λ + φ + ρ2 0
−ω −θ −Λ φ

.

The basic reproductive number is calculated by R0 = ρ
(

FV−1) and is defined as the av-
erage number of secondary infections created when one sick individual is introduced into
a group of susceptible people [34], where ρ stands for the spectral radius of the generation
matrix FV−1 of the model structure (6) and take the following formula [35]:

R0 =
ε[γ2(θ + φ + ρ1) + γ1α]

(ω + α + φ + q1)(θ + φ + ρ1)
. (7)

2.2. Nonnegative Solutions, Stability and Equilibrium Points

Assume that R5
+ = {X ∈ R5 : X ≥ 0} and X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T ,

and for 0 < ν ≤ 1, let f (x), Dν f (x) ∈ C[a, b], then from the generalized mean value
theorem (GMVT) [36], we have [37]:

f (x) = f (a) +
1

Γ(ν)
Dν f (δ)(x− a)ν, with 0 ≤ δ ≤ x, ∀ x ∈ [a, b].

In view of GMVT, if Dν f (x) ≥ 0, ∀ x ∈ (0, b) then f (x) is increasing ∀ x ∈ [0, b] and
if Dν f (x) ≤ 0, ∀ x ∈ (0, b) then f (x) is decreasing ∀ x ∈ [0, b].

Theorem 1 ([38]). (S(t), E(t), I(t), Q(t), R(t))T a unique solution of (6) and remains in R5
+.

Theorem 2 ([39,40]). For the following fractional nonlinear dynamical system:

Dνxi(t) = fi(x1, x2, x3, x4, x5), i = 1, 2, 3, 4, 5, 0 < ν ≤ 1, (8)

with x1(0) = x10, x2(0) = x20, x3(0) = x30, x4(0) = x40, x5(0) = x50, the equilibrium point
χ∗ = (x∗1 , x∗2 , x∗3 , x∗4 , x∗5) is locally asymptotically stable if the Matignon’s conditions [40] given by:

|arg(λi)| >
π

2
ν, i = 1, 2, 3, 4, 5,

are satisfied, where λi are the eigen-values of the Jacobian matrix J evaluated at the equilibrium
point χ∗. The equilibrium points are obtained by setting the right hand sides of the model system (6)
to zero, i.e.,

DνS(t) = 0, DνE(t) = 0, Dν I(t) = 0, DνQ(t) = 0, DνR(t) = 0,
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as a result, we have the following system of algebraic equations:

ε− (γ1 I(t) + γ2E(t))S(t)− φS(t) = 0,

(γ1 I(t) + γ2E(t))S(t)− (q1 + ω + α + φ)E(t) = 0,

αE(t)− (θ + φ + ρ1)I(t) = 0,

q1E(t)− (Λ + φ + ρ2)Q(t) = 0,

ωE(t) + θ I(t) + ΛQ(t)− φR(t) = 0.

(9)

If I = 0 the system (9) has a disease-free equilibrium point ξ0 =
(

ε
φ , 0, 0, 0, 0

)
. The Jacobian

matrix J(ξ0) for the system given in (9) evaluated at the disease-free equilibrium point ξ0 as:

J(ξ0) =


−φ − γ2 ε

φ − γ1 ε
φ 0 0

0 γ2 ε
φ − (q1 + ω + α + φ) γ1 ε

φ 0 0
0 α −(θ + φ + ρ1) 0 0
0 q1 0 (Λ + φ + ρ2) 0
0 ω θ Λ −φ

.

Theorem 3. If R0 < 1, then ξ0 = (S0
∗, E0

∗, I0
∗ , Q0

∗, R0
∗) is locally asymptotically stable.

Theorem 4. The endemic equilibrium point ξ1 = (S1
∗, E1

∗, I1
∗ , Q1

∗, R1
∗) of the system given by (9)

is locally asymptotically stable iff R0 > 1.
The proof of the two Theorems 3 and 4 can be done in details as in [39].

Theorem 5.

1. The equilibrium point ξ0 is globally asymptotically stable iff R0 < 1.
2. If R0 > 1, then ξ1 is globally asymptotically stable, and it is unstable otherwise.

Parameterizations of the model (6) are based on literature values and the least curve
fitting method is employed to fit or estimate parameters given the data from Wuhan, China,
between 21–28 January. The real data is available starting from 21 January 2020, and
extending to 28 January 2020 [41], see Table 1.

Table 1. Fitted and estimated parameter values [41] for (6).

Parameter Value Source

ε 0.5 Estimated
q1 0.001 Fitted
ω 0.00398 Fitted
α 0.085432 Fitted
φ 0.5 Estimated
θ 0.09871 Fitted
ρ1 0.0047876 Fitted
ρ2 0.000001231 Fitted
Λ 0.1243 Fitted
γ1 1.05 Fitted
γ2 0.005(ξ0) Fitted

1.05(ξ1) Fitted

The goal is the development of a numerical scheme for numerically simulating and solving
the coronavirus mathematical model, as well as making the necessary comparisons. By solving
this model, we can predict the number of infected persons and the projected number of infections
with this disease owing to infection spread, as well as the number of infections after recovery,
which greatly aids in the health and economic management of this disease.
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2.3. Shifted Vieta-Lucas Polynomials

In this subsection, we’re looking for a class of orthogonal polynomials which will be
used to create a set of orthogonal polynomials called Vieta-Lucas polynomials on the inter-
val [−2, 2] by using their recurrence relations and its analytical formula. The Vieta-Lucas
polynomials; VLm(z) of degree m ∈ N0 is defined by [31]:

VLm(z) = 2 cos(m arccos(0.5z)), −2 ≤ z ≤ 2.

Using the transformation z = 4t − 2, we can generate a new class of orthogonal
polynomials on the interval [0, 1], which are the shifted Vieta-Lucas polynomials (SVLPs),
and it will be denoted by VLs

m(t) and can be obtained as follows:

VLs
m(t) = VLm(4t− 2).

It easy to see that VL∗0(t) = 2, VL∗1(t) = 4t− 2. Also, we find VLs
m(0) = 2(−1)m and

VLs
m(1) = 2, m = 0, 1, 2, . . . .

Let v(t) ∈ L2[0, 1], then v(t) can be written in terms of VLs
m(t) as follows:

v(t) =
∞

∑
j=0

κjVL∗j (t), (10)

where κj are constants. By considering first the m + 1 terms only of Equation (10), then

vm(t) =
m

∑
j=0

κjVL∗j (t), (11)

where the coefficients κj, j = 0, 2, . . . , m can be estimated with the help of the orthogonal
property of the SVLPs.

3. An Approximate of the LC-Derivative and the Convergence Analysis

This section will offer an approximate fractional derivative formula using SVLPs,
as well as a convergence analysis using the proposed approximation’s error estimate.

Theorem 6. The LC-fractional-order derivative can be approximated as [26]:

Dν(vm(t)) =
m

∑
j=dνe

j−dνe

∑
s=0

κj χ
(ν)
j,s tj−s−ν, (12)

where

χ
(ν)
j,s = (−1)s 4j−s(2j) Γ(2j− s) Γ(j− s + 1)

Γ(s + 1) Γ(2j− 2s + 1) Γ(j− s + 1− ν)
.

Theorem 7. Assume that v(t) ∈ L2[0, 1] concerning the weight function in the orthogonality
relation of VLs

m(t) on [0, 1]; w(t) = 1√
t−t2 , and assume v

′′
(t) < `. Then v(t) can be approximated

by vm(t) and written as a linear combination of m + 1 terms only of VLs
m(t), as in Equation (11).

Also, this series converges uniformly to the function v(t) as m→ ∞, and its coefficients are bounded, i.e.

∣∣κj
∣∣ ≤ `

4j(j2 − 1)
, j > 2.

In addition, in the case, v(t) is an m-times continuously differentiable on [0, 1], then the norm
of the error (L2

w [0, 1]-norm), and the absolute error bound are estimated by the following, respectively:

‖v(t)− vm(t)‖w <
`

12
√

m3
.
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‖v(t)− vm(t)‖ ≤
∆ Ωm+1

(m + 1)!
√

π,

where
∆ = max

t∈[0,1]
v(m+1)(t), and Ω = max{1− t0, t0}.

4. Numerical Studies
4.1. Implementation of the Proposed Method

We will use the spectral collocation approach, which is based on the summation
of SVLPs, to convert the system of ODEs that describes the proposed model (6) into
an algebraic equations system The unknown coefficients in the sequence of solutions are
obtained by optimizing this system as a restricted optimization problem. The VLSCOM is
the name given to the coupling of two well-known approaches. The following steps will be
used as algorithm to solve the given problem (6) numerically using this technique:

1. The solution for the problem (6) can be expressed and approximated as a finite series
of SVLPs, namely,

Sm(t) =
m

∑
j=0

aj VL∗j (t), Em(t) =
m

∑
j=0

bj VL∗j (t), Im(t) =
m

∑
j=0

cj VL∗j (t),

Qm(t) =
m

∑
j=0

dj VL∗j (t), Rm(t) =
m

∑
j=0

ej VL∗j (t).
(13)

2. We substitute from (13) and (12) in (6) to obtain:

m

∑
j=dνe

j−dνe

∑
s=0

aj χ
(ν)
j,s tj−s−ν =

ε−
(

φ + γ1

(
m

∑
j=0

cj VL∗j (t)

)
+ γ2

(
m

∑
j=0

bj VL∗j (t)

))(
m

∑
j=0

aj VL∗j (t)

)
,

(14)

m

∑
j=dνe

j−dνe

∑
s=0

bj χ
(ν)
j,s tj−s−ν =

(
γ1

(
m

∑
j=0

cj VL∗j (t)

)
+ γ2

(
m

∑
j=0

bj VL∗j (t)

))(
m

∑
j=0

aj VL∗j (t)

)

− (q1 + ω + α + φ)

(
m

∑
j=0

bj VL∗j (t)

)
,

(15)

m

∑
j=dνe

j−dνe

∑
s=0

cj χ
(ν)
j,s tj−s−ν = α

(
m

∑
j=0

bj VL∗j (t)

)
− (θ + φ + ρ1)

(
m

∑
j=0

cj VL∗j (t)

)
, (16)

m

∑
j=dνe

j−dνe

∑
s=0

dj χ
(ν)
j,s tj−s−ν = q1

(
m

∑
j=0

bj VL∗j (t)

)
− (Λ + φ + ρ2)

(
m

∑
j=0

dj VL∗j (t)

)
, (17)

m

∑
j=dνe

j−dνe

∑
s=0

ej χ
(ν)
j,s tj−s−ν =ω

(
m

∑
j=0

bj VL∗j (t)

)
+ θ

(
m

∑
j=0

cj VL∗j (t)

)
+ Λ

(
m

∑
j=0

dj VL∗j (t)

)

− φ

(
m

∑
j=0

ej VL∗j (t)

)
.

(18)
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3. The corresponding initial conditions of the model (6) can be approximated as follows:

m

∑
j=0

2(−1)j aj = S0,
m

∑
j=0

2(−1)j bj = E0,
m

∑
j=0

2(−1)j cj = I0,

m

∑
j=0

2(−1)j dj = Q0,
m

∑
j=0

2(−1)j ej = R0.
(19)

4. Then, (14)–(19) will be collocated at m + 1 of nodes at tk, k = 0, 1, 2, . . . , m to obtain
a nonlinear system of 5(m + 1) algebraic equations.

5. The problem defined by (14)–(19) is expressed as a restricted optimization problem
with the cost functions (CFs) as follows:

CF1 =
n

∑
k=0

∣∣∣ m

∑
j=dνe

j−dνe

∑
s=0

aj χ
(ν)
j,s tj−s−ν

k − ε

+

φ + γ1

 m

∑
j=0

cj VL∗j (tk)

+ γ2

 m

∑
j=0

bj VL∗j (tk)

 m

∑
j=0

aj VL∗j (tk)

∣∣∣,
(20)

CF2 =
n

∑
k=0

∣∣∣ m

∑
j=dνe

j−dνe

∑
s=0

bj χ
(ν)
j,s tj−s−ν

k −

γ1

 m

∑
j=0

cj VL∗j (tk)

+ γ2

 m

∑
j=0

bj VL∗j (tk)

.

 m

∑
j=0

aj VL∗j (tk)

+ (q1 + ω + α + φ)

 m

∑
j=0

bj VL∗j (tk)

∣∣∣,
(21)

CF3 =
n

∑
k=0

∣∣∣ m

∑
j=dνe

j−dνe

∑
s=0

cj χ
(ν)
j,s tj−s−ν

k − α

(
m

∑
j=0

bj VL∗j (tk)

)
+ (θ + φ + ρ1)

(
m

∑
j=0

cj VL∗j (tk)

)∣∣∣, (22)

CF4 =
n

∑
k=0

∣∣∣ m

∑
j=dνe

j−dνe

∑
s=0

dj χ
(ν)
j,s tj−s−ν

k − q1

(
m

∑
j=0

bj VL∗j (tk)

)
+ (Λ + φ + ρ2)

(
m

∑
j=0

dj VL∗j (tk)

)∣∣∣, (23)

CF5 =
n

∑
k=0

∣∣∣ m

∑
j=dνe

j−dνe

∑
s=0

ej χ
(ν)
j,s tj−s−ν

k −ω

 m

∑
j=0

bj VL∗j (tk)

− θ

 m

∑
j=0

cj VL∗j (tk)


−Λ

 m

∑
j=0

dj VL∗j (tk)

+ φ

 m

∑
j=0

ej VL∗j (tk)

∣∣∣,
(24)

and the constraints (Cons)

Cons =
∣∣∣ m

∑
j=0

2(−1)j aj − S0

∣∣∣+ ∣∣∣ m

∑
j=0

2(−1)j bj − E0

∣∣∣+ ∣∣∣ m

∑
j=0

2(−1)j cj − I0

∣∣∣
+
∣∣∣ m

∑
j=0

2(−1)j dj −Q0

∣∣∣+ ∣∣∣ m

∑
j=0

2(−1)j ej − R0

∣∣∣. (25)

6. For the unknowns aj, bj, cj, dj, ej, j = 0, 1, 2, . . . , m, we apply the Penalty Leap Frog
approach [42] to solve the restricted optimization problem (20)–(25). Then, using
the formula, we may construct an approximation solution (13).
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The approach for the approximate solution is now summarized using the Algorithm 1.

Algorithm 1:
1. Expand in terms of VLs

m(t) on the solution as a linear combination.
2. Substitute this expansion and the presented approximate formula of the LC-derivatives to convert

the given problem to a system of nonlinear algebraic equations.
3. Collocate such a system by using appropriate collocation points.
4. Express the resulting system as a cost-function-constrained optimization problem.
5. Get the required coefficients by solving the resulting solution using the Penalty Leap Frog approach,

and then get the approximate solution.

4.2. Implementation of the Fractional FDM

First, for system (6), we consider:

DνSn(t) = ε− (γ1 In(t) + γ2En(t))Sn(t)− φSn(t),

DνEn(t) = (γ1 In(t) + γ2En(t))Sn(t)− (q1 + ω + α + φ)En(t),

Dν In(t) = αEn(t)− (θ + φ + ρ1)In(t),

DνQn(t) = q1En(t)− (Λ + φ + ρ2)Qn(t),

DνRn(t) = ωEn(t) + θ In(t) + ΛQn(t)− φRn(t).

(26)

Second, we use tn = nh, where n = 0, 1, . . . , M, Mh = T and the abbreviations
Sn, En, In, Qn, and Rn, for approximation of the true solutions S(tn), E(tn), I(tn), Q(tn),
and R(tn), in the grid point tn.

By applying the Equations (5)–(26), we obtain:

1
hα

n+1

∑
i=0

(−1)i ψα
i Sn+1−i −

(nh)−α

Γ(1− α)
S0 = ε− (γ1 In(t) + γ2En(t))Sn(t)− φSn(t), (27)

1
hα

n+1

∑
i=0

(−1)i ψα
i En+1−i −

(nh)−α

Γ(1− α)
E0 = (γ1 In(t) + γ2En(t))Sn(t)− (q1 + ω + α + φ)En(t), (28)

1
hα

n+1

∑
i=0

(−1)i ψα
i In+1−i −

(nh)−α

Γ(1− α)
I0 = αEn(t)− (θ + φ + ρ1)In(t), (29)

1
hα

n+1

∑
i=0

(−1)i ψα
i Qn+1−i −

(nh)−α

Γ(1− α)
Q0 = q1En(t)− (Λ + φ + ρ2)Qn(t), (30)

1
hα

n+1

∑
i=0

(−1)i ψα
i Rn+1−i −

(nh)−α

Γ(1− α)
R0 = ωEn(t) + θ In(t) + ΛQn(t)− φRn(t), (31)

where ψα
i =

(
α
i

)
.

5. Numerical Simulation

In this part of the work, we will present some numerical simulations for the studied
model (6) with distinct values of ε, γ1, γ2, φ, q1, ω, ρ1, ρ2, α, θ, Λ, and the initial condi-
tions S0, E0, I0, Q0, R0. The numerical simulation for the analyzed model using the pro-
posed technique is shown in Figures 2–7 as following:

1. Figure 2 depicts the behavior of the approximate solution for various values
of ν = 1.0, 0.9, 0.85; in (0, 40) and m = 6, with S0 = 0.5, E0 = 0.2, I0 = Q0 = R0 = 0.1,
and the parameters ε = 0.5, γ1 = 1.05, γ2 = 0.005, φ = 0.5, q1 = 0.001, ω =
0.00398, ρ1 = 0.0047876, ρ2 = 0.000001231, α = 0.085432, θ = 0.09871, Λ = 0.1243.
Where in this case, R0 = 0.130112 < 1, and we can also see that the disease-free
equilibrium point ξ0 is locally asymptotically stable, according to Theorem 3.
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Because the recovered population expands substantially, we can see and confirm
that the majority of the population will recover from the COVID-19 dynamics in this
image (see Figure 7e). In addition, as shown in Figures 7b–d, we can see and con-
firm that the number of infected and exposed people has decreased considerably.
This suggests that the majority of the population will be recovered, resulting in a reduction
in COVID-19-related mortality. We can check that the disease’s expected behavior has
occurred, presenting a clear replication of the model. Also, knowing the behavior of all
the components (stats) of the model with varied values of the derivatives, not just with
ν = 1, is essential for a solid physical interpretation of these numerical results.

2. With the initial conditions S0 = 0.6, E0 = 0.5, I0 = 0.4, Q0 = 0.3, R0 = 0.2, and
parameters as in Figure 2, we show the behavior of the approximate solution using
different values of the approximation-order m = 5 (Figure 3a) and m = 7 (Figure 3b)
in the interval (0, 40) and ν = 0.9 in Figure 3.

Figure 2. Behavior of the approximate solution via different values of ν.
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Figure 3. Behavior of the approximate solution via different values of m.

3. Figure 4 shows the behavior of the approximate solution with different initial conditions
with m = 6, α = 0.95 in the range (0, 40) and the parameters ε = 0.5, γ1 = 1.05,
γ2 = 0.005, φ = 0.5, q1 = 0.001, ω = 0.00398, ρ1 = 0.0047876, ρ2 = 0.000001231,
α = 0.085432, θ = 0.09871, Λ = 0.1243; where S(t), E(t), I(t), Q(t), R(t) are presented
in Figure 4a–e, respectively. In this special case, we take the following different cases:

i. S0 = 0.5, E0 = 0.2, I0 = Q0 = R0 = 0.1;
ii. S0 = 0.6, E0 = 0.3, I0 = Q0 = R0 = 0.2;
iii. S0 = 0.7, E0 = 0.4, I0 = Q0 = R0 = 0.3.

In all these cases, we note that R0 < 1.
4. The behavior of the approximate solution via distinct values of q1 with m = 5,

ν = 0.98, S0 = 0.5, E0 = 0.2, I0 = Q0 = R0 = 0.1 in the interval (0, 40) is presented
in Figure 5, and in this case, we take the following cases:

(1) q1 = 0.1,R0 = 0.11143;
(2) q1 = 0.5,R0 = 0.070515;
(3) q1 = 0.9,R0 = 0.051577.

5. Furthermore, Figure 6 introduces the residual error function (REF) with m = 7,
ν = 0.96, and the same conditions and parameters as Figure 2.

6. Finally, for ν = 0.95 and h = 0.05, we showed a comparison between the numeri-
cal solution generated by the VLSCOM and the fractional FDM in Figure 7. With
the same parameters as in Figure 4, and the same initial conditions as in Figure 4,
S0 = 0.5, E0 = 0.2, I0 = Q0 = R0 = 0.1. We can see from this diagram that
the theoretical results on stability acquired in the preceding section are correct.
The behavior of the numerical solution is dependent on the values of ν, m, the initial
conditions, and the included parameters ε, γ1, γ2, φ, q1, ω, ρ1, ρ2, α, θ, Λ as shown
in Figures 2–6 and this demonstrates that the proposed method is well-implemented
for tackling the proposed fractional derivatives problem.

Based on the results, we can see that people’s susceptibility will decrease at con-
stant rates as they come in contact with exposed or infected individuals, leading to a
greater number of exposed individuals. As individuals exposed to COVID-19 become in-
fected, decreases and increases. Likewise, as a percentage of recovered individuals die due
to natural causes, the number of exposed, infected, and quarantined individuals declines.
Furthermore, the number of individuals quarantined in relation to the total number of indi-
viduals exposed increases and decreases.
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Figure 4. Behavior of the approximate solution via different values of initial values.
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Figure 5. Behaviorof the approximate solution via different values of q1.
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Figure 6. The REF of the solutions with ν = 0.96.
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Figure 7. Comparison the solution obtained by VLSCOM and FDM at ν = 0.96.

6. Conclusions

The properties of the SVLPs were applied with the SCM to reduce the studied model
for the fractional Covid-19 to the solution for a nonlinear system of algebraic equations.
The unknown coefficients can be obtained by constructing and solving the resulting system
as a restricted optimization problem. The analysis of the convergence of the approxima-
tion solution, and the upper bound of the error are stated. The investigated problem’s
answers show that the offered technique is quite suitable for studying this topic efficiently.
We can also confirm that adding extra terms from the approximate solution’s series reduces
the mistakes. Finally, numerical solutions with various values of the included parameters
and variables, as well as the REF, are computed to ensure that the suggested technique is
valid for such models. Mathematica was used to obtain all numerical results.

We can deduce the following from the numerical simulation presented:

1. The proposed method is more reliable and efficient.
2. The capacity to obtain accurate results by applying a minimal number of series

solution terms.
3. This method has various advantages for dealing with problems like this, where

the coefficients may be discovered using the Penalty Leap Frog method, and then
the approximate solution can be obtained.
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Furthermore, we can suggest that by raising public knowledge and encouraging
people to follow the government’s instructions, the number of people who are vulnerable
to infection is reduced and the number of people who are infected is increased, which
helps to lower the severity of infection. Finally, because most numerical methods have
restrictions, the fractional FDM has some shortcomings because we can’t assess the solution
at any place but the nodes of the provided domain, and it isn’t unconditionally stable.
We intend to complete certain future projects, such as:

1. Using several techniques to solve the same model;
2. Optimal control of the solutions that result;
3. Theoretical research to describe the Covid-19 model in depth;
4. Change the fractional derivative’s sense to variable-order, for example.
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