
Citation: Kostić, M.; Du, W.-S.
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Abstract: In this paper, we analyze various classes of Stepanov-p-almost periodic functions and
Stepanov-p-almost automorphic functions (p > 0). The class of Stepanov-p-almost periodic (au-
tomorphic) functions in norm (p > 0) is also introduced and analyzed. Some structural results
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to the abstract (impulsive) first-order differential inclusions and the abstract (impulsive) fractional
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1. Introduction

The concept of almost periodicity was introduced and studied by the Danish mathe-
matician H. Bohr around 1924–1926. Since then, a number of generalizations in various
different directions have been investigated by many authors. Suppose that (U, ‖ · ‖) is a
complex Banach space and G : Rn → U is a continuous function, where n ∈ N. Recall that
G(·) is called almost periodic if and only if for each ε > 0, there exists r > 0, such that for
each t0 ∈ Rn, there exists

τ ∈ B(t0, l) ≡ {a ∈ Rn : |a− t0| ≤ r}

such that ∥∥G(z + τ)− G(z)
∥∥ ≤ ε, z ∈ Rn,

where | · − · | is the Euclidean distance in Rn. In light of the definition, it is also equivalent
to say that for any sequence (bk) in Rn, there exists a subsequence (ak) of (bk), such that
the sequence of functions (G(· + ak)) converges in Cb(Rn : U), the Banach space of all
bounded continuous functions on Rn, equipped with the sup-norm. Any trigonometric
polynomial in Rn is almost periodic and any almost periodic function G(·) is bounded and
uniformly continuous. It is well known that a continuous function G(·) is almost periodic
if and only if there exists a sequence of trigonometric polynomials in Rn, which converges
to G(·) in Cb(Rn : U).
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Suppose now that G : Rn → U is continuous. The function G(·) is called almost
automorphic if and only if for any sequence (bk) in Rn, there exists a subsequence (ck) of
(bk) and a mapping H : Rn → U, such that

lim
k→∞

G
(
x + ck

)
= H(x) and lim

k→∞
H
(
x− ck

)
= G(x), (1)

Pointwisely, for x ∈ Rn. In this case, then the range of G(·) is relatively compact in U and
the limit function H(·) is bounded on Rn but not necessarily continuous on Rn. Moreover,
if the convergence of limits appearing in (1) is uniform on compact subsets of Rn, then the
function F(·) is called compactly almost automorphic. It is a well-known fact that an almost
automorphic function G(·) is compactly almost automorphic if and only if G(·) is uniformly
continuous and any almost periodic function G(·) is compactly almost automorphic. For
more details, we refer the readers to the research monographs [1–8].

The concept of metrical almost periodicity has been introduced and analyzed recently
in [9]; for more details about various classes of metrically almost periodic functions and
their applications, one can refer to our new monograph [10]. In this paper, we continue
our previous research analyses of the multi-dimensional metrically Stepanov ρ-almost
periodic (automorphic) type functions, where ρ is a general binary relation [11,12]. Let us
mention here only that Stepanov-p-almost periodic (automorphic) functions are important
for applications because these functions are only p-locally integrable in contrast with the
usually considered almost periodic (automorphic) functions, which must be continuous.
It would be a very difficult task to provide here a more comprehensive literature review
about almost periodic (automorphic) functions, their Stepanov generalizations and various
applications made so far; cf. also the research monographs [13–28] and the reference list
in our recent monograph [6], which contains more that one thousand one hundred titles
quoted. One of the most influential monographs about almost periodic functions and their
generalizations was written by M. Levitan in 1953 [7]. In this research article, we provide
the proper generalizations of the famous, old result [7] (Theorem 5.3.1, p. 210) concerning
the sign of real-valued almost periodic functions, and some proper generalizations of the
conclusions established in [7] (pp. 212–213) concerning the Stepanov-p-almost periodicity
of functions

f (t) = sin

(
1

2 + cos αt + cos βt

)
, t ∈ R

and

g(t) = cos

(
1

2 + cos αt + cos βt

)
, t ∈ R;

cf. Examples 3 and 4 for more details.
The main ideas and organization of our work can be briefly described as follows. In

the continuation of this section, we explain the basic notation and terminology used as
well as the notion of considered weighted function spaces. One of the main novelties of
this work is the analysis of Stepanov-p-almost periodic functions and Stepanov-p-almost
automorphic functions, where the exponent p has a value between 0 and 1. Here we would
like to note that the class of complex-valued Stepanov-p-almost periodic functions and the
class of Stepanov-p-normal functions f : R→ C, where p > 0, was introduced for the first
time by H. D. Ursell in [29], a paper which has been cited only six times from 1931 onwards.
A Stepanov-p-almost periodic (automorphic) function g : R→ [0, ∞) need not be locally
integrable for 0 < p < 1. For instance, the function

g(x) :=
{
| sin x|−1, x /∈ Zπ
0, x ∈ Zπ,



Fractal Fract. 2023, 7, 736 3 of 28

is not locally integrable and therefore not Stepanov-p-almost periodic (automorphic) for
any finite exponent p ≥ 1. On the other hand, it is easy to show that this function is
Stepanov-p-almost periodic for any exponent p ∈ (0, 1).

In Section 3, we introduce and study the notion of Stepanov-(p,B)-almost periodicity,
where p > 0 (cf. Definition 5 for the notions of Stepanov-(p, ρ,B, Λ′)-almost periodicity,
(strong) Stepanov-(p, R,B)-almost periodicity and their particular cases, the notions of
Stepanov-p-almost periodicity and Bochner–Stepanov-p-almost periodicity, where p > 0).
If 0 < p < 1, then the notion of a (Bochner–)Stepanov-p-almost periodic function F : Λ→ Y
is new, even in the case where Λ = R and Y = C. The main structural results of Section 3 are
Proposition 2 and Corollary 1. We also propose here many illustrative examples (without
any doubt, the most important are the already-mentioned Examples 3 and 4); an interesting
open problem is also proposed in this context.

Section 3.1 investigates the relations between piecewise continuous almost periodic
functions and metrically Stepanov-p-almost periodic functions (p > 0). In this subsection,
we provide proper generalizations of [30] (Theorem 1, Theorem 2) concerning the relations
between the class of pre-(B, T, (tk))-piecewise continuous almost periodic functions and
the class S(F,T,Pt ,P)

Ω,Λ′ (Λ : Y) with Λ = Λ′ = R, F(··) ≡ 1, Ω = [0, 1], P = Cb(R : C) and
Pt = Lp

ν(t + [0, 1] : C) for all t ∈ R (cf. Theorem 1). The main aim of Theorem 2 is to
show that if ρ = T ∈ L(Y), p > 0 and F : Λ× X → Y is a Stepanov-(Ω, p, ρ,B, Λ′)-almost
periodic function, where Λ = R or Λ = [0, ∞), Ω = [0, 1] and Λ′ = Λ, then the validity
of a quasi-uniformly convergent type condition (QUC) clarified below implies that the
considered function F(·; ·) is pre-(B, T, (tk))-piecewise continuous almost periodic. In
Corollary 2(ii), we particularly show that any uniformly continuous Stepanov-p-almost
periodic function F : Rn → Y is almost periodic (p > 0), thus extending the well-known
Bochner theorem.

Section 3.2 investigates the invariance of Stepanov-p-almost periodicity under the
actions of the infinite convolution products (0 < p < 1) and provides certain applications of
the introduced notion to the abstract Volterra integro-differential equations. The main result
of this subsection are Theorem 3 and Proposition 3 (concerning applications, we thought it
necessary to emphasize at the very beginning that the situation is very complicated in the
case where 0 < p < 1, since the reverse Hölder inequality is valid in our new framework
(for more detailed information, see, e.g., [31] (Proposition 3))).

The main purpose of Section 4 is to analyze various classes of Stepanov-p-almost auto-
morphic type functions (p > 0). In Definition 7 and Definition 8, we introduce the notions
of Stepanov (Ω, p, R,B, ν)-almost automorphy, Stepanov (Ω, p, R,B, ν, WB,R)-almost auto-
morphy, Stepanov (Ω, p, R,B, ν, PB,R)-almost automorphy and some special subnotions of
them. After that, we quote some statements established recently for the general classes of
metrically Stepanov almost automorphic functions, which can be reformulated in our spe-
cial framework (see, e.g., Proposition 4). Section 4.1 investigates certain relations between
piecewise continuous almost automorphic functions and metrically Stepanov-p-almost
automorphic functions (p > 0); the main structural results presented here are Proposition 5,
Theorems 4 and 5.

In Section 5, we analyze the notion of Stepanov-p-almost periodicity in norm and the
notion of Stepanov-p-almost automorphy in norm (p > 0). The considered function spaces
are introduced in Definitions 11 and 12. The main result established in this section, where
we also propose some open problems for our readers, is Theorem 6; cf. also Remark 4.

The main aim of Section 6 is to present applications of the obtained results to the
abstract (impulsive) Volterra integro-differential inclusions in Banach spaces. This section
contains two separate subsections: Section 6.1 considers certain applications to the abstract
impulsive first-order differential inclusions, while Section 6.2 considers certain applications
to the abstract fractional differential inclusions. The conclusions and final remarks about
the introduced classes of functions are given in the final section of paper.
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2. Preliminaries

In this section, we review some basic definitions, notations and known results that
will be needed, and further discussion throughout this paper. Assume that X, Y, Z and T
are given non-empty sets. Let us recall that a binary relation between X and Y is any subset
ρ ⊆ X×Y. The domain D(ρ) and range R(ρ) of ρ are defined in the usual way as are the
set ρ(x) (x ∈ X) and the set ρ(X′), where X′ ⊆ X.

We will always assume henceforth that (X, ‖ · ‖) and (Y, ‖ · ‖Y) are complex Banach
spaces, n ∈ N, ∅ 6= I ⊆ Rn, ∅ 6= Λ ⊆ Rn, B is a non-empty collection of non-empty subsets
of X and R is a non-empty collection of sequences in Rn. Furthermore, we assume that
for any z ∈ X, there exists B ∈ B, such that z ∈ B. Denote by I the identity operator of
Y. By L(X, Y), we denote the Banach space of all bounded linear operators from X into
Y. If Y = X, we will use L(X) instead of L(X, X). Define Nm := {1, . . . , m} and N0

m :=
{0, 1, . . . , m} (m ∈ N). Let A and B be non-empty sets. We define BA := {h|h : A → B},
and by χA(·) [Ac] we denote the characteristic function of the set A (the complement of A).
Set dse := inf{k ∈ Z : s ≤ k} (s ∈ R). For further information concerning the multivalued
operator families and solution operator families subgenerated by them, we refer the reader
to the recent research monograph [32].

Suppose now that T > 0. Then, the space of X-valued piecewise continuous functions
on [0, T] is defined by

PC([0, T] : X) :=
{

h : [0, T]→ X : h ∈ C
(
(si, si+1] : X

)
, h(si−) = h(si) exist for any

i ∈ Nl , h(si+) exist for any i ∈ N0
l and h(0) = h(0+)

}
,

where 0 = s0 < s1 < s2 < . . . < sl < T = sl+1 and the symbols h(si−) and h(si+) denote
the left and the right limits of the function h(x) at the point x = si, i ∈ N0

l−1, respectively. It
is well-known that PC([0, T] : X) is a Banach space endowed with the norm

‖h‖ := max

{
sup

t∈[0,T)
‖h(t+)‖, sup

t∈(0,T]
‖h(t−)‖

}
.

The space of X-valued piecewise continuous functions on [0, ∞), denoted by
PC([0, ∞) : X), if defined as the union of those functions f : [0, ∞) → X, such that
the discontinuities of g(·) form a discrete set, and that for each T > 0 we have g|[0,T](·) ∈
PC([0, T] : X). We similarly define the space PC(R : X). If ω ∈ R, then Cω([0, ∞) : X)
denotes the space of all continuous functions h : [0, ∞) → X, such that the function
x 7→ e−ωx‖h(x)‖, x ≥ 0 is bounded; the space PCω([0, ∞) : X) denotes the space of all
piecewise continuous functions h : [0, ∞) → X, such that the function x 7→ e−ωx‖h(x)‖,
x ≥ 0 is bounded.

The following classes of weighted function spaces will be important for us:

1. Suppose that the set I ⊆ Rn is Lebesgue measurable and ν : I → (0, ∞) is a Lebesgue
measurable function. We deal with the Banach space

Lp(t)
ν (I : Y) :=

{
k : I → Y ; k(·) is Lebesgue measurable and ||k||p(t) < ∞

}
,

where p ∈ P(I), the collection of all Lebesgue measurable mappings from I into
[1,+∞], and ‖u‖p(t) := ‖ν(t)u(t)‖Lp(t)(I:Y).

2. If ν : I → (0, ∞) is any function, such that the function 1/ν(·) is locally bounded, then
the vector space Cb,ν(I : Y) consists of all continuous functions u : I → Y, satisfying
that supt∈I ‖u(t)‖Yν(t) < +∞. When equipped with the norm, ‖ · ‖ := supt∈I ‖ν(t) ·
(t)‖Y, Cb,ν(I : Y) is a Banach space; if ν ≡ 1, then we set Cb(I : Y) ≡ Cb,ν(I : Y).

3. Suppose that ν : I → [0, ∞) is any non-trivial function. Then, we define the
vector space Cb,ν(I : Y) as above; equipped with the pseudometric, d(u, v) :=
supt∈I ‖ν(t)[u(t)− v(t)]‖Y, (Cb,ν(I : Y), d) becomes a pseudometric space.
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2.1. Stepanov Almost Periodic Functions and Stepanov Almost Automorphic Functions in
General Metric

The main goal of this subsection is to review the fundamental definitions and results
about metrically Stepanov almost periodic type functions.

First of all, we will recall the notion of (strong) Stepanov (Ω, R,B,PZ)-multi-almost
periodicity. Assume that ∅ 6= Λ ⊆ Rn, ∅ 6= Z ⊆ YΩ and Λ + Ω ⊆ Λ, where ∅ 6= Ω ⊆ Rn

is a fixed compact set with positive Lebesgue measure. Let PZ ⊆ ZΛ, 0 ∈ PZ, let (PZ, dPZ )
be a pseudometric space, and let ‖ f ‖PZ := dPZ ( f , 0), f ∈ PZ. If F : Λ× X → Y, then we
introduce the multi-dimensional Bochner transform F̂Ω : Λ× X → YΩ by[

F̂Ω(t; x)
]
(u) := F(t + u; x), t ∈ Λ, u ∈ Ω, x ∈ X.

We need the following notion from [11]:

Definition 1. Suppose that ∅ 6= Λ ⊆ Rn, F : Λ × X → Y is a given function and the
assumptions t ∈ Λ, b ∈ R and l ∈ N imply t + b(l) ∈ Λ. Then, we say that the function
F(·; ·) is Stepanov (Ω, R,B,PZ)-multi-almost periodic, resp. strongly Stepanov (Ω, R,B,PZ)-
multi-almost periodic in the case that Λ = Rn, if and only if for every B ∈ B and for every
sequence (bk = (b1

k , b2
k , · · ·, bn

k )) ∈ R, there exist a subsequence (bkl
= (b1

kl
, b2

kl
, · · ·, bn

kl
))

of (bk) and a function F∗Ω : Λ × X → Z, such that for every l ∈ N and x ∈ B, we have
F̂Ω(·+ (b1

kl
, · · ·, bn

kl
); x)− F∗Ω(·; x) ∈ PZ and

lim
l→+∞

sup
x∈B

∥∥∥F̂Ω
(
·+ (b1

kl
, · · ·, bn

kl
); x
)
− F∗Ω(·; x)

∥∥∥
PZ

= 0, (2)

resp. F̂(·+ (b1
kl

, · · ·, bn
kl
); x)− F∗(·; x) ∈ PZ, F∗(· − (b1

kl
, · · ·, bn

kl
); x)− F̂(·; x) ∈ PZ, (2) holds

and

lim
l→+∞

sup
x∈B

∥∥∥F∗Ω
(
· − (b1

kl
, · · ·, bn

kl
); x
)
− F̂Ω(·; x)

∥∥∥
PZ

= 0.

Consider now the following conditions:

(SM-1): Let ∅ 6= Λ ⊆ Rn, ∅ 6= Λ′ ⊆ Rn, Λ′ + Λ ⊆ Λ, Λ + Ω ⊆ Λ and F : Λ→ (0, ∞).

(SM-2): For every t ∈ Λ, Pt = (Pt, dt) is a metric space of functions from Yt+Ω, containing
the zero function. We set ‖ f ‖Pt := dt( f , 0) for all f ∈ Pt. We also assume that
P = (P, d) is a metric space of functions from CΛ containing the zero function and
set ‖ f ‖P := d( f , 0) for all f ∈ P. The argument from Λ will be denoted by ·· and the
argument from t + Ω will be denoted by ·.

The following concept was recently introduced in [33] (Definition 2.2):

Definition 2. Assume that (SM-1)-(SM-2) hold. By S(F,ρ,Pt ,P)
Ω,Λ′ ,B (Λ× X : Y), we denote the set

consisting of all functions F : Λ× X → Y, such that for every ε > 0 and B ∈ B, there exists a
finite real number L > 0, such that for each t0 ∈ Λ′, there exists τ ∈ B(t0, L) ∩Λ′, such that for
every x ∈ B, the mapping u 7→ Gx(u) ∈ ρ(F(u; x)), u ∈ Ω is well defined and

sup
x∈B

∥∥∥F(··)∥∥F(τ + ·; x)− Gx(·)
∥∥

P··

∥∥∥
P
< ε.

Concerning the multi-dimensional almost automorphic functions, we will recall the
following definition from [6]:

Definition 3. Suppose that F : Rn × X → Y is a continuous function and R is a certain collection
of sequences in Rn. Then, we say that the function F(·; ·) is (R,B)-multi-almost automorphic
if and only if for every B ∈ B and for every sequence (bk = (b1

k , b2
k , · · ·, bn

k )) ∈ R, there exist
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a subsequence (bkl
= (b1

kl
, b2

kl
, · · ·, bn

kl
)) of (bk) and a function F∗ : Rn × X → Y, such that

liml→+∞ F(t + (b1
kl

, · · ·, bn
kl
); x) = F∗(t; x) and liml→+∞ F∗(t − (b1

kl
, · · ·, bn

kl
); x) = F(t; x),

pointwise for all x ∈ B and t ∈ Rn. If for each x ∈ B the above limits converge uniformly on
compact subsets of Rn, then we say that F(·; ·) is compactly (R,B)-multi-almost automorphic.

Suppose, finally, that ∅ 6= Z ⊆ YΩ, where ∅ 6= Ω ⊆ Rn is a fixed compact set with
positive Lebesgue measure. Let Z ⊆ YΩ, 0 ∈ Z and let (Z, dZ) be a pseudometric space.
Set ‖ f ‖Z := dZ( f , 0), f ∈ Z. Further on, we assume that WB;(bk)

(x) is a certain collection
of non-empty subsets of Rn and that PB;(bk)

a certain collection of non-empty subsets of
Rn × B (B ∈ B, (bk) ∈ R, x ∈ B).

We need the following concept, which was recently introduced in our joint research
article with B. Chaouchi and H. C. Koyuncuoğlu [12]:

Definition 4. Suppose that F : Rn × X → Y is a given function and R is a collection of sequences
in Rn. Then, we say that the function F(·; ·) is Stepanov (Ω, R,B, ZP )-multi-almost automorphic
if and only if, for every B ∈ B and for every sequence (bk = (b1

k , b2
k , · · ·, bn

k )) ∈ R, there exist
a subsequence (bkl

= (b1
kl

, b2
kl

, · · ·, bn
kl
)) of (bk) and a function F∗B : Rn × X → Z, such that,

for every t ∈ Rn, l ∈ N and x ∈ B, we have F(t + · + (b1
kl

, · · ·, bn
kl
); x) − [F∗B(t; x)](·) ∈ Z,

[F∗B(t− (b1
kl

, · · ·, bn
kl
); x)](·)− F(t + ·; x) ∈ Z,

lim
l→+∞

∥∥∥F
(
t + ·+ (b1

kl
, · · ·, bn

kl
); x
)
− [F∗B(t; x)](·)

∥∥∥
Z
= 0, (3)

and

lim
l→+∞

∥∥∥[F∗B(t− (b1
kl

, · · ·, bn
kl
); x
)]
(·)− F(t + ·; x)

∥∥∥
Z
= 0. (4)

Furthermore, if for each x ∈ B the convergence in (3) and (4) is uniform in t for any element
of the collection WB;(bk)

(x) (the convergence in (3) and (4) is uniform in (t; x) for any set of
the collection PB;(bk)

), then we say that F(·; ·) is Stepanov (Ω, R,B, ZP , WB,R)-multi-almost
automorphic [Stepanov (Ω, R,B, ZP , PB,R)-multi-almost automorphic].

2.2. On Lp-Spaces (p > 0)

Let 0 < p < 1 and let Ω′ be any Lebesgue measurable subset of Rn with positive
Lebesgue measure. Then, the space Lp(Ω′ : Y) consists of all Lebesgue measurable func-
tions f : Ω′ → Y, such that

∫
Ω′ ‖ f (u)‖p du < +∞. The metric d(·; ·) on Lp(Ω′ : Y) is given

by d( f , g) :=
∫

Ω′ ‖ f (u)− g(u)‖p du for all f , g ∈ Lp(Ω′ : Y). Equipped with this metric,
Lp(Ω′ : Y) is a complete quasi-normed metric space. If ν : Ω′ → (0, ∞) is a Lebesgue
measurable function, then we define the pseudometric space the space Lp

ν(Ω′ : Y) as in the
case where p ≥ 1, when the basic properties of Lp

ν(Ω′ : Y) are well known.
Before proceeding any further, we would like to emphasize that the theory of Lebesgue

spaces Lp(x) with variable exponent 0 < p(x) < 1 has not still been constituted. Because
of this, we will work with the constant coefficients p > 0 in the sequel (cf. [6] for many
results concerning the generalized almost periodic type functions in the Lebesgue spaces
with variable exponent Lp(x), where p(x) ≥ 1, and the important research monograph [34]).
We will use the following lemma, which might be known in the existing literature:

Lemma 1. Suppose that ∅ 6= Ω ⊆ Rn is a Lebesgue measurable set, p > 0 and f ∈ Lp(Ω). Then,
we have ∫

Ω
| f (x)|p dx = p

∫ ∞

0
yp−1m

(
{x ∈ Ω : | f (x)| > y}

)
dy. (5)
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Proof. The Formula (5) is well known in the case that p ≥ 1: see, e.g., [35] (pp. 7–8). If
0 < p < 1, then we can use (5) with p = 1 and the elementary change of variables z = y1/p :∫

Ω
| f (x)|p dx =

∫ ∞

0
m
(
{x ∈ Ω : | f (x)|p > y}

)
dy

=
∫ ∞

0
m
(
{x ∈ Ω : | f (x)| > y1/p}

)
dy

= p
∫ ∞

0
zp−1m({x ∈ Ω : | f (x)| > z}) dz.

Remark 1. The Formula (5) will play an important role in our further work. We would like to
notice that this formula does not have a satisfactory analogue in the theory of the Lebesgue spaces
with variable exponent (see, e.g., the introductory part of [34]).

For more details concerning Lp-spaces for 0 < p < 1, the interested readers may refer
to the lectures of K. Conrad [36] and M. Rosenzweig [31].

3. Stepanov-p-Almost Periodic Type Functions (p > 0)

We will consider the following special kinds of Stepanov-p-almost periodic type
functions (p > 0) in this section.

Definition 5.

(i) Suppose that p > 0, (SM-1) holds true and νt : t+Ω→ (0, ∞) is a Lebesgue measurable func-
tion (t ∈ Λ). Then, we say that a function F : Λ× X → Y is Stepanov-(Ω, p, ρ,B, Λ′, ν·)-
almost periodic if and only if F(·; ·) belongs to the class S(F,ρ,Pt ,P)

Ω,Λ′ ,B (Λ×X : Y) with F(··) ≡ 1,
P = Cb(Λ : C) and Pt = Lp

νt(t + Ω : Y) for all t ∈ Λ. If there exists a Lebesgue measurable
function ν : Λ → (0, ∞), such that νt(·) ≡ ν|t+Ω(·) for all t ∈ Λ, then we also say that
F(·; ·) is Stepanov-(Ω, p, ρ,B, Λ′, ν)-almost periodic; furthermore, if νt(·) ≡ 1 for all t ∈ Λ,
then we omit the term “ν·” from the notation.

(ii) Suppose that p > 0, ∅ 6= Λ ⊆ Rn, F : Λ× X → Y is a given function and the assumptions
t ∈ Λ, b ∈ R and l ∈ N imply t + b(l) ∈ Λ. If ν : Ω→ (0, ∞) is a Lebesgue measurable
function, then we say that the function F(·; ·) is (strongly) Stepanov-(Ω, p, R,B, ν)-almost
periodic if and only if F(·; ·) is (strongly) Stepanov (Ω, R,B,PZ)-multi-almost periodic with
Z = Lp

ν(Ω : Y) and PZ = Cb(Λ : Z). If ν(·) ≡ 1, then we omit the term “ν” from the
notation.

(iii) Suppose that p > 0, (SM-1) holds true, νt : t+Ω→ (0, ∞) is a Lebesgue measurable function
(t ∈ Λ) and ν : Λ→ (0, ∞) is a Lebesgue measurable function. Then, we say that a function
F : Λ→ Y is Stepanov-(Ω, p, ν·)-almost periodic [Stepanov-(Ω, p, ν)-almost periodic] if and
only if F(·) is Stepanov-(Ω, p, ρ, Λ′, ν·)-almost periodic [Stepanov-(Ω, p, ρ, Λ′, ν)-almost
periodic] with ρ ≡ I and Λ′ ≡ {τ ∈ Rn : τ + t ∈ Λ, t ∈ Λ}. If ν(·) ≡ 1, then we omit the
term “ν” from the notation.

(iv) Suppose that p > 0, ∅ 6= Λ ⊆ Rn, F : Λ → Y is a given function, ν : Ω → (0, ∞) is a
Lebesgue measurable function and R denotes the collection of all sequences in Rn, such that
the assumptions t ∈ Λ, b ∈ R and l ∈ N imply t + b(l) ∈ Λ. Then, we say that the
function F(·) is Bochner–Stepanov-(Ω, p, ν)-almost periodic if and only if F(·) is Stepanov-
(Ω, p, R, ν)-almost periodic.

In all above definitions, we omit the term “Ω” from the notation if Ω = [0, 1]n. If
we denote by AX,Y any of the above introduced classes of function spaces, c1 ∈ R \ {0},
τ ∈ Rn, c, c2 ∈ C \ {0} and x0 ∈ X, then it is not difficult to find some sufficient conditions
ensuring that the function cF(·; ·), F(c1·; c2·), ‖F(·; ·)‖Y or F(·+ τ; ·+ x0) belongs to AX,Y if
F(·; ·) belongs to AX,Y. Using [11] (Proposition 3.2), the statements of [9] (Proposition 2.3(i),
Proposition 2.4, Theorem 2.5, Theorem 2.7) and the conclusions (i)–(iii) established in [9]
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(pp. 234–235) can be simply reformulated for the (strongly) Stepanov-(Ω, p, R,B, ν)-almost
periodic functions. We also have the following consequence of [11] (Proposition 3.7):

Proposition 1. Suppose that ∅ 6= Λ ⊆ Rn and the assumptions t ∈ Λ, b ∈ R and l ∈ N
imply t + b(l) ∈ Λ. Suppose further that for each integer j ∈ N, the function Fj : Λ× X → Y is
Stepanov-(Ω, p, R,B, ν)-almost periodic, ˆFj;Ω : Λ×X → Z, ˆFj;Ω(·+ bk; x) ∈ Cb(Λ : Lp

ν(Ω : Y))
and ˆFj;Ω

∗
(·; x) ∈ Cb(Λ : Lp

ν(Ω : Y)) (x ∈ B; (bk) ∈ R) with the meaning clear, and that for every
sequence that belongs to R, any of its subsequence also belongs to R. If F : Λ× X → Y and for
every B ∈ B and (bk) ∈ R we have

lim
(i,l)→+∞

sup
x∈B

∥∥∥Fi
(
·+ bkl

; x
)
− F

(
·+ bkl

; x
)∥∥∥

Cb(Λ:Lp
ν (Ω:Y))

= 0,

then the function F(·; ·) is Stepanov-(Ω, p, R,B, ν)-almost periodic, F̂Ω(· + bk; x) ∈ Cb(Λ :
Lp

ν(Ω : Y)) and F̂Ω
∗
(·; x) ∈ Cb(Λ : Lp

ν(Ω : Y)) (x ∈ B; (bk) ∈ R).

Let us recall from the introductory part that a Stepanov-p-almost periodic function
F : Rn → Y need not be locally integrable for 0 < p < 1. Moreover, if we assume that
F : Rn → Y is both locally integrable and Stepanov-p-almost periodic for some p ∈ (0, 1),
then it is not clear (cf. the proof of [10] (Proposition 3.5.9)) whether the expression

ϕ 7→ T(ϕ) ≡
∫
Rn

ϕ(t)F(t) dt, ϕ ∈ D
(
Rn)

determines a regular almost periodic distribution. Here, D(Rn) stands for the space of all
smooth test functions ϕ : Rn → C with compact support. We will examine generalized
almost periodic functions of this type somewhere else.

We continue by providing the following illustrative example:

Example 1. In [10] (Example 9.2.7), we have constructed a piecewise continuous almost periodic
function f : R → Y, which is not continuous and satisfies that for each ε > 0, there exists a
relatively dense subset R of R, such that for each τ ∈ R and t ∈ R, we have ‖ f (t+ τ)− f (t)‖Y ≤ ε.
This simply implies that for every p > 0 and for every Stepanov-p-bounded function ν : R →
(0, ∞), the function f (·) is Stepanov-(p, ν)-almost periodic. Here and hereafter, by the Stepanov-p-
boundedness of ν(·), we mean that supt∈R

∫ t+1
t |ν(s)|p ds < +∞.

Now, we will state the following simple result (cf. also [37] (Theorem 1, Corollary,
p. 62)):

Proposition 2. Suppose that p > 0, q > 0 and (SM-1) holds true.

(i) If F : Λ× X → Y is Stepanov-(Ω, q, ρ,B, Λ′)-almost periodic and p ≤ q, then F(·; ·) is
Stepanov-(Ω, p, ρ,B, Λ′)-almost periodic.

(ii) Suppose that F : Λ× X → Y, ρ = T ∈ L(X) and for every set B ∈ B we have ‖F‖B,∞ :=
supx∈B;t∈Λ ‖F(t; x)‖Y < +∞. Then, F(·; ·) is Stepanov-(Ω, p, ρ,B, Λ′)-almost periodic if
and only if F(·; ·) is Stepanov-(Ω, q, ρ,B, Λ′)-almost periodic.

Proof. We will prove only (ii) because (i) follows almost directly from the definition of
Stepanov-(Ω, p, ρ,B)-almost periodicity and an easy application of the Hölder inequality.
Due to (i), it suffices to show that the assumption F(·; ·) is Stepanov-(Ω, p, ρ,B)-almost
periodic, and implies that F(·; ·) is Stepanov-(Ω, q, ρ,B)-almost periodic. Let B ∈ B and
ε > 0 be given. Then, we know there exists l > 0, such that for each t0 ∈ Λ′, there exists
τ ∈ B(t0, l) ∩Λ′, such that for every t ∈ Λ and x ∈ B, we have:∫

t+Ω

∥∥F(τ + s; x)− TF(s; x)
∥∥p ds ≤ εp.
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Since xp ≥ xq for all x ∈ [0, 1], we have

∫
t+Ω

(∥∥F(τ + s; x)− TF(s; x)
∥∥

‖F‖B,∞(1 + ‖T‖)

)q

ds

≤
∫

t+Ω

(∥∥F(τ + s; x)− TF(s; x)
∥∥

‖F‖B,∞(1 + ‖T‖)

)p

ds ≤ εp
[
‖F‖B,∞(1 + ‖T‖)

]−p
m(Ω).

This simply completes the proof.

Before proceeding any further, we would like to note that the conclusion estab-
lished in [5] (Example 2.2.3 (i)) directly follows from the conclusion established in [5]
(Example 2.2.2) and Proposition 2. Now, we will state the following important corollary of
Proposition 2:

Corollary 1.

(i) Suppose that 0 < p ≤ q < ∞ and F ∈ Lp
loc(R

n : Y). If F(·) is Stepanov-q-almost periodic,
then F(·) is Stepanov-p-almost periodic.

(ii) Suppose that F ∈ L∞(Rn : Y) and 0 < p ≤ q < ∞. Then, F(·) is Stepanov-p-almost periodic
if and only if F(·) is Stepanov-q-almost periodic.

(iii) Suppose that F ∈ BUC(Rn : Y) and p > 0. Then, F(·) is almost periodic if and only if F(·)
is Stepanov-p-almost periodic.

We continue with the following illustrative example, which shows that the class of
equi-Weyl-almost periodic functions is essentially larger than the union of all classes of
Stepanov-p-almost periodic functions with the exponent p > 0; cf. [5,6] for the notion and
more details about the Weyl almost periodic type functions:

Example 2.

(i) Suppose that K is any compact subset of Rn with a positive Lebesgue measure. Then, we know
that the function F(t) := χK(t), t ∈ Rn is equi-Weyl-p-almost periodic for any exponent
p ≥ 1; see also [6] (Example 6.3.8) for a slightly stronger result. Arguing similarly as in
[38] (Example 4.27), we may conclude that F(·) cannot be Stepanov-p-almost periodic for any
exponent p > 0; moreover, this function cannot be Stepanov-p-almost periodic in norm for
any exponent p > 0 (cf. Section 5 for the notion).

(ii) Denote by Eα(·) the Mittag-Leffler function. If α ∈ (0, 2) \ {1} and r ∈ R \ {0}, then the
function t 7→ Eα((ir)αtα), t ∈ R is not Stepanov-p-almost periodic for any exponent p > 0,
which follows from the argument contained in the proof of [5] (Lemma 2.6.9). On the other
hand, if 1 < α < 2, then the asymptotic expansion formula for the Mittag-Leffler functions
(see, e.g., [5] (Theorem 1.4.1 and the Formulas (16)–(18))) shows that the formula stated
on the fourth line of the proof of the above-mentioned lemma continues to hold for t ≤ −1,
as well as that the term |εα((ir)αtα)| is bounded by Const.·|t|−α for |t| ≥ 1. Throughout
the proof, we have mistakenly used the constant β: we actually have β = 1 here. Keeping
in mind the argument given in [10] (pp. 407–408) and the fact that equi-Weyl-p-almost
periodic functions form a vector space with the usual operations, it readily follows that the
function t 7→ Eα((ir)αtα), t ∈ R is equi-Weyl-p-almost periodic for any exponent p ≥ 1.
The situation is a little bit complicated if 0 < α < 1 because, in this case, the asymptotic
expansion formula for the Mittag-Leffler functions shows that there exists a continuous
function q : R → C, such that lim|t|→+∞ q(t) = 0, Eα((ir)αtα) = α−1(ir)1−βeirt + q(t)
for t ≥ 0 and Eα((ir)αtα) = q(t) for t < 0. Using again the argument given in [10]
(pp. 407–408), it readily follows that the function t 7→ Eα((ir)αtα), t ∈ R is equi-Weyl-p-
almost periodic if and only if the function t 7→ F(t), t ∈ R, given by

F(t) := α−1eirtεα

(
(ir)αtα

)
, t ≥ 0; F(t) := 0, t < 0,
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is equi-Weyl-p-almost periodic (p ≥ 1). But, the last statement is not true on account of
the formula given in [6] (l. 8, p. 425), so that the function t 7→ Eα((ir)αtα), t ∈ R is not
equi-Weyl-p-almost periodic (0 < α < 1; p ≥ 1).

The subsequent examples, in which we provide the proper extensions of the conclu-
sions established in [7] (Theorem 5.3.1, p. 210 and p. 212), indicate the importance of the
notion introduced in Definition 2 and this paper (without going into further details, we
will only mention in passing that the conclusions established here can be also clarified in
the multi-dimensional setting; see, e.g., [6] (Example 6.2.9)):

Example 3. Suppose that f : R → R is an almost periodic function and there exist a finite real
number c > 0 and an analytic function g : {z ∈ C : |=z| < c} → C, such that g(t) = f (t) for all
t ∈ R. Then, we know that the function F(t) := sign( f (t)), t ∈ R is Stepanov-p-almost periodic
for any p ≥ 1. Now, we will improve this result by showing that the function F(·) belongs to the
class S(F,ρ,Pt ,P)

Ω,Λ′ (Λ : C) with Λ = Λ′ = R, F(··) ≡ 1, ρ = I, Ω = [0, 1], P = Cb(R : C) and
Pt = Lp

ν(t + [0, 1] : C) for all t ∈ R, where p > 0 is an arbitrary exponent and ν : R→ (0, ∞) is
a Lebesgue measurable function satisfying the following condition:

(LT) For every ε > 0, there exists a sufficiently large integer d > 0, such that

sup
t∈R

∫ +∞

d
yp−1m({x ∈ [t, t + 1] : ν(x) > y}) dy < ε,

where m(·) denotes the Lebesgue measure.
In order to achieve that, set Eα := {x ∈ R : | f (x)| > α} (α > 0) and fix a number ε > 0.

Let d > 0 be an integer, such that

sup
t∈R

∫ +∞

d
yp−1m({x ∈ [t, t + 1] : ν(x) > y}) dy < 2−p p−12−1ε.

If τ ∈ R is an α-almost period of the function f (·), then we know that F(x + τ) = F(x) for
all x ∈ Eα and, because of that, we have (the Equation (6) is a consequence of (5)):∫ t+1

t

∣∣F(x + τ)− F(x)
∣∣pνp(x) dx ≤ 2p

∫
Ec

α∩[t,t+1]
νp(x) dx

= 2p p
∫ +∞

0
yp−1m

(
{x ∈ Ec

α ∩ [t, t + 1] : ν(x) > y}
)

dy (6)

= 2p p
∫ d

0
yp−1m

(
{x ∈ Ec

α ∩ [t, t + 1] : ν(x) > y}
)

dy

+ 2p p
∫ +∞

d
yp−1m

(
{x ∈ Ec

α ∩ [t, t + 1] : ν(x) > y}
)

dy

≤ 2p p
∫ d

0
yp−1m

(
{x ∈ Ec

α ∩ [t, t + 1] : ν(x) > y}
)

dy

+ 2p p
∫ +∞

d
yp−1m

(
{x ∈ [t, t + 1] : ν(x) > y}

)
dy

≤ 2p p
∫ d

0
yp−1m

(
{x ∈ Ec

α ∩ [t, t + 1] : ν(x) > y}
)

dy + (ε/2)

≤ 2p p ·m
(

Ec
α ∩ [t, t + 1]

) ∫ d

0
yp−1 dy + (ε/2)

= 2pdpm
(

Ec
α ∩ [t, t + 1]

)
+ (ε/2)

for any t ∈ R. By the proof of [7] (Theorem 5.3.1), we have limα→0+ m(Ec
α ∩ [t, t + 1]) = 0,

uniformly in t ∈ R, which simply implies the required conclusion.
Concerning the condition (LT), we would like to emphasize the following facts:
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(LT1): It is clear that condition (LT) holds provided that there exists a finite real constant M > 0,
such that ν(x) ≤ M for all x ∈ R. But, condition (LT) also holds for some unbounded
functions ν(x); for example, set ν(x) := |k| if x ∈ [k, k + 2−|k|] for some k ∈ Z, and
ν(x) := 1 otherwise. Then, the validity of (LT) simply follows from the fact that m({x ∈
[t, t + 1] : ν(x) > y}) ≤ 2−|k|, t ∈ R, provided that y ∈ [k, k + 1] for some k ∈ Z.

(LT2): Suppose that ν(t) = c + ζ(t), t ∈ R, where c ≥ 0, ζ : R → (0,+∞) is a Lebesgue
measurable function and

∫ +∞
−∞ ζ p(x) dx < +∞. Then, condition (LT) also holds, which

can be shown as follows. Let a number ε > 0 be fixed; then, it is clear that there exists a
sufficiently large number d > 1, such that c + d ∈ N and

∫ +∞
d yp−1m({x ∈ [t, t + 1] :

ζ(x) > y}) dy < ε. We will prove that (LT) holds with the integer c + d in place of d. In
actual fact, we have:

∫ +∞

c+d
yp−1m({x ∈ [t, t + 1] : ν(x) > y}) dy

=
∫ +∞

d
(y + c)p−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy.

If 0 < p ≤ 1, then we have∫ +∞

d
(y + c)p−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy

≤
∫ +∞

d
yp−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy

≤
∫ +∞

d
yp−1m({x ∈ R : ζ(x) > y}) dy < ε.

On the other hand, if p > 1, then there exists a real number cp > 0, such that∫ +∞

d
(y + c)p−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy

≤ cp

[∫ +∞

d
yp−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy +

∫ +∞

d
m({x ∈ [t, t + 1] : ζ(x) > y}) dy

]

≤ 2cp

∫ +∞

d
yp−1m({x ∈ [t, t + 1] : ζ(x) > y}) dy < 2cpε.

This simply implies the required conclusion. We can similarly prove that condition (LT) holds
for the function c + ν(·), if (LT) holds for the function ν(·).

Then, it can be simply shown that condition (LT) does not hold if ν(t) = eσ|t|, t ∈ R or
ν(t) = (1 + |t|)σ, t ∈ R for some real number σ > 0. The following condition is similar to (LT)
but it holds for any p-locally integrable function ν(·), as easily explained:

(LT-K) For every ε > 0 and for every compact set K ⊆ R, there exists a sufficiently large integer
d > 0, such that for every t ∈ K, we have

∫ +∞
d yp−1m({x ∈ [t, t + 1] : ν(x) > y}) dy < ε.

If (LT-K) holds, then we can similarly prove that the function F(·) is Stepanov-Levitan-(N, ν)-
almost periodic in the following sense:

(SL-1) For every ε > 0 and N > 0, there exists a relatively dense subset Rε,N ⊆ R of Stepanov–
Levitan-(N, ν, ε)-almost periods of F(·), which means that if, τ ∈ Rε,N and |t| ≤ N, then∫ t+1

t

∣∣F(x + τ)− F(x)
∣∣pνp(x) dx ≤ ε.

(SL-2) For every ε > 0 and N > 0, there exist a number δ > 0 and a relatively dense subset Rδ,N ⊆
R of Stepanov–Levitan-(N, ν, δ)-almost periods of F(·) such that Rδ,N ± Rδ,N ⊆ Rε,N .

We will consider this class of generalized Levitan N-almost periodic functions somewhere else
(cf. [10] for further information in this direction).
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Example 4. Suppose that α, β ∈ R and αβ−1 is a well-defined irrational number. Then, we know
that the functions

f (t) = sin

(
1

2 + cos αt + cos βt

)
, t ∈ R

and

g(t) = cos

(
1

2 + cos αt + cos βt

)
, t ∈ R

are Stepanov-p-almost periodic but not almost periodic (1 ≤ p < ∞). Suppose now that p > 0 is
an arbitrary exponent and that the function ν : R→ (0, ∞) is Stepanov-p-bounded and satisfies
(LT); for example, the function ν(·) constructed in the final part of the previous example enjoys these
features. Then, the functions f (·) and g(·) belong to the class S(F,ρ,Pt ,P)

Ω,Λ′ (Λ : Y) with Λ = Λ′ = R,
F(··) ≡ 1, ρ = I, Ω = [0, 1], P = Cb(R : C) and Pt = Lp

ν(t + [0, 1] : C) for all t ∈ R.
We will prove this fact only for the function f (·) with α = 1 and β =

√
2. In order to achieve

that, set Eα := {x ∈ R : |2 + cos x + cos(
√

2x)| > α} (α > 0) and fix a number ε > 0. Let
α > 0 and δ > 0 be arbitrary real numbers, such that α > δ. Arguing as in [7] (see p. 212), it
readily follows that for every δ-almost period τ ∈ R of the function 2 + cos(·) + cos(

√
2·) and for

every t ∈ R, we have:

∫ t+1

t

∣∣ f (x + τ)− f (x)
∣∣pνp(x) dx ≤

[
δ

α(α− δ)

]p

‖ν‖Sp + 2p
∫

Ec
α∩[t,t+1]

νp(x) dx,

where ‖ν‖Sp := supt∈R
∫ t+1

t νp(x) dx. Then, the final conclusion follows similarly as in [7] and
the previous example (if the function ν(·) is Stepanov-p-bounded, then the functions f (·) and g(·)
are Stepanov–Levitan-(N, ν)-almost periodic).

3.1. Relations between Piecewise Continuous Almost Periodic Functions and Metrically
Stepanov-p-Almost Periodic Functions (p > 0)

In our recent joint research article [30] with W.-S. Du and D. Velinov, we recently ana-
lyzed certain relations between piecewise continuous almost periodic functions (piecewise
continuous uniformly recurrent functions) and Stepanov almost periodic functions (Stepanov
uniformly recurrent functions). We start this subsection by recalling the following notion:

Definition 6. (cf. [30] (Definition 6 (i))) Suppose that ρ is a binary relation on Y, the function F :
R× X → Y [F : [0, ∞)× X → Y] satisfies that for every x ∈ X, the function t 7→ F(t; x), t ∈ R
is piecewise continuous with the possible first kind discontinuities at the points of a fixed sequence
(tk)k∈Z [(tk)k∈N]. Suppose further that (tk)k∈Z [(tk)k∈N] satisfies that δ0 := infk∈Z(tk+1− tk) >
0 [δ0 := infk∈N(tk+1− tk) > 0]. Then, we say that the function F(·; ·) is pre-(B, ρ, (tk))-piecewise
continuous almost periodic if and only if for every ε > 0 and B ∈ B, there exists a relatively dense
set S in R [in [0, ∞)], such that if τ ∈ S, x ∈ B and t ∈ R satisfies |t− tk| > ε for all k ∈ Z
[k ∈ N], then there exists yt,x ∈ ρ(F(t; x)), such that ‖F(t + τ; x)− yt,x‖ < ε.

The following result provides, even for the usually considered exponents p ≥ 1, an
extension of [30] (Theorem 1) for pre-(B, T, (tk))-piecewise continuous almost periodic
functions (the extension for pre-(B, T, (tk))-piecewise continuous uniformly recurrent
functions can be deduced in a similar manner):

Theorem 1. Suppose that ρ = T ∈ L(Y), p > 0, F : Λ× X → Y is pre-(B, T, (tk))-piecewise
continuous almost periodic, where Λ = R or Λ = [0, ∞), and for every B ∈ B, ‖F‖∞,B ≡
supt∈Λ,x∈B ‖F(t; x)‖ < +∞. Suppose further that the function ν : R → (0, ∞) is Stepanov-p-
bounded and satisfies the following condition:
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(LQ) For every ε > 0, there exist d > 0 and ε0 > 0, such that for every x ∈ R and for every
Lebesgue measurable set Ω ⊆ [x, x + 1], such that m(Ω) < ε0, we have

∫ +∞
d yp−1m({x ∈

Ω : ν(x) > y}) dy < ε.

Then, the function F(·; ·) belongs to the class S(F,T,Pt ,P)
Ω,Λ′ (Λ : Y) with Λ = Λ′ = R, F(··) ≡ 1,

Ω = [0, 1], P = Cb(R : C) and Pt = Lp
ν(t + [0, 1] : C) for all t ∈ R.

Proof. Without loss of generality, we may assume that Λ = R and T = cI for some c ∈ C.
Let a number ε > 0 and a set B ∈ B be given. Suppose that a point x ∈ R is fixed and
the interval [x, x + 1] contains the possible first kind discontinuities of functions F(·; b)
at the points {tm, . . . , tm+k} ⊆ [x, x + 1] (b ∈ X); then, we clearly have k ≤ d1/δ0e. Let
the numbers d > 0 and ε0 > 0 be determined from condition (LQ), with the number ε
replaced therein with the number ε/(2

(
(1 + |c|)‖F‖∞,B

)p p). Then, let S be a relatively
dense set in R, such that if τ ∈ S and b ∈ B, then ‖F(t + τ; x) − cF(t; x)‖ < ε1 for all
t ∈ R, such that |t − tk| > ε1, k ∈ Z, where the number ε1 ∈ (0, ε0/2d1/δ0e) will be
precisely clarified a bit later. The function t 7→ F(t + τ; b) − cF(t; b), t ∈ [x, x + 1] is
not greater than ε1 if t ∈ [x, tm − ε1] ∪ (tm + ε1, tm+1 − ε1] ∪ . . . ∪ (tm+k, x + 1]; otherwise,
‖F(t + τ; b)− cF(t; b)‖ ≤ (1 + |c|)‖F‖∞,B. Using Lemma 1, the above implies∫ x+1

x

∥∥F(t + τ; b)− cF(t; b)
∥∥p

νp(t) dt

≤ ε
p
1

∫
Ax

νp(t) dt +
(
(1 + |c|)‖F‖∞,B

)p
∫
[x,x+1]\Ax

νp(t) dt

≤ ε
p
1

∫ x+1

x
νp(t) dt +

(
(1 + |c|)‖F‖∞,B

)p p
∫ ∞

0
yp−1m

(
{s ∈ [x, x + 1] \ AX : ν(s) > y}

)
dy

≤ ε
p
1‖ν‖Sp +

(
(1 + |c|)‖F‖∞,B

)p p
∫ d

0
yp−1m

(
{s ∈ [x, x + 1] \ AX : ν(s) > y}

)
dy

+
(
(1 + |c|)‖F‖∞,B

)p p
∫ ∞

d
yp−1m

(
{s ∈ [x, x + 1] \ AX : ν(s) > y}

)
dy

≤ ε
p
1‖ν‖Sp + 2

(
(1 + |c|)‖F‖∞,B

)pdpd1/δ0eε1

+
(
(1 + |c|)‖F‖∞,B

)p p
∫ ∞

d
yp−1m

(
{s ∈ [x, x + 1] \ AX : ν(s) > y}

)
dy

≤ ε
p
1‖ν‖Sp + 2

(
(1 + |c|)‖F‖∞,B

)pdpd1/δ0eε1 +
ε

2
, b ∈ B,

where Ax := [x, tm − ε0] ∪ (tm + ε0, tm+1 − ε0] ∪ . . . ∪ (tm+k, x + 1]. This simply completes
the proof of theorem since we can always find a sufficiently small number ε1 > 0, such that

ε
p
1‖ν‖Sp + 2

(
(1 + |c|)‖F‖∞,B

)pdpd1/δ0eε1 <
ε

2
.

It is clear that condition (LT) implies condition (LQ), so that we can use the weight
function ν(·) constructed in Example 4 here.

The subsequent result follows from [30] (Theorem 3) and the argument contained in
the proof of [30] (Theorem 2). The only thing worth noting is that if 0 < p < 1, then we
should replace the number η

p
k with the number ηk throughout the proof of Theorem 2, and

assume that ηk ∈ (0, (ε/4)pδ) for all k ∈ N:

Theorem 2. Suppose that ρ = T ∈ L(Y), p > 0 and F : Λ × X → Y is a Stepanov-
(Ω, p, ρ,B, Λ′)-almost periodic function, where Λ = R or Λ = [0, ∞), Ω = [0, 1] and Λ′ = Λ.
Suppose further that F(·; ·) satisfies that for every x ∈ X, the function t 7→ F(t; x), t ∈ R is piece-
wise continuous with the possible first kind discontinuities at the points of a fixed sequence (tk)k∈Z
[(tk)k∈N] and δ0 := infk∈Z(tk+1 − tk) > 0 [δ0 := infk∈N(tk+1 − tk) > 0]. If the condition

(QUC) For every ε > 0 and B ∈ B, there exists δ > 0, such that if x ∈ B and the points
t′ and t′′ belong to (ti, ti+1) for some i ∈ Z [i ∈ N0; t0 ≡ 0] and |t′ − t′′| < δ, then
‖F(t′; x)− F(t′′; x)‖ < ε.
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holds, then F(·; ·) is pre-(B, T, (tk))-piecewise continuous almost periodic. Furthermore, if T = I,
F(·; ·) is continuous and any set of collection B is compact, then F(·; ·) is Bohr B-almost periodic,
i.e., for every B ∈ B and ε > 0, there exists l > 0, such that for each t0 ∈ Λ, there exists
τ ∈ B(t0, l) ∩Λ, such that for every t ∈ Λ and x ∈ B, we have ‖F(t + τ; x)− F(t; x)

∥∥ ≤ ε.

If p ≥ 1, then it is well known that any uniformly continuous, Stepanov-p-almost periodic
function F : Rn → Y is almost periodic and therefore bounded. Furthermore, we know that
there exists a Stepanov-1-almost periodic function F : R→ R, which is not uniformly continuous
(bounded), see, e.g., [39]. In connection with this problem, we would like to state the following
result: the proof can be deduced using the argument that is very similar to the argument used for
proving [30] (Theorems 2 and 3) given in the one-dimensional setting, and therefore omitted:

Corollary 2.

(i) Suppose that F : Rn × X → Y is continuous, any set of collection B is compact and F(·; ·) is
uniformly continuous on the set Rn × B (B ∈ B). If F(·; ·) is Stepanov-(Ω, p, I,B,Rn)-almost
periodic function, where p > 0 and Ω = [0, 1]n, then F(·; ·) is Bohr B-almost periodic.

(ii) Suppose that p > 0. Then, any uniformly continuous, Stepanov-p-almost periodic function
F : Rn → Y is almost periodic.

3.2. The Invariance of Stepanov-p-Almost Periodicity under the Actions of the Infinite Convolution
Products (0 < p < 1)

In series of our recent research articles, we have examined the invariance of Stepanov-p-
almost periodicity under the actions of the infinite convolution products and provide various
applications of the usually considered classes of Stepanov-p-almost periodic (automorphic)
type functions with the exponent p ≥ 1. In this subsection, we will analyze the invariance
of Stepanov-p-almost periodicity under the action of the infinite convolution product

t 7→ F(t) ≡
∫ t

−∞
R(t− s) f (s) ds, t ∈ R, (7)

where (R(t))t>0 ⊆ L(X, Y) is a strongly continuous operator family satisfying certain extra
conditions (0 < p < 1). For the sake of brevity, here we will analyze the one-dimensional
setting only.

The consideration from [5] (Proposition 2.6.11), where we have analyzed the case
p ≥ 1, is essential but cannot be replicated or modified in our new framework since the
reverse Hölder inequality is valid for 0 < p < 1. In order to overcome this difficulty, we
must impose some new unpleasant conditions; for example, we can prove the following:

Theorem 3. Suppose that ν : R → (0, ∞) is a Lebesgue measurable function and there exists a
function ω : R→ [0, ∞), such that ν(x + y) ≤ ν(x)ω(y) for all x, y ∈ R. Suppose further that
f : R→ X is Stepanov-(p, T, ν)-almost periodic, where ρ = T ∈ L(Y) and (R(t))t>0 ⊆ L(X, Y)
is a strongly continuous operator family satisfying the following conditions:

(i) There exists a finite real number s ≥ 1, such that ∑∞
k=0 ‖ω(·)R(·)‖Ls′ [k,k+1] < +∞, where

1/s + 1/s′ = 1.
(ii) There exists a finite real number M > 0, such that for every t ∈ R and τ ∈ R, we have

∞

∑
k=0

∫ k+1

k
‖R(r)‖ · ‖ f (t− r)‖ dr

+
∞

∑
k=0

max

{[
‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r)

]
:

r ∈ [k, k + 1], ‖ f (t + τ − r)− T f (t− r)‖ν(t− r) > 1

}
≤ M.
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Then, the function F(·), given by (7), is (T, ν)-almost periodic, provided that

(iii) limδ→0 supt∈R
∫ t+1

t ‖ f (s + δ)− T f (s)‖pνp(s) ds = 0;

here, by (T, ν)-almost periodicity of F(·), we mean that F(·) is continuous and for each
ε > 0 there exists a relatively dense set R in R, such that for each τ ∈ R and t ∈ R, we
have ‖F(t + τ) − TF(t)‖Yν(t) ≤ ε. Furthermore, the condition (iii) holds provided that the
function ω(·) is bounded and T = I.

Proof. It can be simply shown that the function F(·) is well defined and the integral that
defines F(·) is absolutely convergent, since we have∥∥∥∥∥

∫ t

−∞
R(t− s) f (s) ds

∥∥∥∥∥
Y

=

∥∥∥∥∥
∫ ∞

0
R(s) f (t− s) ds

∥∥∥∥∥
Y

≤
∫ ∞

0
‖R(s)‖ · ‖ f (t− s)‖ ds ≤ M;

cf. (ii). Let R be a relatively dense subset of R, such that for each τ ∈ R and t ∈ R, we have∫ t+1
t ‖ f (s + τ)− T f (s)‖pνp(s) ds ≤ ε. Fix a number t ∈ R. Then, the Lebesgue measure of

the set Bt ≡ {s ∈ [t, t + 1] : ‖ f (s + τ)− T f (s)‖ · ν(s) > 1} is less than or equal to ε; hence,
we have (τ ∈ R):

‖F(t + τ)− TF(t)‖Yν(t) ≤
∞

∑
k=0

∫ k+1

k
‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t) dr

=
∞

∑
k=0

∫
Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

+
∞

∑
k=0

∫
[k,k+1]\Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

≤
∞

∑
k=0

∫
Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

+
∞

∑
k=0

∫
[k,k+1]\Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖p/sνp/s(t− r)ω(r) dr

≤
∞

∑
k=0

∫
Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

+
∞

∑
k=0

∫
[k,k+1]

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖p/sνp/s(t− r)ω(r) dr

≤
∞

∑
k=0

∫
Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

+
∞

∑
k=0
‖ω(·)R(·)‖Ls′ [k,k+1]

(∫ k+1

k
‖ f (t− r + τ)− T f (t− r)‖pνp(t− r) dr

)1/s

≤
∞

∑
k=0

∫
Bt−k−1

‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r) dr

+ ε
∞

∑
k=0
‖ω(·)R(·)‖Ls′ [k,k+1]

≤ ε
∞

∑
k=0

max

{[
‖R(r)‖ · ‖ f (t + τ − r)− T f (t− r)‖ν(t− r)ω(r)

]
:

r ∈ [k, k + 1], ‖ f (t + τ − r)− T f (t− r)‖ν(t− r) > 1

}

+ ε
∞

∑
k=0
‖ω(·)R(·)‖Ls′ [k,k+1] ≤

(
M +

∞

∑
k=0
‖ω(·)R(·)‖Ls′ [k,k+1]

)
ε.
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The continuity of function F(·) can be proved as above, using the condition (iii) and
replacing the number τ with the number δ throughout the above computation. It remains to
be proven that (ii) holds provided that the function ω(·) is bounded and T = I, cf. also [29]
(p. 403) for the case ν(·) ≡ ω(·) ≡ 1. Clearly, for every t ∈ R, τ ∈ R and δ ∈ (−1, 1),
we have:∫ t+1

t
‖ f (s + δ)− f (s)‖pνp(s) ds ≤

∫ t+1

t
‖ f (s + δ)− f (s + δ + τ)‖pνp(s) ds

+
∫ t+1

t
‖ f (s + δ + τ)− f (s + τ)‖pνp(s) ds +

∫ t+1

t
‖ f (s + τ)− f (s)‖pνp(s) ds

≤
∫ t+1

t
‖ f (s + δ)− f (s + δ + τ)‖pνp(s + δ)ωp(−δ) ds

+
∫ t+1

t
‖ f (s + δ + τ)− f (s + τ)‖pνp(s + τ)ωp(−τ) ds

+
∫ t+1

t
‖ f (s + τ)− f (s)‖pνp(s) ds

≤
(

1 + ‖ω‖∞

)[∫ t+1

t
‖ f (s + δ)− f (s + δ + τ)‖pνp(s + δ) ds

+
∫ t+1

t
‖ f (s + δ + τ)− f (s + τ)‖pνp(s + τ) ds +

∫ t+1

t
‖ f (s + τ)− f (s)‖pνp(s) ds

]
.

For a given ε > 0, we can find a real number l > 3, such that any interval I ⊆ R
contains a number τ ∈ I, such that

∫ t+1
t ‖ f (s + τ)− f (s)‖pνp(s) ds ≤ ε/3 for all t ∈ R. Fix

now a real number t. Then, we can always find a number τ ∈ R, such that the last inequality
holds and s + τ ⊆ [0, l] for all s ∈ [t, t + 1]. The first addend and the third addend in the
above sum can be simply estimated by ε/3. This can be also performed for the second
addend in the above sum, since we can argue as in the proof of [5] (Proposition 3.5.3),
by choosing a sequence of infinitely differentiable functions (ϕk), which converge to
[ f (·+ τ)− f (·)]ν(·) in L1[0, l] and apply the Hölder inequality and the same procedure
after that.

We continue by stating the following result, which is not so easily comparable to
Theorem 3 or [33] (Proposition 2.3):

Proposition 3. Suppose that p ∈ [1, ∞), 1/p + 1/q = 1, there exists a finite real constant
c > 0, such that ν(t) ≥ c > 0, t ∈ R, that ν : R → (0, ∞) is a Lebesgue measurable function
and there exists a function ω : R → [0, ∞), such that ν(x + y) ≤ ν(x)ω(y) for all x, y ∈ R.
Suppose further that f : R→ X is Stepanov-(p, T, ν)-almost periodic, where ρ = T ∈ L(Y), and
(R(t))t>0 ⊆ L(X, Y) is a strongly continuous operator family satisfying the following conditions:

(i) ∑∞
k=0 ‖[1 + ω(·)]R(·)‖Lq [k,k+1] < +∞.

(ii) For every t ∈ R, we have

∞

∑
k=0

∫ k+1

k
‖R(r)‖ · ‖ f (t− r)‖ dr < +∞.

Then, the function F(·), given by (7), is (T, ν)-almost periodic. Specifically, the function F(·)
is T-almost periodic and almost periodic.

Proof. We will provide the main details of the proof since it can be given with the help of
the argumentation employed for proving [5] (Proposition 2.6.11) and [33] (Proposition 2.3).
Due to (ii), the function F(·) is well defined. Observe that the condition ν(t) ≥ c > 0, t ∈ R
implies that the function f (·) is Stepanov-(p, T)-almost periodic and therefore Stepanov-
p-almost periodic in the usual sense. Since ∑∞

k=0 ‖R(·)‖Lq [k,k+1] < +∞, the continuity and
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almost periodicity of F(·) follows directly from an application of [5] (Proposition 2.6.11).
The remainder of proof follows similarly as in the proof of the above-mentioned result and
therefore omitted.

Remark 2. It is worth noting that many statements for Stepanov-p-almost periodic functions with
the exponent p ≥ 1, which can be deduced without the help of the Hölder inequality, continue to
hold for Stepanov-p-almost periodic functions with the exponent p ∈ (0, 1); for example, this is the
case with the statements of [5] (Theorem 2.6.17 (i)) and [6] (Theorem 6.2.15, Proposition 6.2.22,
Theorem 6.2.30, Corollary 6.2.31). On the other hand, the statements of [6] (Proposition 6.2.18,
Proposition 6.2.19), where the Hölder inequality is essentially employed in the proofs, cannot be
clarified for Stepanov-p-almost periodic functions with the exponent p ∈ (0, 1). Especially, we
would like to emphasize that the composition principles established in [40] (Theorem 2.2), [33]
(Theorem 2.2) and [6] (Theorem 6.2.32, Theorem 6.2.33) cannot be clarified for Stepanov-p-almost
periodic functions with the exponent p ∈ (0, 1).

Finally, we would like to note that it is almost impossible to state any relevant result
concerning the invariance of Stepanov p-almost periodicity (automorphy) in norm under
the actions of the infinite convolution product (7); cf. the subsequent two sections for
the notion.

4. Stepanov-p-Almost Automorphic Type Functions (p > 0)

The main aim of this section is to introduce and analyze the following classes of
Stepanov-p-almost automorphic functions:

Definition 7. Suppose that p > 0, ν : Ω → (0, ∞) is a Lebesgue measurable function, F :
Rn × X → Y is a given function and R is a certain collection of sequences in Rn. Then, we say that
the function F(·; ·) is Stepanov (Ω, p, R,B, ν)-almost automorphic (Stepanov (Ω, p, R,B, ν, WB,R)-
almost automorphic; Stepanov (Ω, p, R,B, ν, PB,R)-almost automorphic) if and only if F(·; ·) is
Stepanov (Ω, R,B, ZP )-multi-almost automorphic (Stepanov (Ω, R,B, ZP , WB,R)-multi-almost
automorphic; Stepanov (Ω, R,B, ZP , PB,R)-multi-almost automorphic) with Z = Lp

ν(Ω : Y).

Any strongly Stepanov-(Ω, p, R,B, ν)-almost periodic function F : Rn × X → Y is
Stepanov (Ω, p, R,B, ν)-almost automorphic.

Definition 8. Suppose that p > 0 and that ν : Ω → (0, ∞) is a Lebesgue measurable function.
Then, we say that a function F : Rn → Y is Stepanov-(Ω, p, ν)-almost automorphic (Stepanov-
(Ω, p, ν, W)-almost automorphic) if and only if F(·) is Stepanov-(Ω, p, R, ν)-almost automorphic
(Stepanov-(Ω, p, R, ν, WR)-almost automorphic), with R being the collection of all sequences in Rn.
F(·) is Stepanov-p-almost automorphic if and only if F(·) is Stepanov-(Ω, p, ν)-almost automorphic
with Ω = [0, 1]n and ν(·) ≡ 1.

The statements of [12] (Theorem 2.4, Propositions 2.5, 2.7 and 2.8, Theorem 2.9), estab-
lished recently for general classes of metrically Stepanov almost automorphic functions, can
be simply reformulated for the special classes of Stepanov (Ω, p, R,B, ν)-almost automor-
phic functions, since the metric space Z = Lp

ν(Ω : Y) satisfies all necessary requirements
for the application of these results. For example, we have the following (Proposition 2.8):

Proposition 4. Suppose that Fm : Rn × X → Y is Stepanov (Ω, p, R,B, ν)-almost automor-
phic (Stepanov (Ω, p, R,B, ν, WB,R)-almost automorphic; Stepanov (Ω, p, R,B, ν, PB,R)-almost
automorphic) for all m ∈ N, F : Rn × X → Y and limm→+∞ Fm(t + ·; x) = F(t + ·; x) for the
topology of Lp

ν(Ω : Y), uniformly on the set Rn × B for each B ∈ B. Suppose further that for
every sequence b ∈ R, all of its subsequences also belong to R. Then, F(·; ·) is likewise Stepanov
(Ω, p, R,B, ν)-almost automorphic (Stepanov (Ω, p, R,B, ν, WB,R)-almost automorphic; Stepanov
(Ω, p, R,B, ν, PB,R)-almost automorphic).
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The following analogue of Corollary 2 can be deduced using the argument contained
in the proof of [41] (Proposition 3.1) and a relatively simple argument involving the com-
pactness of sets of the collection B and the condition (LB) clarified below (cf. also the proof
of Theorem 5):

Corollary 3.

(i) Suppose that p > 0, Ω = [0, 1]n, ν : Ω→ (0, ∞) is a Lebesgue measurable function, R is any
collection of sequences in Rn that satisfies that for each sequence in R, any of its subsequences
also belong to R, F : Rn × X → Y is continuous, any set of collection B is compact, F(·; x) is
uniformly continuous on Rn for every fixed element x ∈ X and the following condition holds:

(LB) For every set B ∈ B, there exists a finite real number LB > 0, such that ‖F(t; x)−
F(t; y)‖Y ≤ LB‖x− y‖, t ∈ Rn, x, y ∈ B.

If F(·; ·) is Stepanov (Ω, p, R,B, ν)-almost automorphic, then F(·; ·) is compactly (R,B)-
multi-almost automorphic.

(ii) Suppose that p > 0, Ω = [0, 1]n and ν : Ω→ (0, ∞) is a Lebesgue measurable function. Then,
any uniformly continuous Stepanov-(Ω, p, ν)-almost automorphic function F : Rn → Y is
almost automorphic.

Before proceeding to the next subsection, we would like to note that Corollary 1 contin-
ues to hold for Stepanov-p-almost automorphic functions (p > 0). This essentially follows
from the Hölder inequality and the fact that for every fixed number t ∈ Rn, the assumptions
liml→+∞

∫
[0,1]n ‖F(t + bkl

+ s)− [F∗(t)](s)‖p ds = 0 and liml→+∞
∫
[0,1]n ‖[F

∗(t− bkl
)](s)−

F(t + s)‖pds = 0 imply the existence of a set N ⊆ [0, 1]n with the Lebesgue zero measure,
such that liml→+∞ F(t + bkl

+ s) = [F∗(t)](s) and liml→+∞[F∗(t− bkl
)](s) = F(t + s) for

all s ∈ [0, 1]n \ N. After this, we may conclude that the essential boundedness of F(·)
implies the essential boundedness of F∗(·) and argue as in the proof of Proposition 2(ii).
This argument also provides the affirmative answer to the problem proposed in our earlier
joint research study with T. Diagana.

4.1. Relations between Piecewise Continuous Almost Automorphic Functions and Metrically
Stepanov-p-Almost Periodic Functions (p > 0)

We start this subsection by observing that the notion of a Bochner spatially almost
automorphic sequence (tk)k∈Z has recently been introduced by L. Qi and R. Yuan in [42]
(Definition 3.1), who proved that any Wekler sequence (tk)k∈Z is Bochner spatially almost
automorphic and that the converse statement is not true in general. The authors have ana-
lyzed the classes of Bohr, Bochner and Levitan piecewise continuous almost automorphic
functions; in [42] (Theorem 4.8), the authors proved that these classes coincide (cf. also the
research article [43] by W. Dimbour and V. Valmorin for the notion of S-almost automor-
phy). Moreover, in [42] (Theorem 8.2), the authors proved an essential relationship between
piecewise continuous almost automorphic functions and Stepanov-p-almost automorphic
functions (p ≥ 1). In order to further study the relations between piecewise continuous
almost automorphic functions and metrically Stepanov-p-almost automorphic functions
(p > 0), we need to introduce the following, rather general, notion (cf. also condition (iii)
in [42] (Definition 4.2)):

Definition 9. Suppose that R is a certain collection of real sequences and the function F : R×X →
Y satisfies that for every x ∈ X, the function t 7→ F(t; x), t ∈ R is piecewise continuous
with the possible first kind discontinuities at the points of a fixed sequence (tk)k∈Z. Let (t′k)
be any real sequence. Then, we say that the function F(·; ·) is pre-(R,B, (tk), (t′k))-piecewise
continuous almost automorphic if and only if for every B ∈ B and (bk) ∈ R, there exist a
subsequence (bkl

) of (bk) and a function F∗B : R× X → Y, such that for every x ∈ B, the function
t 7→ F∗B(t; x), t ∈ R is piecewise continuous with the possible first kind discontinuities at the
points of sequence (t′k)k∈Z, liml→+∞ F(t + bkl

; x) = F∗B(t; x) for all t ∈ R \ {t′kl
: l ∈ Z} and

liml→+∞ F∗B(t− bkl
; x) = F(t; x) for all t ∈ R \ {tkl

: l ∈ Z}.
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The next simple result follows directly by applying the dominated convergence theo-
rem with [F∗B(t; x)](u) ≡ F∗B(t + u; x):

Proposition 5. Suppose that p > 0, R is a certain collection of real sequences and the function
F : R× X → Y satisfies that for every x ∈ X, the function t 7→ F(t; x), t ∈ R is piecewise
continuous with the possible first kind discontinuities at the points of a fixed sequence (tk)k∈Z.
Let (t′k) be any real sequence and let supt∈R;x∈B ‖F(t; x)‖Y < +∞ (B ∈ B). If the function
F(·; ·) is pre-(R,B, (tk), (t′k))-piecewise continuous almost automorphic, then F(·; ·) is Stepanov
(Ω, p, R,B, ν)-almost automorphic for any function ν ∈ Lp(Ω).

Remark 3. In [43] (Definition 2.3), the authors introduced the notion of S-almost automorphy for a
function F : R→ Y, where S is any subset of R. In this slightly different approach, the authors have
not used the assumption that the limit function F∗(·) is piecewise continuous. Without going into
further details, we will only note here that an analogue of Proposition 5 can be simply formulated
for S-almost automorphic functions, provided that the Lebesgue measure of the set S is equal to zero
and R is the collection of all sequences with values in S.

The notion of a Levitan piecewise continuous almost automorphic function was
introduced previously in [42] (Definition 4.6). Now, we would like to extend this notion by
introducing the following general class of functions (we use the condition (iii) from this
definition only in a slightly modified form):

Definition 10. Suppose that F : R × X → Y satisfies that for every x ∈ X, the function
t 7→ F(t; x), t ∈ R is piecewise continuous with the possible first kind discontinuities at the points
of a fixed sequence (tk)k∈Z. If ρ is a binary relation on Y, then we say that the function F(·; ·) is pre-
(B, ρ, (tk))-Levitan piecewise continuous almost automorphic if and only if for every B ∈ B, ε > 0
and N > 0, there exists a relatively dense subset S of R, such that if τ ∈ S, x ∈ B, |t| ≤ N and
|t− τj| > ε for all j ∈ Z, then there exists yt;x ∈ ρ(F(t; x)), such that ‖F(t + τ; x)− yt,x‖ ≤ ε.

The introduced notion is important for our purposes because a slight modification of
the proof of Theorem 1 shows that the following result holds true:

Theorem 4. Suppose that p > 0, ρ = T ∈ L(Y) and F : R× X → Y satisfies that for every
x ∈ X, the function t 7→ F(t; x), t ∈ R is piecewise continuous with the possible first kind
discontinuities at the points of a fixed sequence (tk)k∈Z, which is strictly monotonically increasing
and satisfies that there exists δ0 > 0, such that infk∈Z(tk+1 − tk) > δ0. If ν : R → (0, ∞)
is Stepanov-p-bounded and satisfies condition (LQ), F(·; ·) is pre-(B, ρ, (tk))-Levitan piecewise
continuous almost automorphic and supt∈R;x∈B ‖F(t; x)‖Y < +∞ (B ∈ B), then we have the
following: For every B ∈ B, ε > 0 and t ∈ R, there exists a relatively dense subset S of R, such
that if τ ∈ S and x ∈ B, then∫ t+1

t

∥∥F(s + τ; x)− TF(s; x)
∥∥p

νp(s) ds ≤ ε.

Now we would like to note that Proposition 5 and Theorem 4 can serve to provide
several different extensions of [42] (Theorem 8.2). For example, the statement of this result
holds for any exponent p > 0; moreover, we have the following (for the notion of a Levitan
s.a.a. sequence, we refer the reader to [42] (Definition 3.12)):

Theorem 5. Suppose that p > 0, Ω = [0, 1], ν : Ω → (0, ∞) is a p-integrable function,
F : R→ Y is piecewise continuous with possible discontinuities at the points of a subset of a Levitan
s.a.a. sequence (tk)k∈Z and condition (QUC1) holds, where (QUC1) For every ε > 0, there exists
δ > 0, such that if the points t′ and t′′ belong to (ti, ti+1) for some i ∈ Z and |t′ − t′′| < δ, then
‖F(t′)− F(t′′)‖ < ε.
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Then, F(·) is Stepanov-(Ω, p, ν)-almost automorphic if and only if F(·) is piecewise continu-
ous almost automorphic.

Proof. It is clear that Proposition 5 implies that if F : Rn → Y is piecewise continuous
almost automorphic, then F(·) is Stepanov-(Ω, p, ν)-almost automorphic. To prove the
reverse statement, it suffices to show that for each number σ ∈ (0, 1] the Steklov function
Fσ := σ−1

∫ σ
0 F(t + s) ds, t ∈ R is compactly almost automorphic (see the proof of the

above-mentioned result). The uniform continuity of Fσ(·) can be simply proved using
the condition (QUC1) and we will only prove here that Fσ(·) is almost automorphic. If
(bk) is a real sequence, then we can always find a subsequence (bkl

) of (bk) and a function

F∗ : R → Y, such that for every fixed number t ∈ R, we have liml→+∞
∫ 1

0 ‖F(t + bkl
+

s) − [F∗(t)](s)‖pνp(s) ds = 0 and liml→+∞
∫ 1

0 ‖[F
∗(t − bkl

)](s) − F(t + s)‖pνp(s) ds = 0.
This implies simply the existence of a set N ⊆ [0, 1] with the Lebesgue zero measure,
such that liml→+∞ F(t + bkl

+ s) = [F∗(t)](s) and liml→+∞[F∗(t− bkl
)](s) = F(t + s) for

all s ∈ [0, 1] \ N. Applying the dominated convergence theorem, we simply find that
liml→+∞ Fσ(t + bkl

) = σ−1
∫ σ

0 [F∗(t)](s) ds and liml→+∞ σ−1
∫ σ

0 [F∗(t− bkl
)](s) ds = Fσ(t),

which implies the required conclusion.

We will consider two-dimensional analogues of Theorem 5 somewhere else. The
interested reader may also try to prove certain analogues of Theorem 3 and Proposition 3
for Stepanov-p-almost automorphic type functions (0 < p < 1).

5. Stepanov-p-Almost Periodicity in Norm and Stepanov-p-Almost Automorphy in
Norm (p > 0)

In this section, the following definitions will be considered:

Definition 11.

(i) Assume that p > 0, (SM-1) holds true and νt : t+Ω→ (0, ∞) is a Lebesgue measurable func-
tion (t ∈ Λ). Then, we say that a function F : Λ× X → Y is Stepanov-(Ω, p, ρ,B, Λ′, ν·)-
almost periodic in norm (Stepanov-(Ω, p, ρ,B, Λ′, ν)-almost periodic in norm, where a
Lebesgue measurable function ν : Λ→ (0, ∞) satisfies that νt(·) ≡ ν|t+Ω(·) for all t ∈ Λ) if
and only if the function ‖F(·; ·)‖p

Y : Λ× X → C is Stepanov-(Ω, 1, ρN ,B, Λ′, ν
p
· )-almost pe-

riodic (Stepanov-(Ω, 1, ρN ,B, Λ′, νp)-almost periodic), where ρN := {(‖x‖p
Y, ‖y‖p

Y); (x, y) ∈
ρ}; furthermore, if νt(·) ≡ 1 for all t ∈ Λ, then we omit the term “ν·” from the notation.

(ii) Assume that p > 0, ∅ 6= Λ ⊆ Rn, F : Λ× X → Y is a given function and the assumptions
t ∈ Λ, b ∈ R and l ∈ N imply t + b(l) ∈ Λ. If ν : Ω→ (0, ∞) is a Lebesgue measurable
function, then we say that the function F(·; ·) is (strongly) Stepanov-(Ω, p, R,B, ν)-almost
periodic in norm if and only if ‖F(·; ·)‖p

Y is (strongly) Stepanov (Ω, R,B,PZ)-multi-almost
periodic with Z = L1

νp(Ω : C) and PZ = Cb(Λ : Z); if ν(·) ≡ 1 (Ω = [0, 1]n), then we omit
the term “ν” (“Ω”) from the notation.

(iii) Assume that p > 0, (SM-1) holds true, νt : t + Ω → (0, ∞) is a Lebesgue measurable
function (t ∈ Λ) and ν : Λ→ (0, ∞) is a Lebesgue measurable function. Then, we say that
a function F : Λ → Y is Stepanov-(Ω, p, ν·)-almost periodic in norm (Stepanov-(Ω, p, ν)-
almost periodic in norm) if and only if ‖F(·)‖p

Y is Stepanov-(Ω, 1, ρ, Λ′, ν
p
· )-almost periodic

(Stepanov-(Ω, 1, ρ, Λ′, νp)-almost periodic) with ρ ≡ I and Λ′ ≡ {τ ∈ Rn : τ + t ∈ Λ,
t ∈ Λ}; if ν(·) ≡ 1, then we omit the term “ν” from the notation.

(iv) Suppose that p > 0, ∅ 6= Λ ⊆ Rn, F : Λ → Y is a given function, ν : Ω → (0, ∞) is a
Lebesgue measurable function and R denotes the collection of all sequences in Rn, such that
the assumptions t ∈ Λ, b ∈ R and l ∈ N imply t + b(l) ∈ Λ. Then, we say that the
function F(·) is Bochner–Stepanov-(Ω, p, ν)-almost periodic in norm if and only if ‖F(·)‖p

Y
is Stepanov-(Ω, 1, R, νp)-almost periodic.

In the almost automorphic setting, we will use the following notion:
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Definition 12.

(i) Assume that p > 0, ν : Ω → (0, ∞) is a Lebesgue measurable function, F : Rn × X →
Y is a given function and R is a certain collection of sequences in Rn. Then, we say
that the function F(·; ·) is Stepanov (Ω, p, R,B, ν)-almost automorphic in norm (Stepanov
(Ω, p, R,B, ν, WB,R)-almost automorphic in norm; Stepanov (Ω, p, R,B, ν, PB,R)-almost au-
tomorphic in norm) if and only if ‖F(·; ·)‖p

Y is Stepanov (Ω, R,B, ZP )-multi-almost automor-
phic (Stepanov (Ω, R,B, ZP , WB,R)-multi-almost automorphic; Stepanov (Ω, R,B, ZP , PB,R)-
multi-almost automorphic) with Z = L1

νp(Ω : Y).
(ii) Suppose that p > 0 and that ν : Ω → (0, ∞) is a Lebesgue measurable function. Then,

we say that a function F : Rn → Y is Stepanov-(Ω, p, ν)-almost automorphic in norm
(Stepanov-(Ω, p, ν, W)-almost automorphic in norm) if and only if ‖F(·)‖p

Y is Stepanov-
(Ω, 1, R, νp)-almost automorphic (Stepanov-(Ω, 1, R, νp, WR)-almost automorphic) with R
being the collection of all sequences in Rn. F(·) is Stepanov-p-almost automorphic in norm
if and only if ‖F(·)‖p

Y is Stepanov-(Ω, 1, νp)-almost automorphic with Ω = [0, 1]n and
ν(·) ≡ 1.

If 0 < p ≤ 1, then we have the following inequality:

‖x− y‖p
Y ≥

∣∣∣‖x‖p
Y − ‖y‖

p
Y

∣∣∣, x, y ∈ Y. (8)

Using (8), it can be simply verified that any Stepanov-(Ω, p, ρ,B, Λ′, ν·)-almost peri-
odic function is Stepanov-(Ω, p, ρ,B, Λ′, ν·)-almost periodic in norm; this holds for all other
classes of functions introduced in Definition 11 and Definition 12, provided that 0 < p ≤ 1.
In particular, if F : Rn → Y is a Stepanov-p-almost periodic (automorphic) function and
0 < p ≤ 1, then the function ‖F(·)‖p

Y is Stepanov-1-almost periodic (automorphic).
If p ≥ 1, then we cannot expect the existence of a finite real constant cp > 0, such that

the inequality

‖x− y‖p
Y ≤ cp

∣∣∣‖x‖p
Y − ‖y‖

p
Y

∣∣∣, x, y ∈ Y (9)

holds true (consider the case in which ‖x‖Y = ‖y‖Y but x 6= y). But, the inequality

|x− y|p ≤
∣∣∣|x|p − |y|p∣∣∣, x, y ≥ 0 (10)

is true, as is easily shown with the help of the elementary differential calculus, and therefore
any Stepanov-(Ω, p, ρ,B, Λ′, ν·)-almost periodic function in norm with the non-negative
real values is Stepanov-(Ω, p, ρ,B, Λ′, ν·)-almost periodic; this holds for all other classes of
functions introduced in Definition 11 and Definition 12, provided that p ≥ 1. In particular,
if F : Rn → [0, ∞), p ≥ 1 and Fp(·) is Stepanov-1-almost periodic (automorphic), then F(·)
is Stepanov-p-almost periodic (automorphic).

We continue by recalling that for every exponent p ≥ 1, H. Bohr and E. Følner
have constructed, in [37] (Main example II c), a Stepanov-p-almost periodic function
g : R → [0, ∞), which is not Stepanov-q-bounded and therefore not Stepanov-q-almost
periodic (automorphic) for any exponent q > p. We will use this important example to
show the following result:

Theorem 6. Assume that 0 < p < 1. Then, there exists a function f : R → [0, ∞), which is
Stepanov-p-almost periodic in norm, not Stepanov-q-bounded and therefore not Stepanov-q-almost
periodic (automorphic) for any exponent q > p.

Proof. By the foregoing, there exists a Stepanov-1-almost periodic function g : R→ [0, ∞),
which is not Stepanov-q-bounded and therefore not Stepanov-q-almost periodic (automor-
phic) for any exponent q > 1. Define f (t) := g1/p(t), t ∈ R. Then, it is clear that f (·) is
Stepanov-p-almost periodic in norm. If we assume that f (·) is Stepanov-q-bounded for
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some exponent q > p, then g(·) must be Stepanov-(q/p)-bounded, which is a contradiction.
This simply implies that f (·) is not Stepanov-q-almost periodic (automorphic) for any
exponent q > 1, which can be also directly shown as follows: Assuming the contrary, then
the function gq/p(·) must be Stepanov-1-almost periodic (automorphic) due to (8). By the
conclusion clarified directly before the formulation of Problem 1, this show that the function
g(·) is Stepanov-(q/p)-almost periodic (automorphic), which leads to a contradiction.

Remark 4. Since f (·) is not Stepanov-q-bounded, we also have that f (·) is not Stepanov-q-almost
periodic (automorphic) in norm for any exponent q > p.

Further, we know that any Stepanov-p-almost periodic function f : R → [0, ∞) is
Stepanov-p-almost periodic in norm (0 < p < 1); hence, it is logical to ask whether the
function f (·), considered in the proof of Theorem 6, is Stepanov-p-almost periodic. If this is
the case, then for each exponent p > 0, we would have an example of a Stepanov-p-almost
periodic function that is not Stepanov-q-bounded and therefore not Stepanov-q-almost
periodic (automorphic) for any exponent q > p.

Concerning [37] (Main example II c) and Theorem 6, we give the following examples
as well:

Example 5. We first slightly modify the example already considered in the introductory part.
Suppose that p > 0 and

f (t) :=
{
| sin t|−(1/p), t /∈ Zπ
0, t ∈ Zπ.

Then, the function F(·) is not p-locally integrable and therefore not Stepanov-q-almost periodic
(automorphic) for any exponent q ≥ p. On the other hand, it can be simply shown that the function
f (·) is Stepanov-p0-almost periodic for any exponent p0 ∈ (0, p).

In connection with this example, it is also worth noting that H. D. Ursell has constructed
many non-trivial examples of functions f : R→ [0, ∞) that are Stepanov-p0-almost periodic for
any exponent p0 ∈ (0, 1) but not Stepanov p1-bounded for any exponent p > 1 (in this case, the
number 1 is said to be the critical index of f (·); cf. [29] (pp. 430–440) for more details on the
subject).

Example 6. Suppose that 0 < p < 1. Let us observe that the function g(·) from the proof of
Theorem 6 has the form g(t) = ∑+∞

k=1 gk(t), t ∈ R, where gk(·) is an essentially bounded, periodic
function with the non-negative values (k ∈ N) and the above series is convergent in the Stepanov
S1-norm. Consider now the following function

h(t) :=
∞

∑
k=1

g1/p
k (t), t ∈ R.

The function h(·) is well defined and Stepanov-p-almost periodic because the sequence of
functions ∑∞

k=1 g1/p
k (·) is Cauchy and therefore convergent in the Stepanov Sp-norm (cf. also [29]

(p. 404, l. 1–5)), which can be shown using the following simple calculation (k, m ∈ N, k < m):

sup
t∈R

∫ t+1

t

[
m

∑
i=k

g1/p
i (s)

]p

ds ≤ sup
t∈R

∫ t+1

t

[
m

∑
i=k

gi(s)

]
ds.

It is not clear whether the function h(·) is locally integrable or Stepanov-q-almost periodic for
some exponent q > p. Let us also emphasize that there is no simple theoretial explanation, which
would imply that the above conclusions hold in a general situation of this example and that the
function h(·) will be Stepanov-q-almost periodic for every exponent q > p in the case that gk(t) ≥ 1
for all t ∈ R and k ∈ N. This follows simply from the inequality
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[
m

∑
i=k

g1/q
i (s)

]q

≤
[

m

∑
i=k

g1/p
i (s)

]q

.

Finally, we would like to recall that for every almost periodic function f : R → Y
and for every positive real number p > 0, the function ‖ f (·)‖p : R → [0, ∞) is almost
periodic [44], which implies that f (·) is Stepanov-p-almost periodic in norm. In connection
with Theorem 6 and this observation, we would like to raise the following issue:

Problem 1. Suppose that p > 0. Can we find some sufficient conditions ensuring that the assump-
tions f : R→ Y is an unbounded Stepanov-p-almost periodic (automorphic) function, r > 0 and
q > 0 imply that the function ‖ f (·)‖r : R→ [0, ∞) is Stepanov-q-almost periodic (automorphic)?

We close this section with the observation that the class of Stepanov-p-almost periodic
(automorphic) functions in norm is extremely non-trivial. For example, it seems very
plausible that Stepanov-p-almost periodic (automorphic) functions in norm do not form
a vector space with the usual operations; furthermore, it is very difficult to state some
satisfactory analogs of Proposition 2 and Corollary 1 for this class of functions.

6. Applications to the Abstract (Impulsive) Volterra Integro-Differential Inclusions

The main goal of this section is to present certain applications of our results to the
abstract (impulsive) Volterra integro-differential inclusions in Banach spaces.

We will first provide some applications of Theorem 3 and Proposition 3 concerning the
invariance of Stepanov-p-almost periodicity under the actions of the infinite convolution
products (0 < p < 1). It is clear that Theorem 3 can be applied in the analysis of the
existence and uniqueness of (T, ν)-almost periodic solutions for various classes of the
abstract fractional integro-differential inclusions without initial conditions; cf. [5] for more
details about applications of this type (here, the main problem is to find the inhomogeniety
f (·), which is not Stepanov-1-almost periodic, such that the requirements of Theorem 3
hold). For example, we can analyze the existence and uniqueness of (T, ν)-almost periodic
solutions of the fractional Poisson heat equation{

Dγ
t,+[m(x)v(t, x)] = (∆− b)v(t, x) + f (t, x), t ∈ R, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,

in the space X := Lp(Ω), where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω,
m ∈ L∞(Ω), γ ∈ (0, 1) and 1 < p < ∞.

Concerning Proposition 3, we would like to note that the possible applications of this
result can be always made to the abstract differential first-order inclusions provided that
the operator family (R(t))t>0 is a (degenerate) strongly continuous semigroup of operators
satisfying that ‖R(t)‖ ≤ Me−cttβ−1, t > 0 for some real constants M > 0, c > 0 and
β ∈ (0, 1] as well as the function ν : R→ (0, ∞) is an admissible weight function with the
property that ν(t) ≤ M′eω|s|ν(t + s), t, s ∈ R for some real constants M′ > 0 and ω < c.
The applications can be simply given in the analysis of the existence and uniqueness of
ν-almost periodic solutions of the abstract Poisson heat equation{

∂
∂t [m(x)v(t, x)] = (∆− b)v(t, x) + f (t, x), t ∈ R, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,

in the space X := Lp(Ω); cf. also the first application made in [30] (Subsection 4.4), where
we analyzed the almost periodic type solutions to the abstract higher-order impulsive
Cauchy problems. In particular, we can use the inhomogenities from Example 4 with
ν(t) = a + ζ(t), t ∈ R, where a ≥ 0 and an admissible weight function ζ : R → (0, ∞)

satisfies ζ(t) ≤ M′eω|s|ζ(t + s), t, s ∈ R and
∫ +∞
−∞ ζ p(x) dx < +∞ (for example, we can
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take ζ(t) = e−ω|t|, t ∈ R with 0 < ω < c). Many other examples of such admissible weight
functions can be given following the recent investigations of chaotic translation semigroups
on weighted Lp-spaces.

Before dividing the remainder of this section into two separate subsections, we would
like to note that the argument similar to that one contained in the proofs of Theorem 3 and
Proposition 3 can be useful to deduce certain results concerning the invariance of Stepanov
p-almost periodicity under the actions of the infinite convolution product

t 7→ H(t) ≡
∫ +∞

−∞
h(t− s) f (s) ds, t ∈ R,

where h ∈ L1(R). This can be applied in the analysis of the existence and uniqueness of
the Stepanov-p-almost periodic type solutions to the inhomogenous heat equation. We
refer the interested readers to [6] (Subsection 6.2.6 and pp. 558–559)) for more detailed
information.

6.1. Applications to the Abstract Impulsive First-Order Differential Inclusions

We will analyze the existence and uniqueness of ν-almost periodic type solutions to
the abstract impulsive differential inclusions of first order in this subsection. Of concern is
the following abstract impulsive Cauchy inclusion

(ACP)1;1 :


u′(t) ∈ Au(t) + f (t), t ∈ [0, ∞) \ {t1, . . . , tl , . . .},(
∆u
)(

tk
)
= u

(
tk+

)
− u

(
tk−

)
= Cyk, k ∈ Nl ,

u(0) = Cu0.

We refer the reader to [10] for the notion of a (pre-)solution of (ACP)1;1. We need the
following result from this paper:

Lemma 2. Suppose that A is a closed subgenerator of a global C-regularized semigroup (R(t))t≥0.
Suppose further that 0 < t1 < . . . < tl < . . . < +∞, the sequence (tl)l has no accumulation
point, the functions C−1 f (·) and fA(·) are continuous on the set [0, ∞) \ {t1, . . . , tl , . . .}, fA(t) ∈
AC−1 f (t) for all t ∈ [0, ∞) \ {t1, . . . , tl , . . .}, as well as the right limits and the left limits of the
functions C−1 f (·) and fA(·) exist at any point of the set {t1, . . . , tl , . . .}. Define the functions u(t)
and ω(t) for t ≥ 0 by

u(t) := R(t)u0 +
∫ t

0
R(t− s)

(
C−1 f

)
(s) ds + ω(t), t ≥ 0

and

ω(t) :=

{
0, t ∈ [0, t1],
∑k

p=1 R
(
t− tp

)
yp

0 , if t ∈
(
tk, tk+1

]
for some k ∈ N0

l−1, (11)

respectively. Then, the function u(t) is a unique solution of the problem (ACP)1;1, provided that
u0 ∈ D(A) and yk ∈ D(A) for all k ∈ N.

In order to formulate our main result, we need to impose the following conditions:

(AS1) A is a closed subgenerator of a global C-regularized semigroup (R(t))t≥0 and
‖R(t)‖ ≤ Meω0t, t ≥ 0 for some real numbers M > 0 and ω0 < 0;

(AS2) m ∈ N, fi : [0, ∞)→ C is an almost periodic function (1 ≤ i ≤ m), f1(0) · . . . · fm(0) 6=
0, and the sequence {t1, . . . , tl , . . .} of all possible zeroes of functions f0(·), . . . , fm(·)
has no accumulation point;

(AS3) (xi, yi) ∈ A for 1 ≤ i ≤ m, t 7→ f0(t), t ≥ 0 is a piecewise continuous function
uniquely determined by the function t 7→ ∑m

i=1 sign( fi(t))Cxi, t ≥ 0 and t 7→ fA(t),
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t ≥ 0 is a piecewise continuous function uniquely determined by the function t 7→
∑m

i=1 sign( fi(t))yi, t ≥ 0;

(AS4) p ≥ 1, ζ : R → (0, ∞) is an admissible weight function, ζ(t) ≤ Meω|s|ζ(t + s), t,
s ∈ R for some real constant ω < ω0,

∫ +∞
−∞ ζ p(x) dx < +∞, c > 0 and ν(t) = c + ζ(t),

t ∈ R;

(AS5) ∑k≥1 e−ω0tk‖yk‖ < +∞, u0 ∈ D(A), yk ∈ D(A) for all k ∈ N and q : [0, ∞) → X is
a locally integrable function, such that ‖q(t)‖ ≤ Meω1t, t ≥ 0 for some real number
ω1 < ω0;

(AS6) The functions q(·) and fA,q(·) are continuous on the set [0, ∞) \ {t1, . . . , tl , . . .},
fA,q(t) ∈ Aq(t) for all t ∈ [0, ∞) \ {t1, . . . , tl , . . .}, as well as the right limits and
the left limits of the functions q(·) and fA,q(·) that exist at any point of the set
{t1, . . . , tl , . . .}.

We now establish the following result:

Theorem 7. Assume that conditions (AS1)–(AS6) hold good. Then, there exists a unique solution
of the problem (ACP)1;1 with f (t) = f0(t) + Cq(t), t ≥ 0, which can be written as a sum of a
ν-almost periodic function, a function from the space PCω0([0, ∞) : X) and a function from the
space Cω0+ω1([0, ∞) : X).

Proof. It is easy to prove that ν(t) ≤ Meω|s|ν(t + s), t, s ∈ R. Keeping in mind the first
condition in (AS5) and the consideration from [30] (Application 1, Subsection 4.1), we have
that the function ω(·), given by (11), belongs to the space PCω0([0, ∞) : X). Moreover, due

to the consideration from Example 3 (cf. (LT2)), we have that C−1 f0 ∈ S(F,ρ,Pt ,P)
Ω,Λ′ (Λ : C)

with Λ = Λ′ = R, F(··) ≡ 1, ρ = I, Ω = [0, 1], P = Cb(R : C) and Pt = Lp
ν(t + [0, 1] : C)

for all t ∈ R. Since p ≥ 1 and ν(t) ≥ c > 0, t ∈ R, by applying Proposition 3, we show
that the function t 7→

∫ t
−∞ R(t− s)(C−1 f0(s)) ds, t ∈ R is ν-almost periodic. Furthermore,

it is clear that the function t 7→ R(t)u0, t ≥ 0 belongs to the space Cω0([0, ∞) : X). Due
to [45] (Proposition 1.3.4), the mapping t 7→

∫ t
0 R(t− s)(C−1 f (s)) ds, t ≥ 0 is continuous

so that the mapping t 7→
∫ +∞

t R(t− s)(C−1 f0(s)) ds, t ≥ 0 is likewise continuous due to
the representation formula given in Lemma 2 and the Formula (12) given below. Then, the
final conclusion simply follows from a simple computation and the decomposition

u(t) =
∫ t

−∞
R(t− s)

(
C−1 f0(s)

)
ds +

[
R(t)u0 +

∫ +∞

t
R(t− s)

(
C−1 f0(s)

)
ds + ω(t)

]

+
∫ t

0
R(t− s)q(s) ds, t ≥ 0. (12)

Before proceeding further, we would like to note that Theorem 7 can be applied in the
analysis of the existence and uniqueness of asymptotically ν-almost periodic type solutions
for a class of the abstract impulsive first-order (degenerate) differential equations involving
the (non-coercive) differential operators with constant coefficients in Lp-spaces (cf. [5,32]
for more details).

6.2. Applications to the Abstract (Impulsive) Fractional Differential Inclusions

We use the following notion in this subsection. If α > 0, then the Caputo fractional
derivative Dα

t u is defined for those functions u ∈ Cdαe−1([0, ∞) : X), for which gdαe−α ∗
(u−∑

dαe−1
j=0 u(j)(0)gj+1) ∈ Cdαe([0, ∞) : X) by

Dα
t u(t) :=

ddαe

dtdαe

[
gdαe−α ∗

(
u−

dαe−1

∑
j=0

u(j)(0)gj+1

)]
;
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here, gβ(t) ≡ tβ−1/Γ(β) for β > 0 and g0(t) ≡ δ(t), the Dirac δ-distribution. We use
the following lemma (cf. [32] (Proposition 3.2.15 (i)); for the notion of solutions, cf. [32]
(Definition 3.1.1 (ii))):

Lemma 3. Suppose α ∈ (0, ∞) \N, x ∈ D(A), C−1 f , fA ∈ C([0, ∞) : X), fA(t) ∈ AC−1 f (t),
t ∈ [0, ∞) andA is a closed subgenerator of a global (gα, C)-regularized resolvent family (R(t))t≥0.
Set v(t) := (gdαe−α ∗ f )(t), t ∈ [0, ∞). If v ∈ Cdαe−1([0, ∞) : X) and v(k)(0) = 0 for 1 ≤
k ≤ dαe − 2, then the function u(t) := R(t)x + (R ∗ C−1 f )(t), t ≥ 0 is a unique solution of the
following abstract time-fractional inclusion:

(ACP) f
α :


u ∈ Cdαe((0, ∞) : X) ∩ Cdαe−1([0, ∞) : X),
Dα

t u(t) ∈ Au(t) + ddαe−1

dtdαe−1

(
gdαe−α ∗ f

)
(t), t ≥ 0,

u(0) = Cx, u(k)(0) = 0, 1 ≤ k ≤ dαe − 1.

Now, we will use the following conditions:

(AS1)’ α ∈ (0, 2) \ {1}, A is a closed subgenerator of an exponentially bounded (gα, C)-
regularized resolvent family (R(t))t≥0 and ‖R(t)‖ ≤ Meω0t, t ≥ 0 for some real
numbers M > 0 and ω0 ≥ 0;

(AS2)’ ω > ω0, m ∈ N, fi : [0, ∞)→ C is identically equal to the function sin(·) or cos(·),
αi and βi are non-zero real numbers, such that αiβ

−1
i /∈ Q (1 ≤ i ≤ m);

(AS3)’ q : [0, ∞)→ X is a locally integrable function, such that ‖q(t)‖ ≤ Meω1t, t ≥ 0 for
some real number ω1 < ω−ω0;

(AS4)’ (x, y) ∈ A, (xi, yi) ∈ A for 1 ≤ i ≤ m, and e−ωt(C−1 f )(t) = ∑m
i=1 fi(1/(2 +

cos(αit) + cos(βit)))xi + q(t), t ≥ 0;

(AS5)’ The functions q(·) and fA,q(·) are continuous on [0, ∞), fA,q(t) ∈ Aq(t) for all t ≥ 0,
and g2−α ∗ eω·q(·) ∈ C1([0, ∞) : X) if 1 < α < 2;

(AS6)’ p ≥ 1, ζ : R → (0, ∞) is an admissible weight function, ζ(t) ≤ Meω|s|ζ(t + s), t,
s ∈ R for some real constant ω < ω0,

∫ +∞
−∞ ζ p(x) dx < +∞, c > 0 and ν(t) = c + ζ(t),

t ∈ R;

Then, we obtain the following result, which can be shown in a similar way to Theorem 7
(cf. also [5] (Remark 2.6.15)):

Theorem 8. Suppose that conditions (AS1)’–(AS6)’ hold good. Then, there exists a unique solution
u(·) of the problem (ACP) f

α with f (t) = f0(t) + Cq(t), t ≥ 0; furthermore, the function e−ω·u(·)
can be written as a sum of a ν-almost periodic function, a function from the space Cω0−ω([0, ∞) : X)
and a function from the space Cω0−ω+ω1([0, ∞) : X).

It is clear that Theorem 8 can be applied in the analysis of the existence and uniqueness
of asymptotically ν-almost periodic type solutions for a class of the abstract fractional
(degenerate) differential equations involving the (non-coercive) differential operators with
constant coefficients in Lp-spaces. Furthermore, we can apply this result in the study of the
existence and uniqueness of asymptotically ν-almost periodic type solutions for a class of
the abstract fractional (degenerate) differential equations considered in [32] (Section 3.5)
and a class of the abstract fractional integro-differential inclusions with impulsive effects
considered in [30] (Section 5) (cf. [30] (Theorem 10)).

If a sufficiently small real number, σ > 0, is given, then it would be interesting to
construct an example of a Lebesgue measurable function ν : R → (0, ∞) satisfying the
following three conditions:

(i) There exists a finite real number Mσ ≥ 1, such that ν(x + y) ≤ Mσ(1 + |y|)σν(x) for
all x, y ∈ R;

(ii) ν(·) is unbounded and satisfies (LT);
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(iii) There exists a finite real number c > 0, such that ν(t) ≥ c for all t ∈ R.

If such a function exists, then we can consider the case ω = 0 in Theorem 8 and apply
Proposition 3, Lemma 3 and our conclusion established in Example 4 in the study of the
existence and uniqueness of asymptotically ν-almost periodic type solutions of the abstract
fractional Cauchy inclusion (ACP) f

α (cf. also [5] (Remark 2.6.12, Remark 2.6.14(ii))).

7. Conclusions and Recommendations for Future Work

In this paper, we considered various classes of Stepanov-p-almost periodic functions
and Stepanov-p-almost automorphic functions, where the exponent p has an arbitrary
positive real value. We studied and analyzed the class of Stepanov-p-almost periodic
(automorphic) functions in norm (p > 0) as well. The main structural properties for the
introduced classes of functions were clarified. We also provided many illustrative examples,
useful remarks, open problems and some new applications. In summary, our some concepts
and results in this paper are quite original. We believe that our new concepts and new
results will be widely applied to theoretical methods and applications related to fractional
calculus and fractional differential equations.
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5. Kostić, M. Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations; Walter de Gruyter: Berlin,

Germany, 2019.
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