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Abstract: In this study, we extend the investigations of fractional-order models of thermostats
and guarantee the solvability of hybrid Caputo fractional models for heat controllers, satisfying
some nonlocal hybrid multi-valued conditions with multi-valued feedback control, which involves
the Chandrasekhar kernel, by using hybrid Dhage’s fixed point theorem. A part of this study is
dedicated to transforming this problem into an equivalent integral representation and then proving
some existence results to achieve our aims. Furthermore, the continuous dependence of the unique
solution on the control variable and on the set of selections will be discussed. Moreover, we provide
an illustration to support our results.
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Outlook on Hybrid Fractional 1. Introduction

Modeling of a Heat Controller with Hundreds of years ago, humans tried to find a tool or an instrument that could control
Multi-Valued Feedback Control. heat exchange or temperature. A device that could control heat transfer or temperature. The
Fractal Fract. 2023, 7, 759. object was to have an easier life, allowing technology to take care of this virtual task. The
https:/ /doi.org/10.3390/ result was the thermostat, which is found in furnaces, air conditioners, refrigerators, cars, etc.
fractalfract7100759 Many scholars have discussed mathematical models for thermostats, for example, refs. [1-10].

In 1997 [2], two new mathematical models characterizing the dynamic behavior of
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motor vehicle thermostats were introduced; these models including delay-differential

Received: 4 September 2023 equations have been solved. Another modern mathematical model of the energetic behavior

Revised: 1 October 2023 of indoor regulators found in an engine’s cooling framework was presented, in addition to

Accepted: 12 October 2023 a calculation of numerical solutions [3].

Published: 15 October 2023 Webb [4] introduced a mathematical treatment for thermostats in 2005. The first
® mathematical model for thermostat control was developed by Webb [4] in the form:
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(5

Second-order differential equations for inclusion and fractional hybrid versions of
thermostat models have also been published [11]. On this issue, hybrid boundary value
criteria have also been taken into consideration [11]. The system’s historical memory is
protected by the Caputo—Fabrizio fractional-order derivative, which has been used to model
and study the complications of childhood mumps-related hearing loss in [12].

To characterize the energetic behavior of a car indoor regulator, two modern models
including delay-differential conditions with hysteresis were formulated in 1997 [2], and
it was discovered that these two models were solvable. An entirely novel mathematical
representation of the dynamic behavior of a thermostat installed in an engine cooling circuit
was demonstrated, along with a calculation of numerical results [13].

Hybrid differential equations have received great attention [1,9,14,15]. Dhage and Lak-
shmikantham [14] initiated and presented a discussion of hybrid differential equations. A
generalized version of the hybrid Dhage’s fixed point results was used by Baleanu et al. [15].

Shen et al. [6] established a fractional order model for a thermostat using the same
boundary conditions as in [5].

A further extension of the second-order differential equation of a thermostat model to
a fractional hybrid equation with nonlocal hybrid conditions has been considered in [11]:

_egr( 2
D (h(t,z(t)) € ¥(v,z(x)), vel0,1] 1)
with the hybrid conditions
2(v) —
P\ ez )| =Y
A, cgpr-1 2(0) Y 2(x) 0 )
1 h(vz(v)) 1 2\ hez(v) = !

Some existence results have been investigated. Moreover, two examples are illustrated
in [11].

Recently, the authors of [9] have established a model for thermostats involving hybrid
integro-differential inclusions:

_;:2<h(t]is/t()t))> c /01 Ht_Tq)<T'/Ol T;L'_Q P(o,v(0)) dQ> dt, v € [0,1]

satisfying the hybrid nonlocal conditions:

A Cg)zjiy(h(:,it()t))) —— (h(vzg/?)t)))|r27 =0, ve (01, ac (0,1, ne(01]
and proved some existence and continuous dependency results.

Inspired by the investigated mathematical models in [9,11], we establish some exis-
tence results for hybrid fractional modeling of thermostats.

oy /r T /‘1 T B
w(t))) o r+r®<T'V(T)' ) Trg Ver@)de)dr, rel=[01] 3)
with a nonlocal hybrid multi-valued boundary condition
p(v) _
95(9@())) P
) () @
-1 1 e
)\1 C%’Y <°J(i,y(t))) - + )\2 (Oj(t,}l(t))) o S @(t,‘u(t)),
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and with a multi-valued control variable in the form of

v(r) € Qv v(x), u(r)), (5)

where v > 0is a real number withn —1 < v < n,and A;, i = 1,2 are positive real
parameters, & = %, ‘D7 is the Caputo derivative of order v, where ®,():  x R x R —
P(R), ® : I xR — P(R) are multi-valued maps, ¢ : I x R — R is continuous, and
F e C(IxR,R\{0}).

This study is the first attempt to discuss the solvability of the hybrid fractional model
of thermostats (3) satisfying the nonlocal hybrid multi-valued condition (4) under multi-
valued constraints (5) in C(I,R). Furthermore, it will be established that the solution of
this problem is unique and it depends continuously on the control variable (5) and on the
set of selections S¢. Finally, an example is presented to clarify our results.

To reach our goal, we need to investigate the single-valued problem that corresponds
to the mentioned problem (3) and (4)

(G105 ) = [t (evo) [ S vy o) an ver @)

with nonlocal hybrid condition

p(x) —
@ (%(w(r))) ‘t_o =0

@)
Ay e <% <’§,(;f<)t)>) ‘tl + A2 (%) =Bt
and the control variable is provided as
v(e) = @ (5 v(e),u(x)), ®)

with ¢ € S5¢,0 € S, and @ € 5.

Our problem (3) and (4) involves Chandrasekhar’s kernel; integral equations contain-
ing this kernel have been treated and discussed by many scholars in different classes and by
various techniques due to their usage in numerous branches of research and engineering,
including traffic theory, neutron transport theory, kinetic theory of gases, and radiative
transfer theory (for examples, see [16,17]).

2. Single-Valued Problem
Consider the nonlocal problem (6) and (7) with feedback control (8), assuming the following:

(#1)¢ : I x R x R — R is continuous in v, T for every t € I, and measurable for almost all
v€ Jand V v, T € R. There are two integrable functions m, k1 : I — I with

p(e,v, T)| <m(c) + ki(o)(lv[+ 7)), vel

and

1 1
m < m — < k.
/OT ;M@ de < ,and/OT o (@l de <k

() ¥ € C(I x R,R), and there exists a continuous function k5 : [0,1] x [0,1] - R,and a
non-decreasing continuous map x : [0,00) — (0,00), with

(v, O] < ka2 (e)x(lI7l]),

and

L1
k do < k*.
| g @)l de <
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(#3)Let 0 : I x R — R be a Lipschitzian function, with

0(t, p1) — 0(x, p2)| < ka(v)|p1 — pal.

(#4)F € C(I x R,R\{0}) and there is a continuous function w : I — I, where

|F (v, p1) — F (v, p2)| < w(v) [p1 — pal,

A M1, U2 €eRandt € I

(#5) w € C(I x R xR, R), and there exists a measurable and bounded functiond : [ — R,
which has norm ||4||, with

|@(v,v(v), u(e))| <6(x), vel,

where § = max.¢{||4]}.
(%) The real number r is the positive root of

—Ksllw|l 7+ (1= [m ol + [lw] & +k (K*x([19]]) + I6])] A +ksG])
~G(5;(© + ksl +m) + [m+kkx([ul)] A) =0,
where G = sup,.; |%(¢,0)[, and

1 M Az 7
A= —— g2 M2l 9
T+ T A T 1) ©)

Remark 1. Using assumptions (#3) and (%), we have

0(t, )| < ks(e)|ul+ 0, O =supl6(x,0)].

vel

and

|F (v, 1) < wlu(e)|+ G, with G =sup |F(r,0)].
vel

Lemma 1. p € C(I,R) is a solution of the hybrid differential equation

c p(x) Lt _
%”(WH/O S Amdr=0 re1,7e (12, 10)

with the condition (7) and feedback control (8) if u € C(I,R) is a solution of the following equation:

u(e) =F (v, u(x)) { ./(;t (v ;8;_1 ./(;T . _T_ Q deT+ / / p— Q 0) dodt (11)

n—1)7! T F (v (e )) 0(x, p(v))
* / /0 T-I—QX(Q)deT} B Ao '

Proof. Assume that ji is a solution of (10). Then, we find constants ag, a7 € R that satisfy

v — -1 et
o= (o) - ["ET— [ a@ dedt a2

Then,

po® e T
D @) = h TooT) fy Tig KO dedt +
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and
(g - [T T ) ddr 4w
T4+ 0y ——.
(t,Mo TR 'TE-7)
Therefore, a1 = 0 and
0(x, Vo // / —1)7 1/ T
= Ydod do dt.
% ot 0dt+ ) 0T+QX(Q)QT

We get, by replacing the values &g and &7 in (12),

() =3 o) - [T [T rodear+ 2 [ [T o) de e

(-l v (5, pole >> 0(c, pole))
+ /orw“@d“”}‘ e

This indicates that for the fractional integral Equation (11), p is the solution. Con-

versely, it is obvious that for the fractional hybrid problem (7) and (10), yy is a solution
of (11). O

Corollary 1. Let p € C(I,R) be a solution of problem (6) and (7) with feedback control (8). Then,
it satisfies

H(e) =F (5, (e >>[ I (tr(?;_l /O.Trif(e,u(e), [ vien ())dg) do dr 13
// T+ <@, Q)r/o Qigtp(g,u(g))d9> do dt

+/ A L ./O.TT:_Q<P(Q,U(Q) /ogﬁ“”(g’ (¢ ))dg)dgdf}

F(x, V(t))G(t/ )
A2

Proof. From Lemma 1, we have

y(r)ﬂ(w(r))[— [ [ @ b 3 [ o

—Tv 1t ¢ E’F(t,y(t))G(t,u(t))
+ / /O T+QX(Q)deT]_ N :

Now, for .
x(@) = 9levle), [ - ¥lon(e) de), agel

we obtain the result. [
2.1. Existence of Solutions
Theorem 1. Let (%1)—(%;) be verified. Therefore, a solution for (13) exists.

Proof. Consider the ball U.(0) = {1 € X : ||7||x <€}

Clearly, U (0) is a closed, convex, and bounded subset of the Banach space X. Regard
the operators of : X — X, & :.(0) — X defined by:

(Ap)(x) = F (e, u(e), vel (14)
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Ce-T)7t Tt

T+0

4’(911’(@)//0@ 2 (e, ule)) dg) dodt (15

o+te¢

A 1 rt T 0 0
R /0 /0 T+Q‘P<QIV(Q),/O QHBU(Grﬂ(G))dG) do dt

w [ [ (oo [ wlente) de) det,

T(y 0

and

0 0+¢

(Bp)(x) =

F (v, 1(x)) 0(v, 1(x)) (16)

A2

As a solution to problem (6) and (7) with feedback control (8) exists, it is evident
that X satisfies the operator equation ddu%Bu + 6y = . By utilizing the presumptions of
the theorem of three operators with Banach algebra, due to Dhage [18] and the problem
(6) and (7) with (8), we show that such a solution exists.

In the beginning, we demonstrate that operators s, 6 are Lipschitzian with a constant
lw|| on normed space X. For evidence of this, take u1, up € X, then

| (stpu1) (v) = (Ap2) (v)]

Y u1, g2 € Ve(0), and v € I, and then

<

| (v, pa(v)) = F (v, pa(v)|
w(e) [p(v) = pa(v)l,

Ay — dpallo < [l (|1 — p2llac,

The operator o is then Lipschitzian on U, (0) with the constant ||w]||.

Similarly, we have V py, pa € Ue(0)

[(Bp1)(x) — (Gp2) (v)]

= Lm0 i (9) T ()0 ()

IN

IN

%2 (1 (&, a ()10 (e, 1 (x)) = 0(x, pia(v))] + |F (v, pa(x)) = F (v, w2 () [10(x, pa(x))1)

%([Hw\l\m(t)\ + Gl ks [ (x) = pa(0)| + w(x) [pa(v) = p2(v)[[@ + ka(v)[|uz]]])
(lewllp2]l + G] k3 + [[w][[© + ks[uall])

IN

A2

11 (v) = pa(v) -

When applying the supremum to ¢ € I, we obtain

(el ll + Gl ks + [lw[[[© + k[luall])

€1 — Bzl x <

Then, € is
(Ulewllllpa l+G] ksj\r\le@ + ksllua[I])
2

a Lipschitz mapping on X with the

e 11 — pallx,

Lipschitz constant

In second step, the aim is to show that % is continuous and compact on U, (0) into X;
thus, the continuity of % on U¢(0) is demonstrated. Taking {y, } as the series converges to
i € Ve (0) and considering that v € I, the continuous functions ¢(v, y(r)) and P(r, pu(r))
in Xgive @t ua(t) — ¢(c (), and (&, uu()) — P(s,u(x) (From (%)) and (%)),
by the Lebesgue Dominated Convergence Theorem. Then, we have
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lim (%) (v) = — lim ot (t_F(Tv))W1 /OTTJTFQ¢><QIV(Q),/OQW¢(W;1( ))df.;) do dt
sl [T e(even [ o8 vlemle) de) doar

+ lim 0’7 (7 (T))”’ 1/0 Tig¢(Q,V(Q)//()Qw¢(g,yn( ))dg) do dt

:‘/ )M/o ﬁ&’(@ﬂ/(@)'/fg_‘ig,}gr;ozp(g,un( >>dg) do dt
// o(evio) [ tim piem(e)) de) do dr

+/0,7 s A (0w, [ Jim pl mie) de ) dedr

- _/t (tr(?;_l /OTT:_ng(Q, (Q),/(;Qgig Tim (g, pn(g ))dg) do dt
// T+Q (Qr Q)//O mlP(Qr ())d(;)dgdr

+/ 1ot 1/0 Tigfl’(Q/V(e),/OQQiglP(G#(Q)WG) do dt = (Bpu)(x),

forall v € I. Thus, Bu, — Bu as n — oo uniformly on R; then, the operator % is
continuous on U, (0).

Next, we demonstrate that the operator % is compact on U (0). It is sufficient to
prove that %B(U(0)) is a uniformly bounded and equicontinuous set in U, (0). Using (%)

and (%), then
[(9B0) ()|
s/or (r—r(?; 1/0 T_T_q[m(Q)+k1(Q)(IV(Q)|+/Qﬁ (e, 1(e)] de)] do dr
/01/0 T+Q &) +he)(() + [ e wlente)] de)] de de
+ 0’7 (1 r(?) /0 T_T_Q[m((’)+k1(9)(|v(g)|+/0 ﬁw(g,y(g))‘dm do dr
<[E 8; : /Olfjgum(@mk1<e>|<|co<r,v<r>,u<r>>|
+ / T el () de) e
2 S @1+ @ (et v(e), uo)

+/0 oo x(lel)ie)] dg e

U L
+/0 T(7) /OT+QU”1(Q)I+|I<1 1(16(x)

m A Ay my? 1 M 7 N
S[rmnﬂz +F(7+1)}+k{F(7+1)+Az +F(v+1)](k xClll) + el
< [+ k (K x(ll) + 151)] A

(©)x(llpldg)]dedT

Veeland p € De(0). Asaresult, |%BT|| < [m+k (K*x(|[T|]) + [|6])] A, such that A is
given in (9). As a consequence, it could be concluded that the set %(2¢(0)) in the normed



Fractal Fract. 2023, 7, 759

8 of 19

IN

+

<

[(Bu) (r2) —
(-0 (u- T)71>
I'(7) I'(y)

space X is uniformly bounded. Hence, the equicontinuity of & is investigated. To achieve
our goal, assuming v, € [ with vy < vp, then

(Bp)(v1)]

1
[m(0) + k1 (o) (I (e, v(e), 1(x))] + [

[ A la(©lx(Inl)de)] de de

© (1) — -1 ,t
[T [ o) + (@)@ v(e) (o)

1
s
t _
n / (2
1

chy
¢

T+0

k2(6)Ix(Il)ds) ] de dr

o0+g¢

Ty — T)'y_l _ (tl — T)’Y_l 1
I'(7y) I'(y) ) /o

T+Q[|m(e)| + k1 (e)l(1(e)]

k2(6)|x(Ixl)ds)] de dr

)7~

1 1 1
o7 b T @l + R @I16@)1 + [ 2 lka() (el de)) de dx

1 - -1 v —1)r 1 t _ -1
ekl + 0] [ [ (S - O i [P D],

u(v)

7) I'(7) I'(7)

This does not depend on y € U (0). Then, V ¢ > 0, and we find p > 0, where
—ul<p = [(Bu)(r2) — (Bu)(r1)| <e,

Vi, €I, p€ Ve(0). Then, Ve > 0. This demonstrates % in X is an equicontinuous
set. The Arzela—Ascoli theorem states that 9 is compact because it is equicontinuous
and uniformly bounded on set X. Consequently, the operator % on U, (0) is completely
continuous.

However, by utilizing (73), then

My = [[B(Be(0))[|x = [m +k (6] + K x([[ul)] A

Putting L* = ||w||, then we get L* il < 1. Consequently, the Dhage hybrid fixed point
theorem’s [19] presumptions hold, and if either condition (a) or (b) is valid, then Dhage’s
hybrid fixed point theorem [19] is justified. In order for y = AuBd + By, let y € X and
v € S be random elements. Then, there is

= [dp(v)[|%Bv ()] + |Bu(v)]

< (- [ [l (even [ L w80 dc) | deas

el

*

o(evie), [ o2 wiente)) de ) | dedr

T
T+0 0 e+¢

MO g (evte [ w000 de ) | dgar)

o Hlwlllp] +GJ[O + kslp])

A2
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v — -1 7
<I9(t,m(t))|('/0 S [ I + k@ (e i) )

1
+ [ S o k() (181)dc)] do d
y— 1)1 .
w [N [ o)l + @ v, )+ [
)TZ/O /O HQ[m(g)+k1(g)(|w(t’v(t)’”(t))|+/ole ka2 (6) x([1811)dg)] do dr

i (;7_1—)%1 1 T
+/0 T'(7) /0 T_'_Q“m(Q)H“kl( 0)|(|@(x,v(x), u |+/

([l + GI[© + Ksllpll])
A2 '

clals )Ix(181)ds) |dodT

Jkals X(IIﬁII)dQ)]dedT>

Taking supremum over ¢ € I, we have

([lplllew]] + G][© + ks|p])
A2

A

el < [lull el + GJlm +k (k" x(I9l]) + l6])] A +
< e

Therefore, all of the requirements of Dhage’s hybrid fixed point theorem [19] are held.
Therefore, y = AuBY + € has a solution in S. Hence, problem (6) and (7) with feedback
control (8) is solvablein Son [. [

2.2. Existence of the Unique Solution

With the aim of proving some uniqueness results of the problem (6) and (7) involving (8),
assume that:
(#1)* Let ¢ : I x R x R — Rbe a Lipschitzian mapping, where

lp(v,v1, 1) — @(v,, va, p2)| < ki(v) (v — va| + |1 — pa2l)-

From this assumption, we see that the assumption (%) is valid; then,

(e, v, )] < Ka(6) (o] + )+, m = sup (,0,0)].

vel
(#2)" P(x, pu(v)) = ka(v) p(v).

Theorem 2. Let the assumptions of Theorem 1 hold, and replace assumption (%) with (%1)* and
(%2) with (%2)* with

Alllewl|(m + ky (10]] + kar)) + (]l + Gy ke +%2[k3[|\af\|r+@] +wl [ksr+0]] <1

Then, the hybrid problem (6) and (7) with feedback control (8) has a unique continuous
solution.

Proof. Let 1, yp be two solutions of Equation (11), so
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v (e — -1 ,7
x [ [T () + k@) (@l @l m @)+ [* 2 (9l ()] do)] de de

I'(y) T+ Q+¢
T _ y—1 T
+wmwxm|o“rg)Lgrjgmwﬂl+gwgm )~ 9(e palc))|dsdedt

// T+Q 0) +ki(0)(lo(e,v(e) (o) |+/ Q+gk1 ¢) [w(c,m(c))| dg))] dodr

|9't142t I//HQ /OQJFQ\IPQM 6)) = $(c ma(c))|dededt
+|f¥(tm()) F(t, p2(v))]

-ttt
<[ AI+QW@+M@M®@W@M@M+A%¢EWQM ))|do)) do dx
_ 1t
+[F (v pa() I/ T’y /OTiQk1<Q)/OQQ+€|IPQVl ¢)) — (g, p2(c))|dgdedt

+ /Tz[lg(wtz(t))l |9(t/ﬂz(t)) = 0(t, ()| + [F (v, pa(x) — F (11 ()] [0(x, pa (v) ]

< = =0 Im+ ki (||8]] + k 4+ ——ki1 k —
= F(,), 1) [ 1(“ H 2”]"1“)] F('y 1) 1 K2 ||,ul ,'”2”

A
3, leoll i = pall [+ Ka (o1l + k2 )]
A
+ 5 el @]+ Gl kKol = o]
1" ] i — po] 7" [l llpll +G]
ki (|[6]] + k kq k -
+ T(y+1) [m + k1 ([16]1+ K2 )] + T(y+1) 1k [l — izl
1
;LK =gl {lwlliill + ]+ lleoll i = pall (ks + @]

Taking the supremum over v € I, we have

B 1 A v _
=l < 7oy + 7, T o vy Il i =l 1011+ Kz )
1 A i
o + 204 T ) [|w| r + Glky kol — pa

I'(y+1) Ay T(y+1)
+ = pell [ks [llwlllipzll + G + llwll [ksllpll + ©]]

SWrﬂd(Akdm+h(MW%MO)+UwH+GWMﬂ
1
+A;h[mmwm+c+nwu@wm+®ﬂ)

and

(1~ (A [l + Ky (181 + 2 ) + (ol 7+ Gl Ko
+ 2k [llr+6]+ ] [kar+©]])] i - el <0,
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() = (v)]

< [F (e u(x) -

which denotes
p(r) = pa(v).
O

2.3. Continuous Dependency on the Control Variable
Here, we study the continuous dependence on the control variable v.

Definition 1. The solution of problem (6) and (7) with feedback control (8) depends continuously
on vif Ve>0, 3Y > 0, where

lv(t) —v*(v)| = |@(v, v, u) —@(x,v",u)] < Y, tel01].
Then, ||\ — pu*|| <e.
Now, we prove the result.

Theorem 3. Suppose that Theorem 5 is verified. Thus, the solution of (13) depends continuously
on the control variable v.

Proof. For the two solutions y and u* of (13), corresponding to the control variables v, v*,
we get

s [T [l (oven [ e e dee

o) [ [ e (oven [ e uoc)

~o(evio) [ Lovlen @)

+ "P(QIV(Q)

' vten@e) ~o(evio) [ S vion @)c )| dode
2 ) -5 @) [ [ e (even [ vl uo) de) | doe

Ao
FE I (e

A==

o(ev(o), [ vl (o))

~o(evio) [ Lovien @)

+ ’47(@,1/(@)

+1F (e pu(e) =

5 thp(g, G >>dg) —«p(e,v*(e), [ & vien (@) )| o

_TV 1 ¢ 9
ol [ = [ (vt [ v mo) de) | dede

ot |/ ‘T“/O HQ[W(@ ) [ oplen(e))as)

~o(evio) [ S vion @)

+|o(ev(o

1

' vten @) — oo @), [ vt (©)dc ) || dode

+ 3, [1F () 00 17 (1)) = F (6, 1 (0)) 0z p(x)]
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(v— Lo
<[5 s D[ T [ ) + k@) (e v(e) (o)
—i—/OQQTghbgy ‘dg)]dgdr
s [ T [ e e - @)
[ e elente >> w<g 1 (©)lde)de)dr + 1L 505, u(0)) = (5, (1)

_ ~\1- T
X/OQ (i(zi)v)wfo T_T_Q[m(Q)+kl(Q)(|@(Q/V(Q)/V(Q))|
—i—/oggf_ o) [9(c u(c))|dg))] dodr
Lo @) [ [ (o)’
+/0@ Q+g|lP 6 11(6)) — 9(e 1 (c))|dg)de) ds
_ 1

() -5 @) [T [T o)+ ) (@(e v k(o)

+/OQQTg|‘P€P‘ ))|d )]deT
y— 1)1
) [ /0 (@) (1v(0) ~ ()
+/Ogg+g!¢ 6 1)) — llf( 6 1 (5))|dg)de)dT
2 [ )] 1006 12(0) = 0, i (6)] + 1" (6)) = (o u(0)] 60, 1(0)]
* v (t_T)Wil vt
< leollp(e) =1 @) [ 55— ) wg Im(@)

FR@I(0@1 + [ =2 lkale) ) de)] dg v

0 0+¢
C(e—1)r L T

el 1w @1+ 6] [ U= [ @+ [ k) In(e) ~ (@) e de)ar
3 el l(©) = (0
//OHQ o1+ Ia@1(8)] + [ L lka(e)lln(e)| de)] de e
2 el @1 +6] [ [ 7+/ Tz Fal)] (@) — ) ldg) de)e
+ el 5 )

_ -1
<O [ o+ W@l + [ ka(@)l)] o)) de de

_ 1

+lelle@l+6) [T D [ Ti (a(0) 1+ [~ k(o) lule) — () e

+W Hlewlll* ()] + G] + lleol|pe(x) — 1 (¥)] [kalp(x)| + ©]
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Ll )l + G]

< el Iy = w7l
- I'(y+1)

I'(y+1)
A «
+/Tl el | — p I [m 4Ky (6] + Kz [[ell) ]

[m+ k(|61 + kallpll)] + (kv (Y + ko [l = p1l)

+ 24l (01 61 G (Y balle— 1)

n7 lwl| I — p* |l
I(y+1)

1 * *
+/Tl[k3 e =1l [leolllp 1+ G] + llewll I = || [kl + ©]].

b (0 b))+ 2 LSRG

Taking the supremum over t € I, we have

=11 < gy + e+ ) ol = w ks (191 + ke )]
* [r(71+ 1) +A2F(/:\51— 7 +r(;711)] [l ¥+ G] (k1 (Y + kallp — u*]))

=l [ks [llollllpll + G + llwll [kslp]l + ©]]

< ||yy*||(A lleoll e+ k(18] + k2 7)) + (lwll 7+ Gy ko]

k | +G] + k +0
i Lo D+ 6]+ o Pl J)+[||w||r+qu1
2
and

] < |wllr + G YAk

< k *|| 4G k +0

1= (Alleln + k(151 + k2r) + (lel + O] + ol ] che [l ]>
= €.

The previous inequality leads to the following result:

[ —p*| <e

This demonstrates the solution’s continuous dependence on the control variable
functionv. O

3. Set-Valued Problem

The study of inclusion problems has drawn much interest based on their extensive
applications and actual problems [15,20,21]. Regarding the differential inclusion problems
and some results of existence, see [22-25].

%:*) Let ® : I x R x R — 2R be non-empty and convex and let subset V (t,v,u) €
1 pty M
I x R x R, where

(i) ®(x,.,.)is upper semicontinuousin (v, u) € Rx R, Vre L
(ii) ®(.,v,u)is measurableint € I, V(v,u) € R xR.
(iii) There exist m,kq : [ — I, where m, k; € L'(I) with

[®(v,v, T)| = sup{|¢p| : ¢ € @(v,v, T)} <m(x) + ki (v)[(v] +][z]), v el

and

1 1
< — < k.
/O T3¢ m@ldes m, and /0 T3¢ (o)l des k
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(#5) Let® : IxR — 2R be a Lipschitzian set-valued function with a nonempty
compact convex subset of 28, where

1©(e, 1) = O(x, pa) || < ka(¥)|p1 — pial.

Remark 2. Obviously, we can deduce that, as shown in Remark 1 [9], there exists a Carathéodory
mapping ¢ € © [26] that is measurableinv € I, Vv, u € R and continuous inv, y € R,Ve € I,

p(e,vp)| <m(c) + ki(v)(v] +[p]), vel

In addition, the set of Lipschitzian selections Sg is nonempty [26] and 6 € Sg meets

10(c, 1) — 0(x, p2)| < ka(v)|p1 — pal,

Then,
10(c, )| < ki (v)[u| +©, © =supl6(x,0)]

el
and satisfies the nonlocal problem (6) and (7) with feedback control (8).

Let O(x,v(x), u(r)) : I x RT x RT — 2R smeet the mentioned conditions:

(a) Theset Q(r,v(v), u(t)) is a non-empty, closed and convex subset for all

v

(v,u(r), u(r)) € I x RT x RT.
(b)  Q(x,v(r), u(x)) is upper semicontinuous in v, u € R for each v € I.
(c) Q(,v(r),u(r)) is measurable in v € I for each v,y € R

(d)  There exists two measurable and bounded functions 6 : I — R, with norm ||8||, where

Qe v(e), 1(e)| = sup{J] : 7 € e, v(e), 1))} < 6(x), v L,

with § = max.cr{||6]}.

Remark 3. We can infer from assumption (i) that the set of selections Sq (i = 1,2,...,k) of
the set-valued function C) is nonempty and there exists a Carathéodory function @ € ) (see [26])
such that

j@(x,v(x), pu(x))| < 6(v),
fulfilling the implicit equation

v(t) = @(v,v(r),u(r)), vel (17)

Thus, any solution of problem (6) and (7) with multi-valued feedback control (8) is a solution
of problem (6) and (7) with feedback control (17).

3.1. Existence Results

Now, based on the main findings in Section 2, we present in the following the results
obtained for the nonlocal hybrid modeling of a heat controller (3) via the multi-valued
condition (4) with feedback control (5).

Theorem 4. Let the assumptions (™), (%5 ) and (%5 ),(#4), (#5) hold. Then, the problem (3)
and (4) has one solution, u € C(I, R).

In the aim of demonstrating uniqueness result of (3)—(5), we replace the assumption
(%) by
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(%;**). Let @ : I x R x R — 2% be a Lipschitzian multi-valued mapping with a nonempty
convex compact subset of 28, with

[P, v1, 1) = (e, va, p2) || < ka(v)(Jvr = va| + [p1 = pial)-

From these assumptions, we can observe that (#;*) is held. In addition, the Lips-
chitzian selection set S¢ is nonempty ([26]) and ¢ € S¢ meets

[P(v,, v, p1) — ¢(x,, va, p2)| < ka(v)(Jvr —val + [p1 — p2l),

then, we have

9 v, )| < Fa(e)(Jv] + |pl) +m,  m=sup¢(x,0,0)]

el

Theorem 5. Let Theorem 4 be verified and replace assumption (#;*) with assumption (F;**).
Then, inclusion problem (3)—(5) has a unique solution, x € C(I,R).

3.2. Continuous Dependency on the Sets of Selections

Definition 2. The solution of problem (7) and (6), with multi-valued feedback control (17) depends
continuously on the set Sg. If V€ >0, 3Y > 0, such that

9 v, 1) —¢" (e v, )| < Y, ¢, ¢" € Se, ve[01],

then, || — u*|| < e.

Theorem 6. Let Theorem 5 be verified. Then, the solution of (13) depends continuously on the set
Se of all Lipschitzian selections of ¢.

Proof. Let the functions y(t) and u*(t) of (13), correspond to ¢, ¢* € Sg, respectively; then,

~stenr @) [T [N oot [ pionte) de)| dodt

s @) [ [T (e [ vt o)
—¢ Q/V(Q)f/o (e ())dg)]dedT

ot
+%Ig(w(t)) \/ /THQ ’¢<e, o aw(g, ())dg)‘dgdr
el [ / HQ[ (evto) [ vt no)i)

=4 (e, (Q),/OQQ_QFg )]deT

+|F (e, u(x) -

+|F (v,

2 0
I/ O HQ ‘4><@/ /0 wtp(g,u(g»dg)’dedf

|/ e Tjg[q)(g,v(e) [ vt ntenas)

" (ot [ ovle w(e)c ) | o

0+g¢
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o6 (9) B0e 1 (6)) — F 0 1(6) 05, 1(6)
v — -1
<l 1) = w @1 T [ ()l + s (@1 (101 + kall)] de e
v — -1 ,t
+HWHWW0H4HA D [Tt W@l 191+ ko 1) dg) o

+ 2 ol @)~ @1 [ [ o)+ e @l 191+ k2 )] do e

+fuwwyuru3// (Y + ka (@I (1611 + kall = p°1l) do) d

y— 1)1
+lal ) = w @] [T [ )l + @] (18] + ke )] de de

7)7*1

+-MM|yuM+GLA(”Rw [0+ 1@l (161 + ko e — 1) dear

1 * * *
+)Tz[k3 = Il el + G] + Nl = |l [ksllpll +©]]

Ll ll#]l + G]

w _ *
< Ml =y g 1)+ Ralpal)] + Ty +1)

- Thr+1)
A .
+ )Tl el I = p [ fm + ke (161 + k2 [[ul])]

(Y 4k ([16] + k2 [ = ")

+ 2 el (0] + G (¥ +ka (18] + kalln = 1)

" llwll lp = w]l 77 [llwll Il + G]
k1 (]|6 k

1 * * *
+)Tz[k3 = Il Ml [l + G] + Nl = || [ksllpll +©]].

(Y + k1 ([l6]l + Kz [ = []))

For v € [0,1], we obtain

=l < [ 2
PR = 50D " " T+
1 /\1 11'7
+ +
T D P A=y T T+

= s o+ 6] + Nl [Ksllul + @]
/\2 3 U 3K

< ||#—#*|<A [w(m~+ky (6]l + k27)) + (|wl]l 7+ G) (Y + ki (|6]| + k2))]

n [ks [llwllllpll + G] + llw]l [ksllpall + ©]]
A2

J el T = w1+ Ko (1011 + 2 7)]

] llewllr+GI(Y + k1 ([16]] + kallp = ]l))

+

)wa+QW+MMMA

and
[lwll 7+ G][Y +ki[6]]] A
— (Alllw]| (m + ks (16]] + k2r)) + (|w|r + G)kyky] + KallelrtClijwlksrtOlly

2

[ —p*| <
1

=€
The previous inequality leads to the following result:

[ —p*l <e
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p(r)

_cqy
e—In2(x+1) )|y
1+(p(v)]

This demonstrates the solution of the problem (7) and (6) with multi-valued feedback
control (17) is continuously dependent on the set S¢. [

3.3. Example

In accordance with the indicated hybrid BVP (3) and (4), we take into account the
fractional order hybrid inclusion problem

n@)l_y
sin do
) {/t ey Jo v( 1+\u‘(;()gl)‘ | dr, 0} el as)
0 t+7T 21—|—f01/T smlﬂﬂ(g)‘d())

via the nonlocal conditions

S 1) R _
CB)ZS ( E*IVIZ(FF])I”I 8) -0 - 0,
o) o7 v (19)
-1 p(x) p(v) p(v)
Ay DT (91n2(t+t1)l, + A2 4,12“;)‘ " > {; + 4+to]
with multi-valued feedback
1 _
u(r) € 0.1 u(r) + 200 cos(t) + e2 “v(r),0]. (20)
Lety=%7-1=3%7n=08%,and A\ =\, =32
Y=47 =43, 171=089and Ay = = z.
*712 T
Define g(t, u(v)) = % + 8 and the multi-valued map P by
Jo v(r) sin 1+|([()|)|d v ou(y)
D(r,v,p) = v+ }‘ Gl ,0| and 0(v,x(v)) = = + .
21+f01/t sin W(T”dr) 2 4+tw
Ifw(r) = % then |lw|| = i, m =05k=1%,k* =3, ks=1G=1,and0 = }.

By using the above relations, we get A ~ 1.9468834. Hence, the above data satisfy the
condition of Theorem 2:

1
AlfllollGn + ki (0l + k2 )+ (lwll 7+ Gy ko] + 5[ ks [llwllr +G]
+ ||wl| [ksr + ©]] =~ 0.5826955222 < 1.

Using Theorem 5, then the problem (18) and (19) with multi-valued feedback (20) has
a unique solution.

4. Conclusions

Many works in the literature and monographs have treated and developed mathe-
matical models that appear in various real-world applications, for example, thermostats or
heat controllers. One approach is to develop very complex iterations of popular models
from real-world issues which can be described using inclusions or fractional differential
equations [2,7,12,16].

In this work, we provide a comprehensive investigation of a class of hybrid fractional
models of thermostats via nonlocal multi-valued boundary conditions (3) and (4) which
satisfy multi-valued feedback control. The main tool of our study is applying Dhage’s
hybrid fixed point theorem [19]. The use of various approaches for certain differential and
integral problems, including constraints or control variables, has recently been developed
by several scholars, for example, in refs. [27-33]. This feedback control may be in an implicit
form as in [27-30], multi-valued feedback control as in [32], or fractal feedback control [33].
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We have established the continuous dependence of the unique solution of our prob-
lem on the control variable and on the set S¢. In this study, we have investigated some
qualitative properties of the solution of this problem, which encourages us to investigate
and discuss additional singular dynamical systems that appear in a variety of natural and
engineering phenomena.
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